@inproceedings{muthya-sudheendra-etal-2024-skotapa,
title = "{S}k{OT}a{PA}: A Dataset for Skepticism Detection in Online Text after Persuasion Attempt",
author = "Muthya Sudheendra, Smitha and
Abdollahi, Maral and
Kang, Dongyeop and
Huh, Jisu and
Srivastava, Jaideep",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1295",
pages = "14871--14876",
abstract = "Individuals often encounter persuasion attempts, during which a persuasion agent aims to persuade a target to change the target{'}s emotions, beliefs, and behaviors. These persuasion attempts can be observed in various social settings, such as advertising, public health, political campaigns, and personal relationships. During these persuasion attempts, targets generally like to preserve their autonomy, so their responses often manifest in some form of resistance, like a skeptical reaction. In order to detect such skepticism in response to persuasion attempts on social media, we developed a corpus based on consumer psychology. In this paper, we consider one of the most prominent areas in which persuasion attempts unfold: social media influencer marketing. In this paper, we introduce the skepticism detection corpus, SkOTaPA, which was developed using multiple independent human annotations, and inter-coder reliability was evaluated with Krippendorff{'}s alpha (0.709). We performed validity tests to show skepticism cannot be detected using other potential proxy variables like sentiment and sarcasm.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="muthya-sudheendra-etal-2024-skotapa">
<titleInfo>
<title>SkOTaPA: A Dataset for Skepticism Detection in Online Text after Persuasion Attempt</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smitha</namePart>
<namePart type="family">Muthya Sudheendra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maral</namePart>
<namePart type="family">Abdollahi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongyeop</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jisu</namePart>
<namePart type="family">Huh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaideep</namePart>
<namePart type="family">Srivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Individuals often encounter persuasion attempts, during which a persuasion agent aims to persuade a target to change the target’s emotions, beliefs, and behaviors. These persuasion attempts can be observed in various social settings, such as advertising, public health, political campaigns, and personal relationships. During these persuasion attempts, targets generally like to preserve their autonomy, so their responses often manifest in some form of resistance, like a skeptical reaction. In order to detect such skepticism in response to persuasion attempts on social media, we developed a corpus based on consumer psychology. In this paper, we consider one of the most prominent areas in which persuasion attempts unfold: social media influencer marketing. In this paper, we introduce the skepticism detection corpus, SkOTaPA, which was developed using multiple independent human annotations, and inter-coder reliability was evaluated with Krippendorff’s alpha (0.709). We performed validity tests to show skepticism cannot be detected using other potential proxy variables like sentiment and sarcasm.</abstract>
<identifier type="citekey">muthya-sudheendra-etal-2024-skotapa</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1295</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>14871</start>
<end>14876</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SkOTaPA: A Dataset for Skepticism Detection in Online Text after Persuasion Attempt
%A Muthya Sudheendra, Smitha
%A Abdollahi, Maral
%A Kang, Dongyeop
%A Huh, Jisu
%A Srivastava, Jaideep
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F muthya-sudheendra-etal-2024-skotapa
%X Individuals often encounter persuasion attempts, during which a persuasion agent aims to persuade a target to change the target’s emotions, beliefs, and behaviors. These persuasion attempts can be observed in various social settings, such as advertising, public health, political campaigns, and personal relationships. During these persuasion attempts, targets generally like to preserve their autonomy, so their responses often manifest in some form of resistance, like a skeptical reaction. In order to detect such skepticism in response to persuasion attempts on social media, we developed a corpus based on consumer psychology. In this paper, we consider one of the most prominent areas in which persuasion attempts unfold: social media influencer marketing. In this paper, we introduce the skepticism detection corpus, SkOTaPA, which was developed using multiple independent human annotations, and inter-coder reliability was evaluated with Krippendorff’s alpha (0.709). We performed validity tests to show skepticism cannot be detected using other potential proxy variables like sentiment and sarcasm.
%U https://aclanthology.org/2024.lrec-main.1295
%P 14871-14876
Markdown (Informal)
[SkOTaPA: A Dataset for Skepticism Detection in Online Text after Persuasion Attempt](https://aclanthology.org/2024.lrec-main.1295) (Muthya Sudheendra et al., LREC-COLING 2024)
ACL