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Abstract
Identifying early markers of Alzheimer’s disease (AD) trajectory enables intervention in early disease stages
when our currently-available interventions are most likely to be beneficial. Research has shown that alterations
in speech, as well as linguistic and semantic deviations in spontaneous conversation detected using natural
language processing, manifest early in AD prior to some other observed cognitive deficits. Recent studies show
that cerebrospinal fluid (CSF) levels serve as useful early biomarkers for identifying early AD, but CSF biomarkers
are challenging to collect. A simpler alternative that has seen very rapid development is based on the use of
plasma biomarkers as a blood draw is minimally invasive. Associating verbal and nonverbal characteristics from
speech data with CSF and plasma biomarkers may open the door to less invasive, more efficient methods for
early AD detection. We present SLaCAD, a new dataset to facilitate this process. We describe our data collection
procedures, analyze the resulting corpus, and present preliminary findings that relate measures extracted from the
audio and transcribed text to clinical diagnoses, CSF levels, and plasma biomarkers. Our findings demonstrate the
feasibility of this and indicate that the collected data can be used to improve assessments of early AD.
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1. Introduction

Alzheimer’s disease (AD) is an irreversible neu-
rodegenerative disease with a long preclinical
phase where pathology in the brain develops grad-
ually over many years before diagnostic symp-
toms manifest (Blennow et al., 2006; Jack Jr.
et al., 2018). In the preclinical AD phase, there
is evidence of AD pathogenesis via biomarkers
but no clinical symptoms. Pharmaceutical and
non-pharmaceutical approaches such as lifestyle
changes promoting brain health might be helpful
to slow or delay cognitive decline in cases de-
tected early (Kivipelto et al., 2017), but detection
of the earliest, preclinical AD phase is challenging
(Håkansson et al., 2018).
In the prodromal stage of AD called mild cog-

nitive impairment (MCI), mild cognitive deficits,
typically in the domain of learning and memory,
manifest clinically; however, everyday function is
not impaired. Recent clinical trials of disease-
modifying agents suggest that therapeutics work
best if started at early stages (Sharma, 2019), mak-
ing it a high priority to develop diagnostic tools for
early AD stages that are sensitive and less inva-
sive, costly and time-burdensome than those cur-
rently available (e.g., brain imaging or biomarker
assays in cerebrospinal fluid (CSF) or blood).
Biomarkers of the hallmark AD pathologies,

amyloid-β (Aβ) plaques and neurofibrillary tangles
comprised of phosphorylated tau, can be mea-

sured in the CSF and plasma and can be de-
tected years before the onset of clinical symptoms.
The most commonly measured AD biomarkers are
Aβ42, Aβ42/Aβ40 ratio, total-tau (tTau), the phos-
phorylated tau protein at epitope 181 (pTau181)
and the ratio of either tTau or pTau181 to Aβ42. High
concentrations of pTau181, tTau, and the tTau (or
pTau181)/Aβ42 ratio levels and low levels of Aβ42

and the Aβ42/Aβ40 ratio reflect greater pathologi-
cal burden in the brain. These biomarkers have
consistently predicted subsequent progression to
AD in cognitively unimpaired and MCI participants
(Rostamzadeh et al., 2022; Breno S. O. Diniz
and Forlenza, 2008; Ferreira et al., 2014). Al-
though recent advances in the use of plasma AD
biomarkers have reduced barriers to collection,
the need for phlebotomy and assay cost still re-
stricts their widespread use. Additionally, many
individuals with AD pathology in the brain not de-
velop Alzheimer’s disease (Driscoll and Troncoso,
2011; Arenaza-Urquijo and Vemuri, 2018), indicat-
ing that other markers of the earliest cognitive
change in the AD trajectory are needed. Clini-
cal markers of this coupled with biomarkers would
make a powerful combination in detecting individ-
uals likely on the AD trajectory.

Changes in spontaneous spoken or written dis-
course have been observed early in the course of
AD, and possibly prior to MCI (Forbes-McKay and
Venneri, 2005a; Garrard et al., 2004a). There is ev-
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idence that different connected speech tasks may
be sensitive to different linguistic features in early
AD diagnostics (Clarke et al., 2021). Recent stud-
ies have suggested that computational analysis of
spontaneous speech could be a rapid, low-cost,
scalable, and non-invasive screening tool for early
AD. We introduce the Spoken Language Corpus
for Alzheimer’s Disease detection (SLaCAD), a
new dataset to advance research in this area. We
describe our comprehensive approach to elicit spo-
ken discourse from 91 older, mostly cognitively
normal, participants. Participants completed lan-
guage tasks, resulting in 7.5 hours of recorded and
transcribed speech data across participants. The
transcripts of the language recordings and the ex-
tracted linguistic and acoustic features along with
clinical diagnosis (cognitively normal, MCI, AD de-
mentia), comprehensive cognitive testing, and AD
biomarkers (for the subset of participants indicated
in this paper) will be available to the scientific com-
munity through data requests made to the National
Alzheimer’s Coordinating Center. The availability
of early AD biomarkers to characterize preclinical
AD in this mostly cognitively normal sample paired
with spoken discourse will facilitate research to-
wards early AD screening. Our contributions are:

• We present SLaCAD, collected from 91 partic-
ipants through autobiographical interviews in
clinical laboratory settings.

