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Abstract
Distinguished from traditional knowledge graphs (KGs), temporal knowledge graphs (TKGs) must explore and reason
over temporally evolving facts adequately. However, existing TKG approaches still face two main challenges, i.e., the
limited capability to model arbitrary timestamps continuously and the lack of rich inference patterns under temporal
constraints. In this paper, we propose an innovative TKGE method (PTBox) via polynomial decomposition-based
temporal representation and box embedding-based entity representation to tackle the above-mentioned problems.
Specifically, we decompose time information by polynomials and then enhance the model’s capability to represent
arbitrary timestamps flexibly by incorporating the learnable temporal basis tensor. In addition, we model every entity
as a hyperrectangle box and define each relation as a transformation on the head and tail entity boxes. The entity
boxes can capture complex geometric structures and learn robust representations, improving the model’s inductive
capability for rich inference patterns. Theoretically, our PTBox can encode arbitrary time information or even unseen
timestamps while capturing rich inference patterns and higher-arity relations of the knowledge base. Extensive
experiments on real-world datasets demonstrate the effectiveness of our method.

Keywords: temporal knowledge graph, polynomial decomposition of time, probabilistic box embedding

1. Introduction
Knowledge Graphs (KGs) are widely used in
question answering, information retrieval, and
recommender systems by representing human-
summarized knowledge via multi-relational graphs
(Hu et al., 2022). KGs usually can be viewed as a
collection of facts in triple form (h, r, t), which repre-
sent head entity h is related to tail entity t by relation
r. However, many facts in the real-world are time-
sensitive, making the triples of (static) KGs cannot
describe the dynamic evolution of facts over time.
For example, the president of the USA is Barack
Obama only for the period 2009-2017 and is Don-
ald Trump only for the period 2017-2021. There-
fore, Temporal Knowledge Graphs (TKGs), which
introduce the timestamp to expand the fact into
a quadruple form (h, r, t, τ), have recently drawn
growing attention from both academic and industrial
communities.
To effectively represent temporal information and
construct a complete knowledge graph, Temporal
Knowledge Graph Embedding (TKGE) methods
usually learn low-dimensional representations of
entities and relations under temporal constraints
and predict missing triple links. A popular strat-
egy in TKGE directly treats time information as
the feature equivalent to entities or relations, trans-
forming various existing KGE methods into TKGE.
TComplex (Lacroix et al., 2020) expands the entity-
relation third-order tensor of ComplEx (Trouillon
et al., 2016) into an entity-relation-time fourth-order
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tensor via canonical polyadic decomposition. Un-
der the setting of the original KGE model, these
KGE-based extension methods simply model time
information into entities or relations and cannot ef-
fectively model temporal characteristics. To cap-
ture rich time information, another strategy of TKGE
has been proposed. These methods typically ex-
hibit good temporal generalization due to clever
network architectures crafted for integrating time
information. HyTE (Dasgupta et al., 2018) pro-
poses hyperplane-based TKG embedding to view
the TKG as a collection of KGs embedded within
different temporal hyperplanes. ATISE (Xu et al.,
2020b) utilizes the theory of additive time series
decomposition to represent entities and relations
as time series features that can be decomposed
into trend, seasonal, and random components. Dy-
ERNIE (Han et al., 2020) defines the interaction
between velocity vectors and times in the tangent
space to describe the dynamic evolution of entities.
Although these methods consider the impact of tem-
poral characteristics on entity-relation pairs, they
lack the capability to model arbitrary timestamps
continuously.

Generally, existing TKGE methods use simple em-
bedding vectors and the parallelogram rule in Eu-
clidean space for feature representation, captur-
ing limited structural information for the knowledge
graph. This results in the restricted reasoning capa-
bility of the model, especially for inference patterns
under temporal constraints. TTransE (Leblay and
Chekol, 2018) employs the parallelogram rule in
Euclidean space to measure the score of entity-
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relation pairs, which makes it unable to capture
symmetry pattern. RotateQVS (Chen et al., 2022)
defines the rotation of the entity around the time
axis in quaternion vector space and calculates the
score via the distance of the complex vectors, caus-
ing it cannot capture hierarchical pattern.
To address the above problems, we propose an
innovative TKGE method based on polynomial ap-
proximation, namely PTBox1. Our method com-
prises two modules: polynomial decomposition-
based temporal representation and box embedding-
based entity representation. Specifically, we lever-
age the polynomial approximation theory to decom-
pose the embedding of any given time point into
a product of a coefficient vector and a learnable
feature tensor. In this way, our approach allows
easily for representation of arbitrary time points,
even those that have never been encountered be-
fore. Due to the inherent properties of box-type
geometric embedding, it can represent varied rela-
tions with respect to transitivity and is closed under
intersection. Hence, we further represent the head
and tail entities using box embeddings to enhance
the rigid inference ability of PTBox. Empirically, we
conduct detailed experimental evaluations over two
popular TKGE benchmarks and prove our method
can capture time-evolving information. Moreover,
we analyze the learned box embeddings and show
the abilities of our PTBox for modeling various rela-
tion patterns, including temporal evolution.
In summary, our main contributions are three-fold:

• We propose an innovative temporal knowledge
graph embedding method, namely PTBox. Ex-
perimental results verify the state-of-the-art
performance of our method on two publicly
available datasets.

