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Abstract
Knowledge distillation (KD) has been widely adopted to compress large language models (LLMs). Existing KD
methods investigate various divergence measures including the Kullback-Leibler (KL), reverse Kullback-Leibler
(RKL), and Jensen-Shannon (JS) divergences. However, due to limitations inherent in their assumptions and
definitions, these measures fail to deliver effective supervision when few distribution overlap exists between the
teacher and the student. In this paper, we show that the aforementioned KL, RKL, and JS divergences respectively
suffer from issues of mode-averaging, mode-collapsing, and mode-underestimation, which deteriorates logits-based
KD for diverse NLP tasks. We propose the Sinkhorn Knowledge Distillation (SinKD) that exploits the Sinkhorn
distance to ensure a nuanced and precise assessment of the disparity between teacher and student distributions.
Besides, profit by properties of the Sinkhorn metric, we can get rid of sample-wise KD that restricts the perception
of divergence in each teacher-student sample pair. Instead, we propose a batch-wise reformulation to capture
geometric intricacies of distributions across samples in the high-dimensional space. Comprehensive evaluation
on GLUE and SuperGLUE, in terms of comparability, validity, and generalizability, highlights our superiority over
state-of-the-art methods on all kinds of LLMs with encoder-only, encoder-decoder, and decoder-only architectures.
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1. Introduction

Large languagemodels (LLMs) such as BERT (De-
vlin et al., 2018), RoBERTa (Liu et al., 2019),
T0 (Sanh et al., 2021), and GPT (Radford et al.,
2019; Brown et al., 2020) have set state-of-the-
art (SOTA) records on various tasks in the field of
natural language processing (NLP). On one hand,
the scaling laws of LLMs undoubtedly stimulate
the development of models with billions of param-
eters. On the other hand, the surge of model size
makes it unaffordable for LLMs to be deployed un-
der resource-constrained environments. Conse-
quently, knowledge distillation (KD), emerging as
a cost-efficient approach, has attracted attention
from researchers to distill smaller models which
maintain highly competitive performance.
One kind of the most representative KD meth-

ods is logits-based KD, where the divergence be-
tween the distributions of the predicted logits from
teacher and student models is measured and min-
imized for knowledge transfer. The key to effec-
tive logits-based KD is exactly the proper mea-
surement of such divergence. Existing studies
have experimented with Kullback-Leibler (KL) di-
vergence (Hinton et al., 2015), reverse Kullback-
Leibler (RKL) divergence (Tu et al., 2020; Gu
et al., 2023b), and Jensen-Shannon (JS) diver-
gence (Wen et al., 2023; Yin et al., 2020; Fang
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Figure 1: Limitations of existing divergence mea-
sures for the student to match the teacher in
logits-based distillation. (a) Mode-averaging by
Kullback-Leibler divergence. (b) Mode-collapsing
by reverse Kullback-Leibler divergence. (c) Mode-
underestimation by Jensen-Shannon divergence.

et al., 2021). All these measures can be viewed as
variants of the f -divergence measures, which are
notoriously limited in quantification of distributions
that lack substantial intersections (Arjovsky et al.,
2017). Moreover, as illustrated in Fig. 1, eachmea-
sure has its own drawbacks. KL distillation results
in amode-averaging issue (Kim and Rush, 2016;
Kim et al., 2021), causing the student to learn an
excessively smooth distribution that encompasses
the entire support of the teacher distribution. RKL
distillation leads to mode-collapsing (Arjovsky
and Bottou, 2017; Wen et al., 2023), where the stu-
dent overly focuses on one of the highly probable
regions of the teacher distribution and ignores the
remaining one. JS distillation gives rise to mode-
underestimation (Nowozin et al., 2016; Yu et al.,
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2020) where the student underestimates the prob-
ability of rare events due to insufficient penalty.
Another challenge of performing sample-wise

KD on LLMs is that for discriminative tasks,
the low-dimensional categorical outputs from the
teacher provide limited insights into their under-
lying distributions in the high-dimensional hidden
space. One intuitive solution is to bring in a batch
of samples to collectively grasp the distribution dif-
ferences. Nevertheless, existing divergence mea-
sures can only independently deal with each sam-
ple for logit-by-logit matching because they are
not distance metrics and cannot locate the paired
teacher and student logits from the same sample
in a batch for overall distance minimization.
To address these challenges, we propose

Sinkhorn Knowledge Distillation, termed as
SinKD, for distillation of LLMs1. In consideration
of generalizability, we tackle logits-based KD in
the present study, which would benefit a broad
range of applications. Our SinKD employs the
Sinkhorn distance (Cuturi, 2013), a variant of the
Wasserstein distance (Vallender, 1974a; Frogner
et al., 2015a), as divergence measure. The
Wasserstein distance quantifies the dissimilarity
between two distributions by calculating the
minimum cost required to transform one distri-
bution into the other. Compared with traditional
divergence measures, it is more sensible as a
cost function for distillation. Furthermore, it is
differentiable almost everywhere, enabling easy
optimization. Despite these advantages, the
Wasserstein distance itself is difficult to be com-
puted analytically. Its associated computational
cost is prohibitively high for distilling LLMs. Under
such circumstance, we propose to use Sinkhorn
distance as an efficient approximation, which
not only retains all the benefits of Wasserstein
distance but also greatly mitigates its cost issue.
A straightforward application of Sinkhorn dis-