• We derived language transcripts from record-
ings and correspondingly extracted linguis-
tic and acoustic features from the transcripts.
These data will be available to other re-
searchers by request.

• Using SLaCAD, we relate these features with
CSF and plasma AD biomarkers.

Through these analyses, we identify linguistic and
acoustic features that correlate with AD biomark-
ers in a mostly cognitively normal sample. This is
promising because it represents an innovative way
to potentially detect subtle signs of AD pathology
and risk before cognitive impairment becomes ap-
parent. We detail our data collection procedures,
analyses, and findings in the remainder of this pa-
per.

2. Background

2.1. Spoken Language Corpora for
Detecting Early AD

Several publicly available or requestable spoken
language datasets relevant to early AD exist,
each with different sample characteristics and data
availability. DementiaBank (Becker et al., 1994)
contains audio recordings of neuropsychological

tests administered to healthy participants and pa-
tients with diagnosed dementia. It includes 300
language samples from 188 participants with cog-
nitive decline and 242 samples from 99 cognitively
normal, older adults. Out of the 300 interviews
from participants with cognitive decline, 43 inter-
views were classified as from participants with MCI
and 257 as from participants with possible/proba-
ble AD. However, DementiaBank does not include
any CSF or plasma biomarkers.
The Framingham Heart Study (Wawrzyniak,

2020, FHS) has language recordings/data and di-
agnostic labels that are available upon request.
Audio was recorded during a picture description
(PD) Task. Apart from the diagnostic labels,
FHS has plasma amyloid-β (Aβ42) (Romero et al.,
2020) and plasma total-Tau (tTau) biomarkers
(Pase et al., 2019). A Swedish corpus (Jonell
et al., 2021) also contains multimodal data (gaze,
speech, and facial gestures) from 25 participants,
as well as diagnostic labels (AD, MCI or con-
trol), the CSF Aβ42 and phosphorylated tau (p-tau)
biomarkers, and the Montreal Cognitive Assess-
ment (MoCA) Memory Index Score (MoCA-MIS)
for each participant. Findings from studies on this
data demonstrated correlations between speech
biomarkers and AD biomarkers.
Recent research (Verfaillie et al., 2019) found

that 63 individuals with subjective cognitive de-
cline (SCD) from a memory clinic and high amy-
loid burden uttered fewer specific words during
an English-language spontaneous speech task.
Another English-language study (Mueller et al.,
2021), using cookie theft picture description data
from the Wisconsin Registry for Alzheimer’s Pre-
vention1 with 255 participants (57 amyloid positive
and 198 amyloid negative), showed that partici-
pants with positive amyloid status demonstrated
poor performance over time in linguistic parame-
ters (i.e., low vocabulary richness) compared to
participants with negative amyloid status in a co-
hort of cognitively healthy individuals. Finally,
other recent research (Hajjar et al., 2023), using
privately collected data from 92 cognitively unim-
paired (40 Aβ positive) and 114 impaired (63 Aβ
positive) participants, found that lexical-semantic
features extracted from spoken English picture de-
scriptions were significant in the detection of posi-
tive Aβ status using machine learning techniques.

2.2. Speech and Language Markers for
Early AD Detection

Evidence suggests that changes in spoken or writ-
ten language can occur early in AD, possibly be-
fore MCI (Forbes-McKay and Venneri, 2005b; Gar-
rard et al., 2004b; Ahmed et al., 2013). These lan-

1https://wrap.wisc.edu/

https://wrap.wisc.edu/
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guage abilities are controlled by brain regions like
the parieto-temporal and temporal lobes, which
are often affected early in AD. In practical terms,
this can result in difficulties finding words, slower
speech, hesitancy, and trouble understanding lan-
guage. Many studies have used NLP to extract lin-
guistic and semantic features for detecting AD pro-
gression (Slegers et al., 2018; Mueller and Turk-
stra, 2018; Voleti et al., 2020). Some studies have
also compared the sensitivities of different speech
sampling approaches (e.g., picture description or
semi-structured interviews) to early AD detection
(Seyed Ahmad Sajjadi and Nestor, 2012), find-
ing that discourse samples elicited from semi-
structured interviews contain more fillers (e.g., “uh”
and “um”), incomplete utterances, and grammati-
cal function words than picture description tasks.
In contrast, picture descriptions allowed for the
capture of more semantic errors, such as substitut-
ing the word “dog” for “cat” (Seyed Ahmad Sajjadi
and Nestor, 2012). Given these findings, it seems
likely that the task used to elicit spoken discourse
not only affects the accuracy of the classifier but
also the nature of the distinguishing features.
Vocal features like speech rate, fluency, silent