• Proposing an interpretable time representa-
tion method that decomposes time information
by polynomial approximation theory to flexibly
represent arbitrary timestamp.

• Proposing a box-embedding-based entity rep-
resentation method that effectively represents
calibrated probability distributions and learns
rigid inference patterns.

2. Related Work
2.1. Knowledge Graph Embedding
Real-world knowledge graphs are usually incom-
plete, necessitating completion techniques to en-
able their effective application in downstream tasks.
Knowledge graph embedding (KGE), as the popu-
lar static knowledge graph completion technique,
employs embeddings to represent entities and

1We release our code at
https://github.com/seeyourmind/PTBox

relations. By learning scores for all possible
facts, KGE methods predict missing links, e.g.
(the Beatles, genre, ?). As an active research area,
numerous methods have been proposed to ad-
dress the challenges of representing and complet-
ing knowledge graphs. These KGE methods can be
broadly categorized into several key approaches:
translation-based methods, tensor-based methods,
and neural network-based methods.
Translation-based methods define scoring func-
tions based on the translation between entities
and relations. The classical model TransE (Bordes
et al., 2013) utilizes the parallelogram rule in vec-
tor space to define the scoring function, assuming
that adding the head entity vector and the relation
vector should be as close as possible to the tail
entity vector. Subsequently, several improved mod-
els in the Trans-series have been proposed, such
as TransH (Wang et al., 2014), TransN (Wang and
Cheng, 2018), TransC (Lv et al., 2018). To address
the contradiction between the optimization and reg-
ularization in the TransE, TorusE (Ebisu and Ichise,
2018) introduces the Lie Group to learn embedding
representations in a torus space. To model rich
inference patterns (e.g., symmetry/antisymmetry,
inversion, and composition), RotatE (Sun et al.,
2019) defines each relation as a rotation in the
complex vector space from the head entity to the
target entity.
Tensor-based models treat the knowledge graph
as a multi-dimensional tensor and aim to factorize
this tensor to learn entity and relation embeddings.
RESCAL (Nickel et al., 2011) factorizes the tensor
into low-rank matrices, capturing the interactions
between entities and relations. DistMult (Yang et al.,
2015) restricts the representation matrix of relations
to diagonal matrices, greatly reducing model com-
plexity. ComplEx (Trouillon et al., 2016) extends
the representation of entities and relations to the
complex vector space, providing better modeling of
asymmetric relations. SimplE (Kazemi and Poole,
2018), based on the canonical polyadic decom-
position, represents each entity and relation with
two vectors, thereby increasing the correlation be-
tween head and tail entities. Additionally, some
methods model relations in hypercomplex spaces
to learn representations with more geometric fea-
tures (Zhang et al., 2019),(Nguyen et al., 2022).
Neural network-based methods apply deep learn-
ing techniques to model entity and relation
representations, aiming to obtain embeddings
with strong generalization ability and robustness.
Among them, ConvE (Dettmers et al., 2018) is
based on convolutional neural networks, R-GCN
(Schlichtkrull et al., 2018) and M2GNN (Wang et al.,
2021) are based on graph neural networks, and
A2N (Bansal et al., 2019) leverages attention mech-
anisms. Additionally, there are methods like MuRP
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Figure 1: the overall of our proposed PTBox. eh, et, r and τ denote head entity, tail entity, relation and
timestamp for one quadruple fact (h, r, t, τ), respectively. ⊗ denotes Hadamard product. Our model
obtains the time representation via the polynomial decomposition mechanism and represent the probability
of the fact being established by the intersection between entity boxes.

(Balazevic et al., 2019) and ROTH (Chami et al.,
2020) that model entity and relation representations
in non-Euclidean spaces. Although KGE methods
have been widely applied in recent years, they face
limitations in capturing the dynamic evolution of
facts in real-world scenarios. To address this prob-
lem, research focuses on addressing challenges
such as handling dynamic knowledge graphs and
incorporating temporal information.