tance on sample-wise logits matching, though fea-
sible, cannot take full advantage of its percep-
tion of structural differences in distributions. For-
tunately, Sinkhorn distance is a symmetric metric
and its derivation from the optimal transport (OT)
imposes explicit constraints onmatching correct-
ness. It means that given a batch of logits out-
puts from the teacher and the student respectively
as sets A and B, the minimization of the overall
Sinkhorn distance between A and B enforces a
precise element-wise matching between the two
outputs coming from the same sample in a batch.
Such properties allow it to work beyond sample-
wise distillation. As a result, we propose the batch-
wise reformulation. In this way, we can capture ge-
ometric structures of the intricate and implicit dis-

1Codes and models are available at https://
github.com/2018cx/SinKD.

tributions even through low-dimensional observa-
tions. We do not introduce additional network layer
or modify output formats specific to NLP tasks.
Extensive experiments are conducted in view

of 1) comparability, 2) validity, and 3) gener-
alizability. For comparability, we test SinKD
with BERT on the GLUE benchmark (Wang et al.,
2018) and it consistently outperforms the SOTA
KD methods. For validity, we provide a compre-
hensive analysis on ablation studies and hyper-
parameters, Our findings may benefit practition-
ers on how to adopt SinKD in their own work.
For generalizability, we test SinKD on the Super-
GLUE benchmark (Wang et al., 2019) with LLMs
of various architectures, ranging from the encoder-
decoder T0 (Sanh et al., 2021) to the decoder-
only GPT-Neo (Black et al., 2021) transformers.
Our SinKD showcases robustness across model
choices while previous studies merely investigate
KD techniques on the encoder-only BERT.
In summary, our contributions are:

• We propose SinKD, a knowledge distillation
approach that employs the Sinkhorn distance
for divergence measurement. It not only ad-
dresses limitations of KL, RKL, and JS diver-
gences under extreme distribution scenarios,
but also circumvents the computation burden
of Wasserstein distance for distillation.

• We unearth the properties of Sinkhorn dis-
tance and reformulate SinKD into batch-wise
OT, extending its applicability in NLP tasks.

• Extensive experiments in terms of comparabil-
ity, validity, and generalizability demonstrate
the superiority of SinKD over SOTA methods.
We offer practical guidelines of distilling vari-
ous LLMs for real-world applications.

2. Related Work

2.1. Knowledge Distillation
Knowledge distillation is initially introduced by (Bu-
ciluǎ et al., 2006) where an ensemble of mod-
els act as the teacher to train a single student
model, and now frequently referred to as a model
compression technique. Existing KD methods can
be simply classified into two categories: 1) logits-
based KD and 2) representation-based KD. The
logits-based KD is popularized by (Hinton et al.,
2015). They force the student to match the pre-
dictions of the teacher as soft targets via cross-
entropy loss, which is equivalent to minimize the
KL divergence between teacher and student prob-
abilities. (Kim and Rush, 2016) bring logits-based
KD into generative language models and pro-
pose sequence KD. (Sanh et al., 2019) and (Turc

https://github.com/2018cx/SinKD
https://github.com/2018cx/SinKD
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et al., 2019) apply KD on BERT for smaller mod-
els with minor degradation. (Tu et al., 2020) pro-
pose ENGINE to use the reverse KL for distillation
of a non-autoregressive translation model. For
representation-based KD, the hidden, intermedi-
ate representations of input tokens have been uti-
lized as the matching targets of the student (Jiao
et al., 2020; Sanh et al., 2019; Wu et al., 2023).
There also exist methods that can adapt to either
logits-based or representation-based KD (Zhou
et al., 2022; Zhang et al., 2023).
In this paper, we primarily focus on logits-based

KD and investigate the fundamental problem: how
to transfer label-supplementary knowledge from
the teacher to the student with an effective and re-
liable divergence measure. Previous studies ex-
ploit KL divergence (Hinton et al., 2015), RKL di-
vergence (Tu et al., 2020; Gu et al., 2023b), JS
divergence (Wen et al., 2023; Yin et al., 2020;
Fang et al., 2021), and sophisticated distance
measures (Sun et al., 2019; Jin et al., 2019; Park
et al., 2019, 2021a) for distillation. However, these
methods do not consistently capture subtle distri-
bution differences and tend to take ”shortcuts” in
student imitating the teacher, which motivates our
exploration of an alternative divergence measure.