pauses (especially longer than two seconds), and
voice quality may mark more fine-grained cogni-
tive alterations that could indicate preclinical AD
(König et al., 2015; Szatlóczki et al., 2015; Jonell
et al., 2021; Yuan et al., 2020; Roark et al., 2011a).
For instance, MCI patients have been found to
have a weaker and breathier voice than cognitively
healthy subjects (Themistocleous et al., 2020).
Categorizing words from participants’ narratives
into five broad categories (linguistic processes,
personal concerns, psychological processes, rel-
ativity, and spoken categories) using the Linguis-
tic Inquiry and Word Count database (Boyd et al.,
2022, LIWC) has revealed that words dealing
with time and space (relativity) are more sensi-
tive to MCI detection than words from other cat-
egories (Asgari et al., 2017). Interaction pat-
terns between interviewers and subjects during
semi-structured interviews show that conversation
tempo also presents distinguishing signals for de-
tecting AD (Farzana et al., 2020; Nasreen et al.,
2021; Farzana and Parde, 2022). We automat-
ically extract diverse language and speech fea-
tures from SLaCAD and identify signals and pat-
terns from this data that may indicate early signs
of AD biomarker positivity using machine learning.

3. Approach

3.1. Data Collection

Participants were older adult volunteers (all White
except one Asian participant) from a longitudinal

Figure 1: Characteristic language sample from
SLaCAD. INV=Interviewer, PAR=Participant.

study carried out by the University of California,
San Diego’s (UCSD) Shiley Marcos Alzheimer’s
Disease Research Center (ADRC). Exclusion cri-
teria included those with moderate or severe AD
dementia whose ability is compromised to suc-
cessfully complete the task according to instruc-
tions, and those with dementia of other patholog-
ical types. ADRC participants in this study re-
ceive annual clinical and medical history, medi-
cal, neurological and neuropsychological assess-
ments, and laboratory tests. Based on each an-
nual evaluation, a consensus conference of neu-
rologists and neuropsychologists determines a re-
search diagnosis reflecting overall cognitive func-
tion (normal, MCI, or AD) based on standard di-
agnostic criteria (McKhann et al., 2011a). A sub-
set of the participants (n=63) also provided CSF,
via lumbar puncture, and/or blood (n=77), which
was assayed for AD biomarker levels. Blood was
collected within a year of the language and cog-
nitive evaluations and CSF were collected within
5 years of the language. The research protocol
was reviewed and approved by the human subject
review board at UCSD and informed consent was
obtained from all patients or their caregivers con-
sistent with state law.

Language Task. Free speech samples were col-
lected using an autobiographical interview added
to the standard ADRC neuropsychological test bat-
tery. Data collection took place from 2020-2021
during the COVID pandemic and, as such, was
conducted via Zoom. No specific microphone re-
quirements were imposed but the interviewer did
not proceed with the task unless the participant
could be heard clearly. The participant and inter-
viewer were recorded on the same channel. Partic-
ipants were instructed to describe for five minutes
a memorable event from a specific time and place
during early adulthood (age 18-30). Interviewers
were provided with prompts to assist participants
with generating the free speech data if participants
stopped talking before five minutes had passed.
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CN MCI Mild AD
n=82 n=6 n=3

Age 75.94 73.16 74.66
(5.81) (5.53) (4.16)

Education 17.46 16.33 16.67
(2.13) (1.50) (2.31)

Sex (F/M) 44/38 1/5 1/2

Time 5.23 3.74 2.99
(2.13) (1.24) (0.98)

T-MoCA 19.70 16.33 13.66
(1.92) (1.37) (6.66)

tTau/Aβ42
0.60 0.64 0.42
(1.48) (0.50) (0.30)

Aβ42/Aβ40
0.08 0.06 0.04
(0.02) (0.03) (0.01)

tTau 320.68 365.0 722.0
(160.33) (195.54) (150.33)

pTau181
4.49 4.85 8.35
(3.06) (1.61) (6.19)

Table 1: Descriptive characteristics for the full
dataset. Averages are reported, with standard de-
viations in parentheses. Time, in minutes, refers to
average recording time. T-MoCA (Chappelle et al.,
2023) stands for the Telephone Montreal Cogni-
tive Assessment which has been administered by
telephone. It uses a 22-point scale assessing au-
ditory attention, mental flexibility, verbal fluency,
sentence repetition, word-list memory, and orien-
tation to time and place. Education is reported in
years. CN=Cognitively Normal.

3.2. Data Transcription
All audio recordings were first automatically tran-
scribed using the Vosk open-source speech
recognition toolkit2 and then the resulting tran-
scripts were manually edited by seven undergrad-
uate research volunteers. They were instructed to:

• Edit the transcript as needed to fix any mis-
takes and ensure that the text accurately
matched what was said in the audio file.

• Add any missing punctuation.

• Denote words or phrases that were inaudible
or questionable using the token: (X).

• Add tags indicating the speaker (i.e., Partici-
pant or Interviewer).

• Add timestamps to the beginning and end of
the task.

• Add tags indicating nonverbal gestures (e.g.,
laughs or coughs).