2.2. Temporal Knowledge Graph
Embedding

Temporal Knowledge Graph Embedding (TKGE)
methods aim to incorporate temporal information
into the representation learning process of knowl-
edge graphs. This incorporation allows modeling
of temporal dynamics and the evolution of facts.
These methods extend traditional KGE approaches
by introducing temporal factors, such as times-
tamps or time intervals, associated with triples in
the knowledge graph. TTransE (Leblay and Chekol,
2018) extends TransE by considering time embed-
ding as an equivalent vector to entities and rela-
tions. TA-DistMult (García-Durán et al., 2018) ex-
tends DistMult by training a recursive neural net-
work with sequences of tokens representing time
predicates and digits in timestamps. DE-SimplE
(Goel et al., 2020) extends SimplE by incorporating
a diachronic entity embedding function to provide
representations for entities at any given timestamp.
In addition, TComplex (Lacroix et al., 2020) extends
ComplEx, BoxTE (Messner et al., 2022) extends
BoxE (Abboud et al., 2020), ChronoR (Sadeghian
et al., 2021) and RotateQVS (Chen et al., 2022)
extend RotatE.
On the other hand, some methods focus on incorpo-
rating time information by leveraging deep learning
to craft customized network architectures or opti-
mization functions. HyTE (Dasgupta et al., 2018)
represents timestamps as mutually independent

hyperplanes, where entities and relations satisfy
the TransE assumption. ATiSE (Xu et al., 2020b)
leverages the additive time series decomposition
to treat entities and relations as temporal data, de-
composing them into trend, seasonal, and random
components. TeRo (Xu et al., 2020a) combines the
RotatE and TransE models by representing the tem-
poral evolution of entity embeddings as a rotation
in the complex vector space, starting from the initial
time to the current time. DyERNIE (Han et al., 2020)
models entities on a mixed curvature manifold and
defines the tangent vector of a given entity as the
velocity of the entity’s evolution over time, enabling
the description of dynamic evolutionary processes
of entities. By incorporating temporal information,
TKGE methods enhance knowledge graph embed-
ding to capture temporal dynamics, and support
downstream applications in evolving real-world sce-
narios. Although both mainstream categories of
TKGE methods have their respective advantages,
there is currently limited work that combines the
strengths of these two approaches, namely hav-
ing interpretable time representations while also
supporting rich inference patterns. Therefore, this
paper proposes a novel TKGE method via entity
boxes and polynomial decomposition of time that
aims to bridge this gap.

3. Methodology

In this section, we introduce the proposed PTBox
method. The architecture is shown in Figure 1. We
first describe the employed notations and defini-
tions in Section 3.1. Then, we present the model
framework and the two modules of our method in
Section 3.2 and 3.3, respectively. In addition, we
discuss the parameter learning strategy in Section
3.4, and model properties in Section 3.5.
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3.1. Problem Formulation
Temporal knowledge graphs represent events or
facts using quadruples (h, r, t, τ), where h ∈ E and
t ∈ E represent the head and tail entities, r ∈ R
represents the relations, τ ∈ T represents the
timestamps. Then, a TKG can be formulated as
G ⊆ E × R × E × T . For example, the quadruple
(JosephineTewson, wasBornIn, Hampstead, 1931-
02-26) describes the fact that Josephine Tewson
was born in Hampstead on February 26, 1931.
TKGE methods aim to complete knowledge graphs
by leveraging link prediction task, which utilize a
scoring function to predict missing head or tail enti-
ties in G within a specified temporal context. Typi-
cally, the score function is learned with the formula
as f : E × R × E × T → R, that assigns a score
s = f(h, r, t, τ) to each quadruple, indicating the
prediction that a particular quadruple corresponds
to a true fact. Followed closely, a non-linearity,
such as the logistic or sigmoid function, is often
used to convert the score to a predicted probability
p = σ(s) ∈ [0, 1] of the quadruple being true.

3.2. Polynomial Decomposition based
Temporal Representation

The incorporation of temporal information repre-
sents the primary difference between TKG and
traditional KG methods. As a result, effectively
modeling temporal embeddings becomes a critical
task for TKGE. Although existing TKGE methods
have successfully integrated temporal information
with entity-relation triplets, a limited number of ap-
proaches directly mathematically model continuous
time information. Therefore, we model the times-
tamp via polynomial decomposition-based repre-
sentation (PTR) to learn interpretable representa-
tions of continuous time.
According to Weierstrass approximation theorem
(Pinkus, 2000), a continuous function defined on a
closed interval can be uniformly approximated by a
polynomial function. Namely,

f ∈ C[a, b],∀ϵ > 0,∃Pn ⇒ ∀x ∈ [a, b], |f − Pn| < ϵ
(1)

where Pn is the polynomial function used to
uniformly approximate the continuous function
f . Based on Stone-Weierstrass theorem (Cotter,
1990), topological space R is a Hausdroff space,
and the Weierstrass approximation theorem is sat-
isfied in this space. Accordingly, we assume that
time information can be expressed as a nonlinear
function on the closed interval [0, 1], and design a
multi-layer perceptron with a sigmoid output layer
to learn this function. Then, we can leverage the
Bernstein polynomial to represent Pn, which can
be formulated as:

Pn(fτ , x) =

n∑
k=0

f(
k

n
)

(
n

k

)
xk(1− x)n−k (2)

where fτ (x) denotes the function describing time
information. fτ scales the input timestamps to [0, 1].
Given n, we convert Pn(fτ , x) into the matrix form,
which can be formulated as:

Pτ = Pn(fτ , x) = ατ ·X, (3)

where ατ denotes the coefficient matrix and X de-
notes the polynomial matrix. Note that X ∈ Rk×d

is the temporal basis tensor, which learns the basic
meta-features of time information. Then, based
on Equation3, we can easily model the temporal
representation of any given timestamp. Moreover,
according to the representations we can further
dynamically model entities and relations under tem-
poral constraints.