2.2. Sinkhorn Distance
We first introduce the Wasserstein distance as a
foundation for the Sinkhorn distance. It is a dis-
similarity metric derived by the mass transporta-
tion theory of two probability measures. Since the
Wasserstein distance takes into account the under-
lying geometry of the distribution space (Frogner
et al., 2015a; Vallender, 1974a,b; Villani and Vil-
lani, 2009), it enjoys high popularity in generative
adversarial networks (Arjovsky et al., 2017; Gul-
rajani et al., 2017; Peyré et al., 2019) and unsu-
pervised learning (Gu et al., 2023a; Chen et al.,
2022; He et al., 2022). However, the Wasserstein
distance is too costly to be computed and its effi-
cient approximation is a prerequisite for distillation.
The Sinkhorn distance stems from it and incorpo-
rates an extra entropy regularization term to make
the OT tractable. It is informally defined by the
minimum transport cost of an entropy-regularized
OT plan (Cuturi, 2013), and has been successful
in classification (Frogner et al., 2015b; Liu et al.,
2023), machine translation (Li et al., 2023), do-
main adaptation (Courty et al., 2017; Nguyen and
Luu, 2022), and generative modeling (Genevay
et al., 2018; Kammammettu and Li, 2023).
For distillation of LLMs, especially under discrim-

inative tasks, the vanilla sample-wise SinKD can-
not make the best use of its desirable properties
in perceiving structural differences between distri-
butions. On the contrary, we propose the batch-
wise SinKD to make up the insufficient knowledge

revealed from the low-dimensional outputs of the
teacher, improving its generalization over tasks.

3. Methodology

In this section, we first review classic divergence
measures and analyze their drawbacks. Then, we
present details of SinKD with an OT framework.

3.1. Problem Statement
Given a sample xi and its ground-truth label yi ∈
Rd in the training set, the output logits with softmax
activation στ from the teacher fT and the student
fS are respectively ti ∈ Rd and si ∈ Rd:

ti = στ (fT (xi)), si = στ (fS(xi)), (1)

where τ is the temperature and d is the dimension
of the output logits. The objective of KD is to mini-
mize the measured divergence J(ti, si).

3.2. Classic Divergence Measures
KL Divergence It quantifies the amount of infor-
mation lost when si approximates ti as:

JKL(ti, si) ≈
d∑

j=1

(−ti(j) log si(j) + ti(j) log ti(j)).

(2)
Here, j denotes the index of an element in a vec-
tor. Despite its popularity, KL divergence suffers
from three limitations. First, it is asymmetric with
JKL(ti, si) ̸= JKL(si, ti), which introduces inconsis-
tencies due to its violation of the property as a
distance metric. Second, the student model op-
timized by the KL loss attempts to average the
teacher’s multimodal distribution, ending up with
an underfitting of these modes. This is known as
the mode-averaging problem. Consequently, the
student fails to capture all crucial patterns of data
and ultimately impacts performance. Third, the KL
divergence corresponds to a non-smooth function,
posing challenges to model optimization.

RKL Divergence It addresses the issue of
mode-averaging associated with JKL(ti, si):

JRKL(ti, si) ≈
d∑

j=1

(si(j) log si(j) − si(j) log ti(j)).

(3)
However, it shares the inherent asymmetry with KL
which leads to inconsistencies in capturing differ-
ences. Furthermore, the student optimized by a
RKL loss tends to pay attention only to highly likely
events of the teacher’s distribution, which is known
as mode-collapsing. Accordingly, if the teacher as-
signs zero-probability to an event, the student is
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Figure 2: Illustration of our SinKD pipeline.

compelled to do the same. This “zero-forcing” ef-
fect could be problematic as the student lacks the
capacity to track the complete distribution of the
teacher, resulting in suboptimal performance.

JS Divergence It combines both KL and RKL by:

JJS(ti, si) ≈
1

2

d∑
j=1

(−si(j) logmi(j) + si(j) log si(j)

− ti(j) logmi(j) + ti(j) log ti(j)),
(4)

where mi = 1
2 (ti + si). While the JS divergence

overcomes the asymmetry shortcoming of the KL
divergence, it is still subject to non-smoothness
that makes it challenging to optimize. Moreoever,
the student may excessively underestimate the
probability of rare events as the JS loss does not
penalize adequately for matching low probability
regions. There also exists a risk of gradient van-
ishing when JJS(ti, si) degenerates as a constant
on distributions with few or even no overlap.

3.3. Sinkhorn Distance
Sinkhorn distance is based on the relaxed formu-
lation of an OT plan with entropy regularization. It
considers the minimum cost of mass transmission
in converting one probability into the other. Specif-
ically, we first define the Wasserstein distance be-
low. It involves the set of a transportation polytope
U(ti, si), which consists of all matrices ofP ∈ Rd×d

+

that satisfy the following constraints:

U(ti, si) = {P ∈ Rd×d
+ |P1d = si,PT1d = ti}, (5)

where 1d ∈ Rd is a vector of ones. Given a cost
matrix D ∈ Rd×d, the Wasserstein distance is:

JWD(ti, si) = min
P∈U(ti,si)

⟨P,D⟩ =
∑
m,n

Pm,nDm,n,

(6)
where Dm,n is usually the absolute difference be-
tween the m-th and n-th elements of ti and si:

Dm,n = |ti(m) − si(n)|. (7)

To circumvent the substantial computation entailed
by solving such an OT problem, Sinkhorn distance

is proposed as a fast approximation to the Wasser-
stein distance for a constrained optimization (Cu-
turi, 2013). It is defined as the inner product be-
tween the OT plan Pλ and the cost matrix D:

JSD(ti, si) =
〈
Pλ,D

〉
, (8)

where λ > 0 is the weight for entropy regulariza-
tion. The OT plan Pλ is obtained by minimizing:

Pλ = argmin
P∈U(ti,si)

⟨P,D⟩ − λh(P), (9)

where h(P) is the entropy of the matrix P. The
entropy term encourages the transport plan to
be more spread out for easier optimization. The
vanilla solution to Pλ by sample-wise Sinkhorn nor-
malization (Cuturi, 2013) is performed between ti
and si in a manner of iterative updates:(

ut, vt
)
←

(
ti ⊘

(
KTvt−1

)
, si ⊘

(
Kut−1

))
, (10)

where ⊘ indicates element-wise division and t de-
notes the iteration time. Two vectors u ∈ Rd, v ∈
Rd are non-negative. The kernel matrix K ∈ Rd×d

is constructed by applying the Gaussian kernel on
D with the weight λ for entropy regularization:

K = exp(−D
λ
). (11)

Finally, Pλ is defined as:

Pλ = diag
(
vt
)
Kdiag

(
ut
)
. (12)

3.4. Batch-wise Reformulation
In view of properties of the Sinkhorn distance met-
ric, we can get rid of the sample-wise KD that only
works on each teacher-student sample pair, and
instead perform KD on groups of teacher and stu-
dent samples. A batch of b samples all participate
in divergence measures with their overall output
logits t ∈ Rb×d and s ∈ Rb×d respectively from the
teacher and the student. It thereby increases the
dimension of the “observational” space via batch-
wise reformulation especially when d≪ b holds.

Cost Matrix Computation We employ the ℓp-
norm tomeasure the pairwise differences between
the i-th and j-th samples in a batch for the entry
Di,j of the “batchified” cost matrix D ∈ Rb×b:

Di,j = ∥ti − sj∥p. (13)

Sinkhorn Normalization Before we propose
the batch-wise Sinkhorn normalization, we refor-
mulate the sample-wise solution to Pλ (Eq. 10) into
a equivalent vector-form with iterations only on K:

K̂t ← diag
(
Kt−11d ⊘ si

)−1 Kt−1,

Kt ← K̂tdiag
((

K̂t
)T

1d ⊘ ti
)−1

,
(14)



14850

where K0 = K ∈ Rd×d is defined in Eq. 11. For dis-
tillation beyond the d-dimensional space, we pro-
pose a more compact solution in the matrix-form
for batch-wise normalization with K ∈ Rb×b:

K̂t ← diag
(
Kt−11b ⊘ws

)−1 Kt−1,

Kt ← K̂tdiag
((

K̂t
)T

1b ⊘wt

)−1

,
(15)

where ws and wt respectively represent the
weights of each element involved in the batch-wise
KD from the student and teacher. Without loss of
generality, we assume uniform distributions with
ws = wt = 1

b1b. Given such conditions, updates
on Kt (Eq. 15) can be further simiplified as:

K̂t ← Kt−1 ⊘
(
Kt−11b1⊤b

)
,

Kt ← K̂t ⊘
(
1b1⊤b K̂t

)
.

(16)

Out of simplicity, irrelevant constants are excluded
from the equations above. With a pre-determined
number of iterations T , the OT matrix is derived:

Pλ = KT (17)

Sinkhorn Loss The batch-wise SinKD loss is:

LSD = JSD(t, s) =
〈
Pλ,D

〉
=

∑
i,j

KT
i,jDi,j (18)

We illustrate the entire pipeline in Fig. 2.

Total Losses For each batch of b samples, we
use the cross-entropy loss LCE, the KL loss LKL,
and the Sinkhorn loss LSD for distillation:

L =

b∑
i=1

[(1− α)LCE(yi, si)

+ αLKL(ti, si)] + βLSD,

(19)

where α and β are weights, and LKL(ti, si) ≈
LCE(ti, si) given that the second term in JKL(ti, si)
can be viewed as a constant in distillation.

Alternative D Apart from Eq. 13, we can further
take into account all the d-dimensional logits of b
samples by flattenning t and s for a D ∈ Rbd×bd:

Dim,jn = |ti(m) − sj(n)|. (20)

Accordingly, the sinkhorn normalization is per-
formed on K ∈ Rbd×bd with ws = wt = 1

bd1bd. In
this case, SinKD takes a broader perspective of
the batch distributions with a multiplied dimension
of bd, significantly exceeding the sample-wise KD.

4. Experimental Settings

4.1. Datasets
We evaluate our method on seven tasks of the
GLUE benchmark (Wang et al., 2018), including
CoLA (Warstadt et al., 2019), SST-2 (Socher et al.,
2013), MNLI (Williams et al., 2018), MRPC (Dolan
and Brockett, 2005), RTE (Bentivogli et al., 2009),
QNLI (Rajpurkar et al., 2016) and QQP (Chen
et al., 2018). For evaluation metrics, we follow pre-
vious works (Wu et al., 2023; Zhang et al., 2023;
Zhou et al., 2022) to report accuracy (MNLI, SST-
2, QNLI, QQP, and RTE), F1 score (MRPC), and
Matthews correlation coefficient (CoLA). Follow-
ing (Zhang et al., 2023; Zhou et al., 2022), the
regression-oriented STS-B (Cer et al., 2017) is not
validated due to its problem settings. Note that all
discriminative tasks of GLUE are associated with
extremely-low dimension of logits output (d = 3 for
MNLI and d = 2 for the remainings tasks).