2https://alphacephei.com/vosk/

To ensure participant anonymity, all transcrip-
tions were done without adding information that
would compromise the identity or confidentiality of
subjects. All participants were issued a unique
database ID number, and all subsequent refer-
ences to participants were made using only their
ID number. Personnel directly associated with this
project have access to the original data sheets.

3.3. Preprocessing

We preprocessed the transcripts and audio files
prior to intake into the classification pipeline. The
audio files, originally in .mp3 format, were con-
verted to .wav format (44.1 kHz sample rate and
16 bits per sample). As the transcripts were
segmented according to the speaker’s turns,3
we automatically added fine-grained timestamps
indicating the start and end of each speaker
turn. We used a forced alignment tool4 based
on the Wav2Vec2 (Baevski et al., 2020) model
to generate the turn-taking timestamps. We
also preprocessed the transcripts to remove in-
terviewer utterances and speaker tags, as well
as other added transcription artifacts (e.g., non-
verbal cues, coughs, or laughter).

4. Corpus Analysis

SLaCAD includes autobiographical interview
recordings (not available for request) and paired
transcripts (available for request) for all partic-
ipants, with an average task duration of 5.24
minutes (standard deviation: 1.41 minutes). We
provide demographic, cognitive status, and early
biomarker-related statistics in Tables 1 and 2
across different participant classes. We observe
interesting patterns (in Table 1) from these de-
scriptive statistics; for instance, cognitively normal
participants clearly narrate for longer time duration
than MCI and mild AD participants.
In Table 3, we provide speaker-wise statistics re-

garding transcript length in number of tokens, num-
ber of turns, turn length (in tokens), and turn dura-
tion for participants and interviewers. As shown,
participants have a more pronounced share of
the recordings than interviewers. Interviewers
mostly gave task instructions, probed participants
for more narrative content if they stopped talk-
ing too early, and answered clarifying questions
from the participants (see the example conversa-
tion snippet in Figure 1).

3A turn is an individual speech act, defined as the full
duration of time for which a single speaker is talking.

4https://pytorch.org/audio/stable/
tutorials/forced_alignment_tutorial.html

https://alphacephei.com/vosk/
https://pytorch.org/audio/stable/tutorials/forced_alignment_tutorial.html
https://pytorch.org/audio/stable/tutorials/forced_alignment_tutorial.html
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Plasma CSF
pTau181- pTau181+ CSF- CSF+
n=50 n=27 n=51 n=12

Age 74.46 (5.16) 78.44 (5.89) 74.22 (4.63) 77.66 (7.13)
Education 17.10 (2.37) 17.93 (1.69) 17.56 (2.05) 17.42 (2.84)
Sex (F/M) 30/20 7/20 23/28 6/6
Time 5.02 (1.96) 5.23 (1.97) 5.16 (1.96) 5.00 (1.34)
T-MoCA 19.7 (2.31) 18.44 (2.81) 19.43 (1.98) 18.91 (1.62)
tTau/Aβ42 0.35 (0.30) 1.72 (3.27) 0.30 (0.12) 1.91 (2.95)
Aβ42/Aβ40 0.08 (0.02) 0.05 (0.03) 0.08 (0.02) 0.04 (0.01)
tTau 305.83 (159.55) 408.45 (185.37) 273.57 (106.55) 576.5 (168.34)
pTau181 2.86 (0.68) 7.98 (3.39) 4.09 (2.84) 7.51 (3.49)

Table 2: Descriptive characteristics for transcripts with biomarker data. Averages are reported, with stan-
dard deviations in parentheses. Time, in minutes, refers to average recording time. T-MoCA (Chappelle
et al., 2023) stands for Montreal Cognitive Assessment which has been administered by telephone. The
Plasma column represents the 77 participants with a valid plasma (pTau181) biomarker, where one sub-
group is pTau181 negative and the other is pTau181 positive (Preclinical AD). The CSF column represents
the 63 participants with valid CSF biomarkers (e.g., tTau, Aβ42, or Aβ40), where one subgroup is CSF
(tTau and Aβ42 ratio) negative and the other is CSF positive (indicating preclinical AD).

5. Early AD Detection Model

To validate our dataset and assess its feasibil-
ity for relating automatically extracted language
features to CSF and plasma biomarker levels,
we performed preliminary experiments geared to-
ward early AD detection. All experiments revolved
around building explainable models that predict
positivity for our AD biomarkers based on estab-
lished cut-points (Chappelle et al., 2022):

1. CSF tTau/Aβββ42 Positivity (tTau/Aβββ42): A bi-
nary variable reflecting positive versus nega-
tive status of the tTau to Aβ42 ratio . The pos-
itivity cutoff threshold was ≥0.609.

2. CSF Aβββ42/Aβ40 Positivity (Aβββ42/Aβββ40): A
binary variable reflecting positive versus neg-
ative status of the Aβ42 to Aβ40 ratio. The
positivity cutoff threshold was ≤0.056.

3. Plasma pTau181 Positivity (pTau181): A bi-
nary variable reflecting positive versus nega-
tive status of the plasma pTau181 biomarker.
The positivity cutoff threshold was ≥4.09
pg/mL.