3.3. Box Embedding based Entity
Representation

Temporal knowledge graphs inherently contain rich
geometric structural information. Geometric em-
bedding methods possess the natural ability to rep-
resent transitive asymmetric relations via contain-
ment. Among these methods, box embeddings
represent objects as n-dimensional hyperrectan-
gles and exhibit closure under intersection. This
characteristic makes box embeddings well-suited
for capturing complex relationships within knowl-
edge graphs. Hence, we model the entities via box
embedding based entity representations (BER) to
enhance the representation and reasoning capabil-
ities of our PTBox model.
In our PTBox, every entity ei ∈ E is represented
by a n-dimensional axis-aligned hyperrectangle
(namely box) Box(ei) ⊆ Rd, which can be viewed
as a lattice, a special poset. Each box is repre-
sented by a pair of vectors, which correspond to
the maximum coordinates eMi and minimum coordi-
nates emi of the box, respectively. Considering the
entities in the knowledge graph as a non-strict par-
tial order set, we can then define the relationship
between ei and ej by inclusion of boxes as follows:

ei ∨ ej =
∏
k

[min(em,i
k , em,j

k ),max(eM,i
k , eM,j

k )],

ei ∧ ej =

{
⊥, if ei, ej disjoint∏

k [max(em,i
k , em,j

k ),min(eM,i
k , eM,j

k )], otherwise
(4)

where ∨, ∧, and ⊥ denote partial order relations,
∨ is the smallest enclosing box, ∧ is the inter-
secting box, and ⊥ is the empty box. min(·) and
max(·) are functions used to calculate the minimum
and maximum values, respectively. Further, follow-
ing the viewpoint proposed by Vilnis et al. (Vilnis
et al., 2018), we can interpret the volume of a box
as a non-normalized probability. Therefore, utiliz-
ing inclusion-exclusion with set intersection over
Box(·), the joint probability and conditional proba-
bility of relationships in the knowledge graph can
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Inference Pattern Setting
Symmetry: r1(e1, e2|τ) ⇒ r1(e2, e1|τ) Pr1(e1|e2) = Pr1(e2|e1) ̸= 0
Antisymmetry: r1(e1, e2|τ) ⇒⌝r1(e2, e1|τ) Pr1(e1|e2) ̸= 0, Pr1(e2|e1) = 0
Inversion: r1(e1, e2|τ) ⇔ r2(e2, e1|τ) Pr1(e1|e2) = Pr2(e2|e1) ̸= 0
Composition: r1(e1, e2|τ) ∧ r2(e2, e3|τ) ⇒ r3(e1, e3|τ) Pr3(e1, e2, e3) ̸= 0
Hierarchy: r1(e1, e2|τ) ⇒ r2(e1, e2|τ) Pr1,r2(e1|e2) ≥ Pr1(e1|e2)Pr2(e1|e2) ̸= 0
Intersection: r1(e1, e2|τ) ∧ r2(e1, e2|τ) ⇒ r3(e1, e2|τ) Pr3(e1|e2) ≥ Pr1,r2(e1|e2) ̸= 0
Mutual exclusion: r1(e1, e2|τ) ∧ r2(e1, e2|τ) ⇒ ⊥ P (B(er11 ) ∩ B(er12 ),B(er21 ) ∩ B(er22 )) = 0

Table 1: Inference patterns/generalized inference patterns captured by our PTBox with fixed timestamp τ .

be easily calculated.

P (ei, ej , ek) =V ol(Box(ei) ∩Box(ej) ∩Box(ek)),

P (ei|ej) =
V ol(Box(ei) ∩Box(ej))

V ol(Box(ej))
,

(5)
where P denotes the probability function, V ol(·) de-
notes the volume function of the box, and ∩ denotes
the intersection operator between boxes.
However, the parameter settings of box embed-
dings result in equivalent probability distributions,
rendering conventional gradient-based deep learn-
ing optimization algorithms impractical for learning
(Vilnis et al., 2018). To mitigate this, we employ
Gumbel boxes proposed by Dasgupta et al. (Das-
gupta et al., 2020; Chen et al., 2021) to model our
box embeddings. The maximum and minimum
coordinates of Gumbel boxes follow the Gumbel
distribution, then the boxes can be formulated as:

Box(e) =

d∏
i=1

[emi , eMi ],

emi ∼ MaxGumbel(µm
i , β),

eMi ∼ MinGumbel(µM
i , β),

(6)

where µ is a location parameter and β is a scale
parameter. The mean and variance of Gumbel
distribution are µ + γβ and π2

