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Abstract

This study is part of the debate on the efficiency of large versus small language models for text classification by
prompting. We assess the performance of small language models in zero-shot text classification, challenging the
prevailing dominance of large models. Across 15 datasets, our investigation benchmarks language models from
77M to 40B parameters using different architectures and scoring functions. Our findings reveal that small models
can effectively classify texts, getting on par with or surpassing their larger counterparts. We developed and shared
a comprehensive open-source repository that encapsulates our methodologies. This research underscores the
notion that bigger isn’t always better, suggesting that resource-efficient small models may offer viable solutions for
specific data classification challenges.
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1. Introduction

Large Language Models (LLMs) have been mas-
sively favored over smaller models to solve tasks
through prompting (Brown et al., 2020; Hoffmann
et al., 2022; OpenAI, 2023; Chowdhery et al.,
2022) in a zero-shot setting. However, while their
utility is extensive, they come with challenges -
they are resource-intensive, costly to employ, and
their performances are not always warranted for
every task (Nityasya et al., 2021). Bigger mod-
els (Kaplan et al., 2020; Hoffmann et al., 2022)
were built, always sophisticated datasets were nec-
essary (Zhang et al., 2023) to achieve claimed per-
formances. Their perceived superior performance
has typically made them the go-to choice for vari-
ous tasks, even basic classification problems.

An application of LLMs is the generation
of pseudo-labels through zero-shot prompting,
a method often employed to construct labeled
datasets (Smith et al., 2022). As the field ad-
vances, we must ask: are large language models
essential for effective data classification?

This study examines how well small models can
match big models in creating labels using different
datasets. We want to see how small models per-
form in this zero-shot text classification and deter-
mine what makes them do well with specific data.
We are comparing how small and big models work
with zero-shot prompting on various data sets to
understand if we can get good results with less re-
sources.

We believe this research is the beginning of un-
derstanding the true capabilities of LLMs when
prompted for zero-shot classification tasks.

Our main contributions are:

1. We benchmark a large scale of language

models (up to 70b parameters) fine-tuned
on instructions-following datasets, with dif-
ferent architectures(encoder-decoder or de-
coder only) and sizes on many datasets in a
zero-shot setting.

2. We provide relatively strong evidence of the ef-
fectiveness of small models in zero-shot clas-
sification, and we show that the performances
of small models are comparable to those of
large models on many datasets in classifica-
tion problems.

3. We present a fully open-source repository
encapsulating our proposed methodologies,
thereby contributing to the integrity and robust-
ness of research in this field. The code is avail-
able online in this repository.

The paper is organized as follows: Section 2
provides a literature review on related zero-shot
approaches. Then, in Section 3, we describe
the methodology we follow for this study. Sec-
tion 4 presents the consequences given the differ-
ent analyses. Finally, we conclude in Section 5
and discuss future work and research directions.

2. Related Work

The domain of zero-shot classification has previ-
ously been explored. These studies offer valuable
insights and set the stage for our investigations.

2.1. Zero-Shot Text Classification &
Prompting

General zero-shot text classification aims to cat-
egorize texts into classes not part of the training

https://gitlab.lisn.upsaclay.fr/phd-pierre-lepagnol/classif_generation
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dataset. It has caught the attention of many re-
searchers because it removed the need for ex-
tra fine-tuning steps and labeled datasets. To
effectively transfer knowledge from seen classes
to unseen ones, there’s a need for precise and
distinguishing class descriptions, as noted by Xia
et al. (2018) and Liu et al. (2019a). Yet, these ap-
proaches depend on supervised data from recog-
nized labels, which renders them unsuitable when
there’s a complete absence of labeled data for any
given category.

Fei et al. (2022) enhances zero-shot classifi-
cation by segmenting input texts and leveraging
class-specific prompts. While Meng et al. (2020)
proposed a strategy that employs label names
combined with self-training tailored for zero-shot
classification. Many methods necessitate an unla-
beled dataset or a knowledge base to extract per-
tinent topic words and facilitate self-training. More
recently, Zhao et al. (2023b) proposed to use k-
Nearest-Neighbor on embeddings similarity to aug-
ment their verbalizers. Lu et al. (2023) proposed
Perplexity Selection to select the best prompts in
a zero-shot setting.

Discussion
While previous work focused on new methods to
make language models better zero-shot learners,
we want insight into model features and how well
they perform.

3. Experimental Setup

Although authors of LLMs have compared their dif-
ferent model sizes(Kaplan et al., 2020; Hoffmann
et al., 2022), this study widens this analysis by di-
rectly comparing different architectures on an ex-
tensive set of datasets. We prompt various lan-
guage models using 4 different scoring functions
(see Section 3.4.2) to classify sentences and re-
port accuracy and F1 scores for each triple model-
datasets-scoring function.