5.1. Features
Weextracted a variety of lexicosyntactic, semantic,
and acoustic features from the transcripts, summa-
rized below. All features were calculated using the
participant’s utterances or speech segments.

Part-Of-Speech (POS) Tags. POS tags have
proven useful for detecting dementia (Masrani,
2018) and forms of primary progressive aphasia

Measure Speaker
PAR INV

Tokens 733.63±273.42 38.27±63.05
# Turns 4.70±4.86 4.09±5.03
Turn Length 374.89±348.33 6.90±7.43
Turn Duration 2.58±2.31 0.04±0.05

Table 3: Descriptive language statistics from
SLaCAD, averaged across all transcripts.
INV=Interviewer, PAR=Participant.

(Balagopalan et al., 2020b). We use the spaCy5

core English POS tagger to capture the frequency
of 12 coarse-grained universal POS labels (Petrov
et al., 2012). Frequency counts are normalized by
the number of words in the transcript.

CFG Features. Context-Free Grammar (CFG)
features count how often phrase structure rules
(e.g., NP → V P PP ) occur in utterance parse
trees, normalized by the number of nodes in the
tree. CFG features have previously shown suc-
cess for dementia detection (Masrani, 2018; Mas-
rani et al., 2017). We extract parse trees using the
Stanford parser (Qi et al., 2018), representing 12
Penn Treebank constituents (Marcus et al., 1993).

Syntactic Complexity. Measures of syntactic
complexity have proven effective for predicting de-
mentia from speech (Masrani, 2018). We repre-
sent utterance complexity using 16 features includ-
ing parse tree depth, mean word length, mean sen-

5spacy.io

spacy.io
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tence length, mean clause (noun or verb phrase)
length, and number of clauses per sentence.

Named Entity Recognition (NER) Tags. NER
features may be a useful and relatively domain-
agnostic way to encode broad structural patterns,
following the success of other intent-based fea-
tures (Farzana and Parde, 2022). We extracted
named entity labels using a spaCy model trained
on the OntoNotes 5 corpus to produce the 10
fine-grained named entity types in the OntoNotes
tagset (Pradhan et al., 2007). We included a fre-
quency feature for each type, normalized by the
total number of entities mentioned in the transcript.

Vocabulary Richness Features. Existing re-
search has shown that measures of vocabulary
richness can be leveraged to diagnose dementia
(Masrani et al., 2017; Balagopalan et al., 2020a).
We include six well-known lexical richness mea-
sures including type-token ratio (TTR), moving-
average TTR (MATTR), mean segmental TTR
(MSTTR), Maas index (Mass, 1972), the mea-
sure of textual lexical diversity (McCarthy, 2005,
MTLD), and the hypergeometric distribution index
(McCarthy and Jarvis, 2007, HD-D). We calcu-
lated eachmeasure over the entire transcript using
Python’s lexicalrichness package.6

Semantic Features. Wemeasure semantic sim-
ilarity between consecutive utterances by calculat-
ing the cosine similarity between the utterance vec-
tors and then recording the proportion of distances
below three thresholds (0, 0.3, 0.5). We used aver-
aged TF-IDF vectors to represent each utterance.
We also recorded the minimum and average co-
sine distance between utterances.

Acoustic Features. Finally, prior work has
found acoustic distinctions between subjects with
and without dementia (Farzana and Parde, 2023;
Masrani et al., 2017). We chunked the partici-
pant’s speech segments from each recording us-
ing Pydub7 and extracted 25 prosody features
(Dehak et al., 2007; Vásquez-Correa et al., 2018)
per chunk based on duration (i.e., number of
voiced segments per second and standard devia-
tion of duration of unvoiced segments), using the
DiSVoice8 tool.

5.2. Modeling and Experimental Setup
Class Balance. As observed in Table 2, data for
all target variables was imbalanced:

6pypi.org/project/lexicalrichness
7https://pypi.org/project/pydub/
8github.com/jcvasquezc/DisVoice

• tTau/Aβββ42: Of 63 samples with tTau/Aβ42 ra-
tios, 13 (21%) belonged to the positive class.

• Aβββ42/Aβ40: Of this same set of samples, 21
(33%) belonged to the positive class.

• pTau181: Of 77 samples with ptau181 data, 27
(35%) belonged to the positive class.

To address this, we experimented with upsam-
pling techniques and more complex approaches.
We found that simple upsampling did not yield
any significant performance improvements, and ul-
timately chose to use the Synthetic Minority Over-
sampling Technique (Chawla et al., 2002, SMOTE)
since it increased prediction performance in our
preliminary experiments.

Feature Selection. We extracted the 86 fea-
tures described in §5.1 and then downsampled
this feature set to a set of most informative fea-
tures, experimenting with several approaches for
this process. Our approaches ranked features
based on three attributes: ANOVA F-values, mu-
tual information (MI) values, and frequency among
the most useful features obtained during multi-
ple random forest classifier training rounds (RF).
ANOVA and MI values were straightforward to
compute. To implement RF, we repeatedly trained
a random forest model (each time with a random
80% train and 20% test split) and collected the top
16 most predictive features for classifying the tar-
get value at each iteration. We then ranked all
features based on their frequency in this set. To
determine ideal feature set size, we then tested
the prediction accuracy of an increasingly large or-
dered subset of features for each combination of
target variable × feature selection technique. We
nearly universally observed a drop in performance
when using more than eight features.