6 β2, where γ is the
Euler–Mascheroni constant. Gumbel distribution
as generalized extreme value distribution is min
and max stable, keeping the Gumbel boxes closed
under intersection. Hence, the approximation of
volume in Gumbel boxes can be formulated as:

E[V ol(Box(e))] ≈
∏d

i=1 β log (1 + exp(
µM
i −µm

i

β − 2γ)). (7)

3.4. Modeling and Evaluation of
Quadruples

As mentioned previously, given a quadruple
(h, r, t, τ), our method models head and tail entities
as two Gumbel boxes Box(eh), Box(et). Times-
tamp τ is modeled as a temporal projection Pτ .
Then, the evolutionary dynamics of entities and

relations over time can be formulated as:

e′h =Pτ (eh;W ) = Box(eh) + (WTBox(eh))W,

e′t =Pτ (et;W ) = Box(et) + (WTBox(et))W,

r′t =Pτ (rt;W ) = rt + (WT rt)W,
(8)

where W denotes the weight of temporal projection,
e′h and e′t denote the evolutionary representations
of head and tail entities, r′t denotes the evolutionary
representation of relation. Note that the mapped
entity representations remain Gumbel boxes.
Furthermore, we consider each relation r as an
affine transformation Tr ⊆ R2×d acting on entity
boxes, where Tr[0] represents the translation and
Tr[1] represents the scaling. Given a entity e, the
relation transformation can be formulated as:

et =f t
r(e|Tr) = Box(e) + Tr[0],

es =fs
r (e|Tr) = Box(e)⊙ Tr[1],

(9)

where et denotes the translation of e, es denotes
the scaling of e, and ⊙ is the Hadamard product.
To simplify the notations, we use f t

r(·) and fs
r (·) to

denote the two transformation operations of relation
r. The composition of these functions satisfies the
properties of an Abelian group, allowing them to act
on Gumbel boxes while preserving the relationships
and structure of the boxes. Consequently, given the
quadruple (h, r, t, τ), we define a scoring function
as the volume intersection between two new boxes
formed by the evolved boxes of h and t under the
transformation of r at τ . This can be formulated as:

S(h, r, t, τ) = E[V ol(fs
r ◦f

t
r(Pτ (eh;W ))∩fs

r ◦f
t
r(Pτ (et;W )))]

E[V ol(fs
r ◦ft

r(Pτ (et;W )))] .
(10)

3.5. Analysis of Model Properties
We analyze the representation power and inductive
capacity of PTBox. The conclusion of our analy-
sis indicates that PTBox is locally identifiable and
can capture rich inference patterns and higher-arity
relations. We additionally analyze the complexity
of PTBox, and prove that it runs in time O(d) and
space O((|E|+ |R|+K)d), where |E| and |R| are
the maximal quantity.
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Dataset YAGO11k WikiData
Entities 10,623 500

Relations 10 24
Time Span -453∼2844 1479∼2018

Train 16,408 32,497
Validation 2,050 4,062

Test 2,051 4,062

Table 2: Statistics of two experimented datasets.

Local Identifiability. The local identifiability of a
model is used to measure whether its parameters
are sensitive to local features. Assuming a set of
parameters Ω is local identifiable if, for all θ ∈ Ω,
there exists N(θ), a neighborhood of θ, such that
for all θ′ ∈ N(θ), L(x|θ′) ̸= L(x|θ). According to
Vilnis et al.’s observations (Vilnis et al., 2018), the
parameter space of probability box embeddings
has large degrees of freedom, which leads to the
lack of local identifiability. Although this property
implies that the model’s parameters are not overly
influenced by local variations or noise in the data,
the lack of local identifiability poses significant chal-
lenges in the training and optimization of the model.
Our approach tackles this problem by employing
the Gumbel distribution to represent box embed-
dings. To effectively mitigate the aforementioned
problems with optimization, we retain the uncer-
tainty over the box intersections and make all pa-
rameters contribute to the data likelihood in an ap-
propriate manner. Moreover, computing the volume
using conditional probabilities in Equation5 can fur-
ther alleviate the unboundedness problem in the
base measure space (Dasgupta et al., 2020).
Inference Patterns. We study the inductive capac-
ity of PTBox in terms of common inference patterns
appearing in the TKGE literature, and details as
shown in Table1. Inference patterns are impor-
tant for downstream tasks of knowledge graphs,
and jointly capturing multiple inference patterns is
meaningful but challenging. Our PTBox captures
all generalized inference patterns given in Table1
through box configurations. For example, PTBox in-
herently supports probability and intersection rules.
Symmetry can be captured by ensuring the con-
ditional probabilities Pr1(e1|e2) and Pr1(e2|e1) ex-
ist and are equal. Composition can be captured
by ensuring the joint probability Pr3(e1, e2, e3) ex-
ists. Mutual exclusion is captured by disjointness
between the intersection boxes under relations r1
and r2, respectively. Compared to earlier methods,
TransE (Bordes et al., 2013) fails to capture sym-
metry and composition, RotatE (Sun et al., 2019)
fails to capture hierarchy, and ComplEx (Trouillon
et al., 2016) fails to capture composition and inter-
section. Clearly, our method captures more diverse