4.2. Implementation Details
Our SinKD is implemented with PyTorch and
Transformers (Wolf et al., 2020). For com-
parability, we follow AD-KD (Wu et al., 2023)
to set BERTbase as the teacher and a smaller
BERT6 (Turc et al., 2019) as the student for task-
specific fine-tuning. For generalizability, we also
validate SinKD on T0 (Sanh et al., 2021) and
GPT-Neo (Black et al., 2021). Note that for all
GLUE tasks except MNLI, two definitions of D
(Eqs. 13,20) are equivalent given the constraint of∑d

m=1 ti(m) = 1 and d = 2. Consequently, we
use the default D by Eq. 13. Out of simplicity, we
set p = 1 (ℓ1-norm) for D. The hyper-parameters
are optimized via grid search to determine the
learning rate lr ∈ {2e − 5, 3e − 5, 4e − 5, 5e − 5},
α ∈ {0.8, 0.9, 1.0}, b ∈ {16, 32, 64}, and τKL ∈
{1, 2, 3, 4}. We empirically set τSD = 2, λ = 0.1,
T = 20, and β = 0.8. Discussions on the effect of
T , λ, τKL, b, τSD, α, and β can be found in Sec. 5.3.

4.3. Baselines
We compare SinKD with SOTA KD methods on
logits and representations. For logits-based KD,
we include the vanilla KD (Hinton et al., 2015),
RCO (Jin et al., 2019), DML (Zhang et al., 2018),
PD (Turc et al., 2019), and ReAugKD (Zhang
et al., 2023). For representation-based KD,
we compare PKD (Sun et al., 2019), Tiny-
BERT (Jiao et al., 2020), RKD (Park et al., 2019),
CKD (Park et al., 2021b), SFTN (Park et al.,
2021a), TAKD (Mirzadeh et al., 2020), ProKT (Shi
et al., 2020), MGSKD (Shi et al., 2020), MetaDis-
till (Zhou et al., 2022), and AD-KD (Wu et al., 2023).
For a fair comparison, we follow (Wu et al., 2023)
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to exclude MiniLM (Wang et al., 2020) and Mobile-
BERT (Sun et al., 2020) as their two-stage settings
involve both task-agnostic and task-specific distil-
lation. In contrast, we emphasize a more general-
ized one-stage setting where no extra efforts are
required for pre-training. Note that baseline results
are quoted (Wu et al., 2023; Zhang et al., 2023).

5. Results and Discussions

5.1. Comparison with SOTA
Tab. 1 shows that SinKD outperforms all baselines
on most datasets. Specifically, SinKD achieves
an average increase of 0.47% and 1.17% over
AD-KD (Wu et al., 2023) and ReAugKD (Zhang
et al., 2023), respectively. Compared with AD-
KD, SinKD reduces the performance gap between
the student and the teacher over 57%, highlight-
ing that SinKD effectively narrows such gap by in-
jecting structural knowledge from teacher to stu-
dent. Our improvements can be attributed to the
unique properties of Sinkhorn distillation, where
the integrated characteristics of distributions are
respected during distillation and thereafter facili-
tate impartial, efficient knowledge transfer for ro-
bust convergence. We also notice that SinKD
does not rank the top on QNLI, possibly due to
suboptimal hyper-parameters for this specific task.
Meticulous tuning of hyper-parameters might yield
better results, but will impair comparability and
therefore is beyond the scope of the present study.

5.2. Ablation Study
Sinkhorn loss benefits the student the most
among all losses. In order to study the impact
of each loss component, we carry out ablation
studies on three variations of SinKD: 1) SinKD
without Sinkhorn loss, 2) SinKD without KL diver-
gence loss, and 3) SinKD without cross-entropy
loss. As revealed in Tab. 2, significant decreases
over all tasks can be observed when Sinkhorn loss
is removed. In addition, the drop of performance
without KL divergence loss suggests that the pro-
posed SinKD is supplementary to the vanilla KL
divergence in distribution measurements. With
respect to the cross-entropy loss, its supervision
from ground-truth labels directly improves the stu-
dent model and consequently should be kept intact
during distillation. Each component contributes to
diminishing the gap between the student and the
teacher. Our proposed Sinkhorn loss brings the
most pronounced gains over other losses, confirm-
ing the validity of Sinkhorn distance as a stable
metric for convergence to global optimum.

Batch-wise SinKD excels sample-wise SinKD.
Tab. 3 demonstrates the superiority of the batch-

wise over the sample-wise SinKD on all tasks, im-
plying that the Sinkhorn distance is indeed adept
in handling the deviation of the student from the
teacher with a high-dimensional distribution. The
sample-wise distillation treats each instance inde-
pendently while neglecting the overall tendency of
the student in tracking distributions of the teacher.