Models. We experimented with both Random
Forest (Breiman, 2001) and XGBoost (Chen and
Guestrin, 2016) models to predict our target vari-
ables. We selected these models based on their
generally high performance and explainability. We
performed light hyperparameter tuning given the
limited size of the dataset, to avoid overfitting.
Specifically, we tuned the max_depth and learn-
ing_rate parameters for XGBoost, and the crite-
rion and n_estimator parameters for Random For-
est. We averaged the results of 1000 stratified 5-
fold cross-validation runs across all combinations
of target variable and feature subset, finding that
Random Forest with n_estimators = 200 and crite-
rion = gini generally outperformed all other model
and hyperparameter combinations.

pypi.org/project/lexicalrichness
https://pypi.org/project/pydub/
github.com/jcvasquezc/DisVoice
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Task Feat. A F1 ROC-AUC

tTau/Aβ42

2 0.67 0.30 0.59
4 0.71 0.31 0.61
8 0.84 0.49 0.72
16 0.83 0.47 0.71

Aβ42/Aβ40

2 0.71 0.55 0.68
4 0.72 0.54 0.68
8 0.75 0.58 0.70
16 0.71 0.45 0.63

pTau181

2 0.66 0.55 0.64
4 0.67 0.55 0.65
8 0.73 0.62 0.71
16 0.74 0.61 0.70

Table 4: Full results for the tTau/Aβ42, Aβ42/Aβ40,
and pTau181 prediction tasks. The top n features
(Feat.) were selected using RF for all the target
variables. A=accuracy.

5.3. Results
All experimental results were obtained by averag-
ing performance across 1000 RF training/test runs
with a random 80%/20% stratified split. We set
n=1000 runs to ensure result stability and avoid
reporting outlying values. We report performance
on all target variables with an increasing number
of features (top 2, top 4, top 8, and top 16) from
the downsampled subsets. Although we report
accuracy, F1, and ROC-AUC, we focus on ROC-
AUC since it most reliably captures performance
for these tasks.
Our tTau/Aβ42 results are presented in Figure 2a

and Table 4. We observe the highest F1 and ROC-
AUC scores using the top 8 RF features, lagging
only slightly (<1.2% difference) behind the top 8
MI features. For the Aβ42/Aβ40 results (Figure 2b
and Table 4), the top 8 RF features also exhibit the
best performance, with all metrics registering their
highest values with this feature subset.
For the pTau181 task (Figure 2c and Table 4), we

observe that RF and ANOVA F feature selection
results in very similar outcomes, with RF feature
selection performing slightly better. Using the top
8 features produces the highest F1 and ROC-AUC
scores while using the top 16 features results in
slightly (<1.5% difference) higher accuracy. For
our ensuing feature analyses, we focus on the top
8 RF features since they are more interpretable
than other feature subsets and generally exhibit
the best performance across target variables.

Confounding Variables. The target variable
groups were not balanced for age, sex, or years of
education (Table 2). To explore potential confound-
ing on classification results, selected features for

(a) tTau/Aβ42

(b) Aβ42/Aβ40

(c) pTau181

Figure 2: Top n features ROC-AUC score compar-
ison for target variables.

classifying each target variable were used as in-
put in a linear regression to predict age and educa-
tion, and a linear Support Vector Classifier (SVC)
to classify sex. We present the confounding vari-
able analysis in Table 5 for each target variable.
When predicting age and education via linear re-
gression using the top 8 selected features for the
corresponding target variable, we observe nega-
tive r2 values,9 showing that the input features
failed to predict those variables. Balanced accu-
racies for classification of sex are slightly greater
than chance, except for tTau/Aβ42 (for which bal-
anced accuracy is same as chance); however, the
male/female split included target variable negative
and target variable positive participants in both
groups. Additional details regarding the associa-
tion of selected features with age, education, and
sex are in Figures 4–12 in appendix A.

9Negative r2 values indicate that predicting themean
dependent variable for each instance would explain
more variance than a model based on the input feature.
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(a) tTau/Aβ42 target variable with RF features.

(b) Aβ42/Aβ40 target variable with RF features.

(c) pTau181 target variable with RF features.