inference patterns and exhibits stronger inductive
capability. In addition, based on the configuration of
PTBox, we compute the evolved representations of
relations at different timestamps, allowing us to cap-
ture cross-time inference patterns, as mentioned
in (Messner et al., 2022).
Runtime and Space Complexity. In terms of run-
time complexity, for any quadruple (h, r, t, τ), we
firstly compute d-dimensional temporal embedding
through polynomial decomposition. Then, we mul-
tiply relations to obtain two d-dimensional relation
embeddings, and finally compute the evolved entity
embeddings using multiplication and addition oper-
ations. The volume function runs in O(d) for every
box. In terms of space complexity, PTBox stores
two d-dimensional vectors for each entity box, two
d-dimensional vectors for each relation, and a K×d
matrix for time. Hence, for a KG with |E| entities
and |R| relations, PTBox requires (|E|+ |R|+K)d
parameters.

4. Experiments
We evaluate the performance of our proposed PT-
Box model on two popular TKG benchmarks.

4.1. Experimental Setup
Datasets. We use two well-known datasets
for evaluation, namely, YAGO11k, and WikiData.
YAGO11k and WikiData are temporal subgraphs
extracted from YAGO3 and Wikipedia, respec-
tively. As a subset of YAGO3, YAGO11k incorpo-
rates information from multiple sources, including
Wikipedia, WordNet, and GeoNames, ensuring its
richness and reliability. In this paper, the WikiData
is Wikipedia12k proposed by HyTE (Dasgupta et al.,
2018). Similar to YAGO11k, Wikipedia12k con-
tains the facts involving time intervals. The detailed
statistics of the datasets are presented in Table 2.
Evaluation Metrics. We utilize the link predic-
tion task to evaluate the effectiveness of the PT-
Box model. We employ classic evaluation met-
rics, which include mean rank (MR), mean recip-
rocal rank (MRR) and hits at 1/3/10 (Hits@1/3/10).
These metrics all represent the rankings of missing
ground-truth entities in the prediction results. For
each query, we report the mean results of both the
subject and object entity prediction tasks.
Implementation Details. We implemented our PT-
Box model in PyTorch and trained the model on
a GPU (RTX 3090). We configured the parame-
ters based on the MRR and Hits@10 performance
achieved by the model on the validation set. For
polynomial decomposition based temporal repre-
sentation, the order of temporal polynomial k is
set to 20. For box embedding based entity rep-
resentation, the embedding dimension d is set to
128, the distribution of box embeddings follows
Gumbel(0.01, 1) and Gumbel(−0.1,−0.001). We
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Model YAGO11k WikiData
MRR Hits@3 Hits@10 MRR Hits@3 Hits@10

TransE 0.100 0.138 0.244 0.178 0.192 0.339
DistMult 0.158 0.161 0.268 0.222 0.238 0.460
RotatE 0.167 0.167 0.305 0.116 0.236 0.461
QuatE 0.164 0.148 0.270 0.125 0.243 0.416
TTransE 0.108 0.150 0.251 0.172 0.184 0.329
HyTE 0.105 0.143 0.272 0.180 0.197 0.333
TA-DistMult 0.161 0.171 0.292 0.218 0.232 0.447
ATiSE 0.170 0.171 0.288 0.280 0.317 0.481
TeRo 0.187 0.197 0.319 0.299 0.329 0.507
RotateQVS 0.189 0.199 0.323 - - -
PTBox 0.162 0.222 0.347 0.290 0.331 0.527

Table 3: Link prediction results on YAGO11k, WikiData for our proposed and baseline methods. The best
results are marked in bold.

train our model by Adam optimizer, and set the
learning rate as 0.0001 for all datasets.

4.2. Results of TKGE on Link Prediction
In this section, we compare the performance of our
proposed PTBox with that of static and dynamic
methods based on the TKG link prediction task.
Baseline Models. We compare our approach with
several state-of-the-art (SOTA) approaches, includ-
ing static KGE methods and dynamic TKGE meth-
ods. Among them, TransE (Bordes et al., 2013),
DistMult (Yang et al., 2015), RotatE (Sun et al.,
2019), and QuatE (Zhang et al., 2019) are static
KGE methods, which focus on modeling triples of
static facts. TTransE (Leblay and Chekol, 2018),
HyTE (Dasgupta et al., 2018), TA-DistMult (García-
Durán et al., 2018), ATiSE (Xu et al., 2020b), TeRo
(Xu et al., 2020a), and RotateQVS (Chen et al.,
2022) are dynamic TKGE methods, which focus on
modeling quadruples of temporal facts.
Experimental Results. We present the perfor-
mance of different models on temporal datasets in
Table 3. From the results compared to the baseline
models, our method consistently achieves perfor-
mance improvements across all datasets. We ob-
serve that PTBox outperforms RotateQVS in terms
of Hits@3 and Hits@10 on YAGO11k. PTBox also
outperforms TeRo in terms of Hits@3 and Hits@10,
and is competitive with TeRo in terms of MRR on
WikiData. Specifically, our method achieves an
MRR of 16.2%, Hits@3 of 22.2%, and Hits@10 of
34.7% on the YAGO11k, and an MRR of 29.0%,
Hits@3 of 33.1%, and Hits@10 of 52.7% on the
WikiData, respectively.
Table 3 lists the link prediction results on On
YAGO11k and WikiData where time annotations
in facts are time intervals. Compared with static
KGE methods, our PTBox outperforms RotatE by
5.5% regarding Hits@3, and by 4.2% regarding