SinKD surpasses distillation methods based
on variants of f -divergence. To investigate if
the existing distillation methods with f -divergence
measures can achieve competitive results, we re-
place our Sinkhorn loss with losses based on: 1)
RKL divergence, 2) JD divergence, and 3) total
variation distance (TVD). To fairly compare with
SinKD, each loss mentioned above is combined
with cross-entropy loss and KL divergence loss
during distillation. Tab. 4 shows that Sinkhorn dis-
tillation outperforms three other distillation meth-
ods on all datasets, verifying the superiority of
Sinkhorn distance over variants of f -divergence
measures in matching distributions. Additionally,
it is worth noting that among the other three meth-
ods, TVD exhibits slight advantages over RKL and
JS divergence on average. Such finding is consis-
tent with previous work (Wen et al., 2023).

(a) (b)

Figure 3: Performance at different student scales
on (a) MRPC & (b) QQP. Best viewed magnified.

SinKD generalizes well on student LLMs
across scales. To thoroughly assess the influ-
ence of size of student LLMs on the performance
of SinKD, we conduct an extensive analysis with
comparison between the vanilla KD and SinKD.
Without loss of generality, we take two tasks
(MRPC and QQP) for demonstration. A broad
range of model scales (Turc et al., 2019) are em-
ployed to explore the adaptability and robustness
of SinKD when applied on student models with
various configurations. Note that both the vanilla
KD and our SinKD are logits-based KD methods,
which are independent of model structure by na-
ture and thus enjoy high versatility. As illustrated in
Fig. 3, SinKD consistently outperforms the vanilla
KD on both two tasks across all scales. Such gen-
eralizability on model size confirms the potential of
SinKD as an efficient and reliable KD method.
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Method #Params. COLA SST-2 MNLI-(m/mm) MRPC RTE QNLI QQP Avg(MCC) (ACC) (ACC) (F1) (ACC) (ACC) (ACC)

BERTbase (T) (Devlin et al., 2018) 110M 60.3 93.7 84.9/84.8 91.4 71.1 91.7 91.5 83.28
BERT6 (S) (Turc et al., 2019) 66M 51.2 91.0 81.7/82.6 89.2 66.1 89.3 90.4 79.53

Task-specific Representation-based Distillation

PKD (Sun et al., 2019) 66M 45.5 91.3 81.3/- 85.7 66.5 88.4 88.4 77.63
TinyBERT (Jiao et al., 2020) 66M 53.8 92.3 83.1/83.4 88.8 66.5 89.9 90.5 80.3
RKD (Park et al., 2019) 66M 53.4 91.7 - 86.1 68.6 89.5 90.9 80.03
CKD (Park et al., 2021b) 66M 55.1 93.0 83.6/84.1 89.6 67.3 90.5 91.2 81.11
SFTN (Park et al., 2021a) 66M 53.6 91.5 - 85.3 68.5 89.5 90.4 79.80
TAKD (Mirzadeh et al., 2020) 66M 53.8 91.4 - 85.0 68.5 89.6 90.7 79.83
ProKT (Shi et al., 2020) 66M 54.3 91.3 - 86.3 68.4 89.7 90.9 80.15
MGSKD (Liu et al., 2022) 66M 49.1 91.7 83.3/83.9 89.8 67.9 90.3 91.2 80.00
MetaDistill (Zhou et al., 2022) 66M 58.6 92.3 - 86.8 69.4 90.4 91.0 81.42
AD-KD (Wu et al., 2023) 66M 58.3 91.9 83.4/84.2 91.2 70.9 91.2 91.2 82.45

Task-specific Logits-based Distillation

Vanilla KD (Hinton et al., 2015) 66M 53.6 91.1 82.7/83.1 89.4 66.8 90.1 90.5 80.25
RCO (Jin et al., 2019) 66M 53.6 91.4 - 85.1 67.6 89.7 90.6 79.67
DML (Zhang et al., 2018) 66M 53.7 91.5 - 85.1 68.4 89.6 90.3 79.77
PD (Turc et al., 2019) 66M - 91.1 82.5/83.4 89.4 66.7 89.4 90.7 -
ReAugKD (Zhang et al., 2023) 66M 59.4 92.5 - 86.3 70.4 90.7 91.2 81.75

SinKD (ours) 66M 60.2 93.1 83.8/84.2 91.3 71.1 90.5 91.3 82.92

Table 1: Comparison with SOTA methods on GLUE with BERTbase as the teacher (T) and BERT6 as the
student (S). All scores are averaged except the accuracy of MNLI-(m/mm).

Method COLA SST-2 MNLI MRPC RTE QNLI QQP
(MCC) (ACC) (ACC) (F1) (ACC) (ACC) (ACC)

SinKD (ours) 60.2 93.1 83.8/84.2 91.3 71.1 90.5 91.3
w/o LSD 53.6 91.1 82.7/83.1 89.4 66.8 90.1 90.5
w/o LKL 56.2 91.7 82.3/83.0 90.1 69.3 90.2 90.7
w/o LCE 58.0 92.3 83.5/84.1 91.1 70.4 90.4 91.3
w/o LKL&LSD 51.2 91.0 81.7/82.6 89.2 66.1 89.3 90.4

Table 2: Effect of different loss terms on GLUE.