Figure 3: Shap values for the top eight features
identified using mutual information (MI) or RF tech-
niques. Details of selected features are in the ap-
pendix (Table 6 and 7)

Comparison with Cognitive Tests. We next
compared the ability of our model to predict AD
biomarker positivity compared to standard cogni-
tive test scores to better understand whether our
model may be more effective in predicting AD
biomarker status compared to our current tools.
More specifically, we investigated the following
cognitive tests assessing global cognition: the tele-
phone MoCA, verbal learning and memory (Craft
Story Recall), attention and executive function
(Oral Trail Making Parts A and B), naming and
language (Animal Fluency, Letter Fluency), and
working memory (Number Span). We used the
scores of these tests to train a Random Forest
model that would predict biomarker positivity sta-
tus. We used leave-one-out cross-validation for

Target
Variable Age (r2) Edu. (r2) Sex

(Acc.)

tTau/Aβ42
-0.7751 -0.4719 0.5098

Aβ42/Aβ40
-0.5057 -0.5700 0.6820

pTau181 -0.5863 -0.5421 0.7167

Table 5: Confounding variables analysis.

each model, and repeated all tests 100 times to
provide stable results. The only cognitive test ap-
proaching our own model performance was the
Letter Fluency test, which predicted the activation
of the tTau/Aβ42 with a comparable ROC-AUC
score (less than 3% difference); additional details
are provided in Figure 13 in the appendix A. How-
ever, this test fell short of our model when we con-
sidered the F1 score, for which we observed a 15%
decrease. All other models exhibited at least a
10% decrease across all metrics compared to our
model trained on speech and language biomark-
ers.

5.4. Discussion

For tTau/Aβ42, Aβ42/Aβ40, and pTau181, RF fea-
ture selection generated the best performance in
terms of ROC-AUC score. Overall, we observed
better performance predicting the plasma pTau181
target variable across all metrics than CSF target
variables (tTau/Aβ42 and Aβ42/Aβ40). This may
be because the collection of plasma was more
proximal in time (≤1 year) to the language assess-
ment compared to CSF collection (≤5 years). We
evaluated the explainability of our models using
SHAP values (Lundberg and Lee, 2017) for all tar-
get variables in figures 3a–3c, and discuss our find-
ings below.

CSF tTau/Aβββ42. Although we observed higher
overall tTau prediction ROC-AUC than other target
variables, we also still observed (based on the dif-
ference between accuracy and F1) that predictions
may be biased towards the negative class. Inter-
estingly, the most predictive features (Figure 3a)
were acoustic. Furthermore, almost all of these
features exhibited clear correlations with the tar-
get value. The positively correlated feature avg-
durvoiced suggests that individuals at the AD pre-
clinical stagemay struggle to remain on topic. This
is also confirmed by the negative correlation of
the VP feature, which expresses the ratio between
voiced versus paused time in a conversation. We
expected this correlation since individuals with
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healthy cognition should have fewer pauses in
their speech (Farzana and Parde, 2020).

CSF Aβββ42/Aβββ40. The results for Aβ42/Aβ40 are
moderately strong and also confirm an interest-
ing trend seen with tTau, suggesting that the fea-
tures RatioVerb and RatioNoun are negatively cor-
related with Aβ42/Aβ40 positivity (see Figure 3b)
as cognitively impaired subjects tend to use more
function words (Farzana and Parde, 2020).

Plasma pTau181. Finally, for the pTau181 target
variable we observe overall balanced metrics and
the top F1 among all tasks. It is interesting to
note that most of the top features for this target
variable are again audio-related, with clear corre-
lations. We observe a highly negative correlation
for the Vrate (voicerate meaning speaking rate)
feature, which have been found to be the earli-
est measurable speech feature for individuals in
early stages of cognitive decline (Szatlóczki et al.,
2015). For the VP_TO_AUX_VP feature, we ob-
serve the same strong negative correlation as ob-
served for the Aβ42/Aβ40 target variable. Another
interesting correlation is the positive correlation for
the kurtosisdurvoiced feature, which means more
inconsistent speech duration distribution from sub-
jects who are pTau181 positive compared to sub-
jects who are pTau181 negative.

Common Features. Between Aβ42/Aβ40 and
pTau181 target variables, linguistic (RatioVerb),
and syntactic (VP_to_AUX_VP) features are neg-
atively correlated showing that less use of func-
tion words are commonly observed in those who
were Aβ42/Aβ40 and pTau181 positive. In contrast,
we observe that pTau181 and tTau/Aβ42 target vari-
ables are positively associated with the acous-
tic feature PU (the ratio of pause duration to un-
voiced segment duration), meaning more pauses
were observed in those who were pTau181 and
tTau/Aβ42 positive.

6. Conclusion

We present a new spoken language corpus, SLa-
CAD, containing spontaneous speech transcripts,
derived linguistic and acoustic markers, and com-
prehensive cognitive characterization in 91 older
adults who are predominantly cognitively normal.
The sample has been divided into two groups:
one group of 63 participants with CSF-related AD
biomarker levels available, and another group of
77 participants with plasma-related AD biomarker
levels. We detailed the data collection proce-
dures and transcription process, and generated
speech and language features from the resulting

transcripts and audio recordings to build explain-
able models capable of detecting early AD char-
acteristics. We found that some of the speech
and language features, such as specific POS
frequency and prosody features that previously
proved to be effective in AD detection (Masrani
et al., 2017; Farzana and Parde, 2020), also re-
late to our early AD target variables. Furthermore,
we identified correlations between audio features
and Tau-related biomarkers. Our experiments pro-
vide promising initial results on this dataset for
detecting early AD using speech and language
biomarkers. However, further extensive research
and validation in larger samples is needed be-
fore drawing definitive conclusions or establishing
clinical benchmarks for these preliminary findings.
In keeping with our study and ethics protocols,
SLaCAD (the transcriptions and derived linguis-
tic and acoustic features) will be publicly available
via data requests through the National Alzheimer’s
Coordinating Center.10