Model YAGO11k WikiData
MR Hits@1 MR Hits@1

TransE 1.70 0.784 1.35 0.884
TransH 1.53 0.761 1.40 0.881
HolE 2.57 0.693 2.23 0.840
t-TransE 1.66 0.755 1.97 0.742
HyTE 1.23 0.812 1.13 0.926
PTBox 1.12 0.896 1.12 0.934

Table 4: Relation prediction results on YAGO11k
and WikiData for our proposed and baseline meth-
ods. The best results are marked in bold.

Hits@10 on YAGO11k, respectively. Our PTBox
also outperforms DistMult by 6.8% regarding MRR,
outperforms QuatE by 8.8% regarding Hits@3, and
outperforms RotatE by 6.6% regarding Hits@10 on
WikiData, respectively. It means that temporal in-
formation can effectively enhance the performance
of knowledge completion and reasoning by supple-
menting the facts. Compared with temporal KGE
methods, our PTBox outperforms RotateQVS by
2.3% regarding Hits@3, and by 2.4% regarding
Hits@10 on YAGO11k, respectively. It means that
our proposed strategy of modeling time through
polynomial decomposition can effectively capture
temporal information, while providing good em-
bedding representations for temporal knowledge
graphs. On the other hand, our PTBox underper-
forms on the MRR but outperforms on the Hits@3
and Hits@10 compared to both RotateQVS and
TeRo. This indicates that our model has limitations
in top-1 accuracy, but has higher recall compared
to theirs. In addition, both of these methods fix the
representation of timestamps in the dataset during
the training phase, and they cannot model unseen
timestamps as flexibly as our PTBox does.
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PTR BER YAGO11k WikiData
MRR Hits@3 Hits@10 MRR Hits@3 Hits@10
0.105 0.143 0.272 0.180 0.197 0.333

✓ 0.137 0.174 0.313 0.259 0.278 0.478
✓ 0.127 0.180 0.280 0.253 0.281 0.426

✓ ✓ 0.162 0.222 0.347 0.290 0.331 0.527

Table 5: Ablation study on YAGO11k and WikiData for our proposed two strategies under link prediction
task. The best results are marked in bold.

Mode YAGO11k WikiData
MRR Hits@10 MRR Hits@10

Pτ (e) 0.127 0.289 0.267 0.485
Pτ (r) 0.162 0.347 0.290 0.527
Pτ (e, r) 0.135 0.311 0.277 0.503

Table 6: Ablation study on YAGO11k and Wiki-
Data for examining different evolutionary patterns
of knowledge graph triples over time. The best re-
sults are marked in bold.

4.3. Results of TKGE on Relation
Prediction

To further analyze the performance of our model,
we conduct relation prediction experiments to ex-
amine whether temporal information is beneficial
in resolving ambiguities among relations. Detailed
results are shown in Table 4.
Based on the experimental results, the three static
methods (TransE, TransH, and HolE (Nickel et al.,
2016)) demonstrate inferior performance compared
to the two dynamic methods (HyTE and our PTBox)
on both the YAGO11k and WikiData. It means that
time information surely contributes to relation dis-
ambiguation. Although the t-TransE (Jiang et al.,
2016) is a temporal model, it does not directly model
temporal information. Instead, it achieves implicit
temporal fusion through relation ordering. As a re-
sult, compared to the other two methods, it does
not fully leverage temporal information to resolve
ambiguities among relations. Different from HyTE
can only model times present in the training set,
our approach utilizes the Weierstrass approxima-
tion theorem (as outlined in Section 3.2) to learn
a coefficient matrix for any given time, and then
we can easily model the temporal representation of
any timestamp by combining with the temporal ba-
sis tensor (as outlined in Equation.4). It means that
our proposed polynomial based temporal represen-
tation offers more flexibility in modeling time, which
enhances the performance of relation prediction.
Consequently, our method has achieved SOTA per-
formance on both datasets. Specifically, compared
with HyTE, we can increase Hits@1 from 81.2% to

89.6% on YAGO11k, and from 92.6% to 93.4% on
WikiData, respectively.