5.3. Discussion on Hyper-parameters
T as the number of Sinkhorn iterations We
vary the number of iterations T and results (see
Tab. 5) reflect the importance of selecting an ap-
propriate T . An increase of T to 20 respectively
improves F1 scores for MRPC (91.3) and accu-
racy for QQP (91.3), suggesting that sufficient it-
erations is crucial to approximation and conver-
gence. Nevertheless, raising the iterations to 50
yields no further improvement. It indicates the ex-
istence of a saturation point, beyond which addi-
tional iterations are not beneficial but redundant.
Hence, we set T = 20 throughout experiments.

(a) (b)

Figure 4: Effect of (a) λ on MRPC & QQP and (b)
τSD on MRPC & RTE. Best viewed magnified.

λ as the weight of entropy-regularization The
Sinkhorn distance is derived from the entropy-
regularized OT problem, where the regulariza-
tion term promotes a more dispersed and less
concentrated OT plan. In other words, entropy-
regularization would enhance the numerical sta-
bility and computational tractability of the solution
to OT problem. Theoretically, λ dictates the bal-
ance between the accuracy of the OT approxima-
tion and the stability of the solution. A larger λ re-
sults in a smoother andmore stable solution, albeit
potentially less accurate. A smaller λ yields amore
accurate solution at the risk of numerical instability.
As demonstrated in Fig. 4(a), a λ within the range
of 0.1 to 0.3 appears to achieve an optimal trade-
off among various aspects. Out of consistency, we
choose λ = 0.1 throughout experiments.

τSD as the temperature in Sinkhorn loss
Fig. 4(b) systematically investigates the influence
of τSD on distillation on the tasks of MRPC and
QQP. Our findings indicate that the default empir-
ical setting τSD = 2 is appropriate for both two
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Level COLA SST-2 MNLI MRPC RTE QNLI QQP
(MCC) (ACC) (ACC) (F1) (ACC) (ACC) (ACC)

Sample-wise 54.2 91.5 83.2/83.7 90.4 69.0 90.3 91.2
Batch-wise 60.2 93.1 83.8/84.2 91.3 70.0 90.5 91.3

Table 3: Comparison between the sample-wise and batch-wise SinKD on GLUE.

Method Complexity COLA SST-2 MNLI MRPC RTE QNLI QQP
(MCC) (ACC) (ACC) (F1) (ACC) (ACC) (ACC)

RKL O (bd) 53.9 91.6 82.9/83.4 90.5 67.1 90.1 91.1
JS O (bd) 54.2 92.2 83.1/83.7 90.7 68.9 90.3 91.2
TVD O (bd) 54.1 92.1 83.3/83.8 90.9 70.0 90.2 91.2

SinKD O
(
b2 (d+ T )

)
60.2 93.1 83.8/84.2 91.3 71.1 90.5 91.3

Table 4: Comparison with distillation methods based on variants of f -divergence on GLUE.

Number of MRPC QQP
Interations T (F1) (ACC)

2 90.6 91.0
5 90.9 91.0
10 90.9 91.1
20 91.3 91.3
50 91.3 91.3

Table 5: Effect of T on MRPC & QQP.

tasks. A smaller τSD may cause the student model
to concentrate solely on learning the most salient
features, neglecting the nuanced but valuable in-
formation present in less probable categories for
classification. On the other hand, a larger τSD re-
sults in smoother and more uniform probability dis-
tributions, which confuses the student model to dis-
cern between essential and irrelevant information.

(a) (b)

Figure 5: Effect of (a) α on MRPC & SST-2 and (b)
β on MRPC & RTE. Best viewed magnified.

Batch size b
MRPC SST-2
(F1) (ACC)

2 90.5 91.3
8 90.8 92.4
16 91.3 92.8
32 91.1 93.1
64 91.3 93.1

Table 6: Effect of b on MRPC & SST-2.

b as the number of batch size The batch size
is closely associated with the efficiency of geomet-
ric structural learning since the distribution diver-
gences are measured within each batch of sam-
ples for the proposed Sinkhorn distance minimiza-
tion. An increased batch size contributes to en-
hancing the student’s understanding of complex
geometric inter-sample relations present within
the dataset. Empirical evidence, as presented
in Tab. 6, elucidates a positive correlation be-
tween the batch size and evaluation results (F1
scores for the MRPC benchmark and accuracy for
SST-2). Such performance gains are theoretically
grounded in the premise that larger batches pro-
vide a more expansive dimensional space, allow-
ing for a more comprehensive representation of
the geometric configuration during each optimiza-
tion step. A larger batch size b effectively pro-
vides the model with exposure to the intrinsic geo-
metric variance of the dataset, potentially acceler-
ating the transfer and assimilation of the teacher
model’s knowledge. However, such benefit be-
comes negligible when the batch size increases
beyond 32, where bothmetrics for MRPCand SST-
2 remain almost unchanged. This observation sug-
gests the existence of a saturation point, which
delineates the boundary where the advantages of
augmenting the geometric sampling space are out-
weighed by the computational overhead.