7. Ethics Statement

7.1. Limitations
This work is limited by several factors. In general,
caution should be taken whenever computation-
ally exploring datasets without theory-guided hy-
potheses, as outlined in detail by Hitczenko et al.
(2020). Moreover, this work was the result of sub-
stantial effort. For instance, it took seven tran-
scribers more than one year to fix the transcripts in-
cluded in this corpus, with initial experiments using
only automated speech recognizers failing to in-
dependently produce workable transcripts. Thus,
although using automatically extracted language
features to predict preclinical AD appears feasi-
ble or at least promising from our preliminary ev-
idence, there is still much work to be done be-
fore this process could be reasonably used as a
replacement for CSF collection. Finally, datasets
within the cognitive health domain are notoriously
small (Farzana and Parde, 2023). It is difficult to
make strong claims given our sample size, and the
lack of racial and ethnic diversity in the study co-
hort make it unclear whether our findings would
generalize to broader or differently-distributed sub-
ject populations. Collectively, these limitations of-
fer substantial potential for future research growth
within this crucial domain.

7.2. Potential Risks
This dataset includes real-world language sam-
ples collected from individuals, paired with labels

10Contact any of the authors for dataset access.
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indicating their Alzheimer’s disease status and CS-
F/blood plasma biomarker levels. Careful steps
were taken to anonymize this data and handle it
responsibly and respectfully, in accordance with
our approved IRB protocol. Although we do not
anticipate this occurring, if participants’ identities
became public this information could be compro-
mising since AD status is considered a sensitive
or private topic by many.
Moreover, use of this dataset as intended may

lead to meaningful clinical discovery regarding lan-
guage and its association with AD pathology. It
could also lead to the development of models that
automatically predict pre-clinical AD status. An in-
tended use of such a model would be to support
trained clinicians by helping to quickly identify pa-
tients at early stages who many need further re-
view. An unintended use of such a model would
be to act as a replacement for clinical profession-
als, or to trust its judgment without further review.
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A. Appendix

Category Selected
Features Definition

# AUX # auxiliary verb
tokens

# VERB # verb tokens
#PROPN # proper noun tokens

POS tags # CCONJ # conjunction tokens

RatioVerb percentage of tokens
with verb POS tag

RatioNoun percentage of tokens
with noun POS tag

#DATE # tokens associated
with date

NER tags #TIME # tokens associated
with time

# NUM # tokens associated
with number

VP_to_AUX
_ADJP

sentence structure
with phrase type verb
phrase to auxiliary to
adjective phrase

CFG VP_to_AUX
_VP

sentence structure
with phrase type verb
phrase to auxiliary to
verb phrase

VP_to_AUX
sentence structure
with phrase type verb
phrase to auxiliary

Syntactic
Complex-
ity

VPTypeRate

ratio of # verb
phrases in parse tree
of a sentence and #
words in the
sentence

Vocabu-
lary
Richness

# Unique
Tokens

# unique tokens
available in the
transcript

MATTR
moving average of
type-token ratio
(TTR)

Table 6: Descriptions of selected lexicosyntactic
features in modeling different target variables of
preclinical AD.
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Figure 4: Association of top 8 selected features of Aβ42/Aβ40 variable with age.

Figure 5: Association of top 8 selected features of tTau/Aβ42 variable with age.
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Figure 6: Association of top 8 selected features of pTau181 variable with age.

Figure 7: Association of top 8 selected features of Aβ42/Aβ40 variable with education (in year).
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Figure 8: Association of top 8 selected features of tTau/Aβ42 variable with education (in year).

Figure 9: Association of top 8 selected features of pTau181 variable with education (in year).
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Figure 10: Association of top 8 selected features of Aβ42/Aβ40 variable with gender.

Figure 11: Association of top 8 selected features of tTau/Aβ42 variable with gender.
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Figure 12: Association of top 8 selected features of pTau181 variable with gender.

Figure 13: ROC-AUC metric of the standard cognitive tests in predicting the target variables related to
preclinical AD.
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Category Selected Features Definition

PU pause/unvoiced
UP unvoiced/pause

avgdurvoiced average duration of
voiced segment

stddurpause standard deviation of
pause duration

Audio maxdurpause maximum pause
duration

PVU

pause
duration/(voiced
duration+unvoiced
duration)

VP
voiced
duration/pause
duration

Vrate
# voiced segments
per second (voiced
rate)

skwdurvoiced skewness of duration
of voiced segments

kurtosisdurvoiced kurtosis of duration
of voiced segments

1F0std

standard deviation of
fundamental freq.
features in first
voiced segment

Table 7: Descriptions of selected acoustic fea-
tures in modeling different target variables of pre-
clinical AD.
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