4.4. Ablation Study
In this section, we conduct ablation study to evalu-
ate the effectiveness and necessity of our proposed
components on two datasets. As mentioned in Sec-
tion 3.2 and 3.3, we propose two strategies to model
time and entities, namely PTR and BER. Therefore,
we compare the impact of different strategies on
performance across all datasets, and the results
are reported in Table 5. Moreover, we compare dif-
ferent evolutionary patterns of the knowledge graph
over time, as shown in Table 6.
PTR and BER. As shown in Table 5, we employ
HyTE as the baseline and report the experimen-
tal results of PTR and BER when activated inde-
pendently and jointly. The experimental results
demonstrate that both the proposed PTR and BER
contribute to enhancing the performance of KGE on
link prediction tasks when compared to the baseline
model. In particular, their joint application leads to
significant improvements across all datasets. Ac-
cording to the results in the second row, our PTR
strategy can boost the performance of link predic-
tion by modeling temporal information more effec-
tively than baseline model. According to the results
in the third row, our BER strategy also benefits in
improving model performance. This shows that
leveraging geometric modeling and intersection op-
eration can cover rich reasoning patterns. Com-
paring the second and third rows of Table 5, we
can observe that the PTR strategy improves perfor-
mance slightly better than BER. This means that
effective modeling of time information is more im-
portant in the TKGE methods.
Different Evolutionary Patterns. To explore the
impact of different evolutionary patterns on the
model, we summarize the experimental results of
three different patterns in Table 6. Among them,
Pτ (e) represents time acting on entities, Pτ (r) rep-
resents time acting on relations, and Pτ (e, r) rep-
resents time simultaneously acting on both entities
and relations. Compared to entities, the types of
relations are fewer and their representations in the
feature space are relatively sparse. Therefore, the
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Test quadruples HyTE Ours
Katie_Holmes, ?, Tom_Cruise, [2006, 2012] isMarriedTo, hasWonPrize isMarriedTo, created
Tricia_Devereaux, ?, Illinois, [1975, 1975] diedIn, wasBornIn wasBornIn, diedIn
Jeremy_Lloyd, ?, London, [2014, 2014] wasBornIn, diedIn diedIn, wasBornIn

Will_Haining, ?, Fleetwood_Town_F.C., [2011, -] isMarriedTo, playsFor playsFor, isMarriedTo
Bob_Hope, ?, Toluca_Lake,_Los_Angeles, [2003, 2003] isMarriedTo, hasWonPrize isMarriedTo, diedIn

Table 7: Case study of qualitative analysis on relation prediction. The order of prediction is in descending
order. Correct one is in bold.

[2010, 2010]

[1996, 1996]

[1960, 1961]

[1948, 1949]

[1937, 1938]

Figure 2: Visualization of polynomial decomposi-
tion based temporal representations on YAGO11k.

evolution of relations over time can produce more
significant differences. We believe that this view is
also consistent with real-world scenarios, where in-
dividuals maintain independence and the changes
over time are the relationships between individuals.

4.5. Qualitative Analysis
We conducted two qualitative analysis experiments
to intuitively demonstrate the performance of our
model, including the case study of relation predic-
tion with results shown in Table 7 and the visu-
alization of temporal representations with results
illustrated in Figure 2.
Table 7 presents a comparative analysis of predic-
tions made on some samples from the YAGO11k
test set by our method and HyTE. Overall, our ap-
proach demonstrates superior accuracy in relation
prediction compared to HyTE. This is particularly
evident in the case of the easily confusable rela-
tions diedIn and wasBornIn, where our method
consistently predicts the ground truth accurately.
Furthermore, for the fact (Bob Hope, diedIn, Toluca
Lake Los Angeles, [2003, 2003]), unlike HyTE,
which fails to deliver the correct result, our method
achieves a hit within the top 2 predictions.
Evaluation metric for continuous modelling of time
is challenging to quantify, but we can employ the
same strategy as HyTE, visualizing the distribution

of temporal embeddings in the vector space. From
Figure 2, we can observe that timestamps with
close time intervals are close to each other in vec-
tor space, and vice versa. This indicates that our
proposed polynomial decomposition based tempo-
ral representation is capable of effectively modeling
temporal information in a continuous manner.

5. Conclusion
In this paper, we propose an innovative TKGE
method based on polynomial approximation for
modeling arbitrary time information, namely PT-
Box. Our main contributions lies in polynomial
decomposition-based temporal representation and
box embedding-based entity representation. To
enhance the performance of the TKGE, we focus
on improving the capabilities to continuously model
arbitrary time information and infer under temporal
constraints. Our method decomposes timestamp
by polynomial approximation theory to flexibly repre-
sent time information. Furthermore, to capture com-
plex geometric structures and learn rich inference
patterns, we model entities by box embeddings
and define each relation as a transformation on the
head and tail entity boxes. Theoretically, our pro-
posed PTBox can encode arbitrary time information
or even unseen timestamps, while capturing higher-
arity relations of the knowledge base. Extensive
experiments on real-world datasets demonstrate
the effectiveness of our method.
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