Temperature τKL
MRPC SST-2
(F1) (ACC)

1 90.5 92.6
2 90.8 93.1
3 91.1 92.7
4 91.3 92.5

Table 7: Effect of τKL on MRPC & SST-2.
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τKL as the temperature in KL loss Tab. 7 pro-
vides the results of how the temperature τKL af-
fects the knowledge distillation. For the MRPC
dataset, amonotonically increasing trend in the F1-
score is observed as τKL ranges from 1 to 4. The
best results of F1-score are achieved at τKL = 4.
Conversely, the accuracy for SST-2 is maximized
at a lower temperature (τKL = 2), beyond which
a diminution occurs. It exemplifies the dualistic
role of τKL: 1) refining the granularity of probability
distributions at lower temperatures and 2) foster-
ing generalization at higher settings. The optimal
value of τKL is to be task-dependent and therefore
necessitates task-specific tuning.

α and β as the loss weights In the total training
objectives of SinKD, we introduce α and β to bal-
ance the contributions from the cross-entropy loss,
KL divergence loss, and Sinkhorn distance loss.
A comprehensive evaluation of various combina-
tions of α and β can be found in Fig. 5. Each time,
we only adjust one parameter and keep the other
one fixed. Our findings indicate that a larger α gen-
erally produces better performance, corroborating
that knowledge transfer from the teacher model
does play an indispensable role. In line with the re-
sults of SinKD without the cross-entropy loss (see
Tab. 2), α = 1 causes a drastic decline on SST-2,
suggesting that “soft” guidance from the teacher
model is not equivalent to “hard” supervision from
ground-truth labels. Additionally, we observe that
β = 0.8 yields promising results for both two tasks.
Consequently, we keep β = 0.8 fixed and find the
optimal α in {0.8, 0.9, 1.0} for each task.

Method RTE CB
(ACC) (ACC)

T011B (T) 89.1 100
T03B (S) 87.1 94.6

KL 87.4 94.6
KL+RKL 87.8 96.4
KL+JS 88.1 96.4
KL+SinKD 89.9 98.2

Table 8: Results of T0
on SuperGLUE.

Method RTE CB
(ACC) (ACC)

GPT1.3B (T) 75.4 86.9
GPT125M (S) 64.4 80.4

KL 64.7 83.3
KL+RKL 64.3 83.3
KL+JS 64.6 82.1
KL+SinKD 65.0 84.5

Table 9: Results of GPT-
Neo on SuperGLUE.

5.4. Generalizability on Generative LLMs
To demonstrate the potential of our SinKD on gen-
erative LLMs, we perform distillation on various
transformer architectures including the encoder-
decoder T0 (Sanh et al., 2021) and the decoder-
only GPT-Neo (Black et al., 2021). Specifically,
T011B and GPT-Neo1.3B serve as the teacher while
T03B and GPT-Neo125M as the student. We vali-
date SinKD on the SuperGLUE (Wang et al., 2019)
benchmark against SOTA KD methods based on

1) KL divergence, 2) RKL divergence, and 3) JS
divergence. We choose two datasets of RTE (Ben-
tivogli et al., 2009) and CB (De Marneffe et al.,
2019) for demonstrative experiment. Tab. 8 and
Tab. 9 show that the proposed SinKD surpasses
all other KD methods. Such findings showcase
that SinKD can generalize to generative LLMs
whose output logits are of high dimension equiva-
lent to the size of the tokenizer vocabulary. More-
over, the performance gap between T0 and GPT-
Neo can be ascribed to two reasons: 1) Architec-
ture. The encoder-decoder architectures are gen-
erally more suitable for discriminative tasks com-
pared with the decoder-only architectures since
the former better comprehend the input-output re-
lationships with bi-directional modeling. 2) Model
scale. According to the scaling laws (Brown et al.,
2020), the performance of GPT-Neo is expected
to grow exponentially with billions of parameters
increased. Under the limited GPU budget, experi-
ments on larger decoder-only models are currently
unavailable.

6. Conclusion

In this paper, we resort to the Sinkhorn distance
for divergence measure and present the SinKD
to address the limitations of existing distillation
methods. Besides, we propose a batch-wise re-
formulation to capture geometric intricacies of dis-
tributions across samples in the high-dimensional
space. Extensive experiments on the GLUE and
SuperGLUE benchmarks confirm the superiority of
our SinKD over SOTA methods from the aspect of
comparability, validity, and generalizability.
A potential limitation is that we employ task for-

matting to adapt discriminative tasks under gen-
erative settings via prompts for experiments on
GPT-Neo. The manual design of these prompts
requires engineering experience and could sig-
nificantly influence performance. Future work
includes exploring application to representation-
based KD and extension to other tasks (e.g., doc-
ument summarization, machine translation).

Broader Impact It is prospective to apply SinKD
for distillation beyond the field of NLP. Its advan-
tage in handling the “batchified” high-dimensional
distributions would facilitate KD of the increasingly
larger vision and language models for small-yet-
competent ones with high cost-efficiency.
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