3.1. Tasks & Datasets
We examine a diverse set of 15 datasets, cu-
rated to represent a broad spectrum of classifica-
tion challenges. We draw from datasets like AG-
News, with its 4 distinct classes, and BBCNews,
offering 5 unique categories for topic classification.
Sentiment classification is represented through bi-
nary choices like in ethos (Mollas et al., 2022) and
more granular datasets like sst-5 (Socher et al.,
2013). Standard Spam classification tasks such
as youtube comments (Alberto et al., 2015) or
sms (Almeida and Hidalgo, 2012) are included.
Relation classification tasks are also included us-
ing datasets like semeval (Hendrickx et al., 2010).

The balance ratios across our chosen datasets
varied extensively, from the perfectly balanced
imdb to those displaying significant imbalances
like chemprot (Krallinger et al., 2017).

The complete list will be given in the final ver-
sion.

3.2. Metrics
We distinguish datasets on whether they are bal-
anced using the balance ratio i.e. the ratio be-
tween the majority class and the minority class.
The accuracy (acc) is used to evaluate binary
tasks and balanced datasets, while the macro f1
(f1) score is used for the other tasks.

3.3. Models
Our study assesses a total of 72 unique mod-
els. We select both encoder-decoder models
(like T5 (Raffel et al., 2020), mT0 (Muennighoff
et al., 2023), and Bart (Lewis et al., 2020)) and
causal-decoder-only models (such as Llama (Tou-
vron et al., 2023) and Falcon (Penedo et al.,
2023)). We opt for various sizes for the same
models, ranging from 77 million to hundreds of
40 billion parameters. We called small language
models, models within the size range 77M to
3B parameters. These models are comparatively
smaller, ranging from 13 to 156 times less in pa-
rameter count than our largest model, Falcon
40B1. Moreover, at the time our study was con-
ducted, TinyStories (Eldan and Li, 2023) mod-
els, which are on an even smaller scale, starting
at 1M parameters.

These models were chosen based on their
prevalence in literature, reported efficacy on sim-
ilar tasks, and the fact that instruction-tuned ver-
sions were available for some of them.

Instruction-tuning refers to the strategy for fine-
tuning a language model on instruction datasets
(Longpre et al., 2023).

The complete list will is given in appendix A.

3.4. Prompts & Scoring Functions
This section sets our research’s specific prompts
and scoring functions. We follow (Brown et al.,
2020) to craft simple prompts while ensuring do-
main relevance. Additionally, we explore various
scoring functions, assessing their impact on our
models’ performance.

3.4.1. Prompts

Our experiments’ prompts are hand-crafted and
designed to be simple and straightforward.

1We do not test Falcon 180B, as it was not re-
leased during our experiments
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Prompts are either translated from the code-
based labeling functions provided by the
WRENCH benchmark (Zhang et al., 2021) or
created from scratch. They are tailored for each
task, e.g. prompts for the healthcare dataset
are framed differently from those for the finan-
cial dataset to ensure domain relevance and to
maximize model comprehension.

For example, for the dataset sms, the prompt is

Prompt
Is the following message spam?

Answer by yes or no.\n"{TEXT}"

Verbalizer
{1:"yes", 0:"no"}

For bbcnews, the prompt is

Prompt
""{TEXT}" is about "

Verbalizer
{"0": "tech", "1": "business",

"2": "sport", "3": "entertainment",

"4": "politics"}.

3.4.2. Scoring Functions

In prompt-based classification, using a verbalizer
mapping tokens to class labels is crucial for
accurate classification. As suggested by (Holtz-
man et al., 2022), many valid sequences can
represent the same concept, called surface form
competition. For example, "+", "positive",
"More positive than the opposite"
could be used to represent the same concept of
positivity for the sentiment analysis task. As this
competition exists, how verbalizers are designed
could either mitigate or exacerbate the effects
of surface form competition, thereby influencing
the overall effectiveness of the prompt-based
classification approach. Zhao et al. (2023b)
uses k-Nearest-Neighbor for verbalizer construc-
tion and augments their verbalizers based on
embeddings similarity.

We use several scoring functions to evaluate the
impact of scoring functions on the performances
of our models. We describe in plain english these
scoring function in appendix C.

3.5. Comparison
We compare our results with Majority Voting (i.e
predicting the class of the majority class in the
dataset) and state-of-the-art (SOTA) Zero-Shot

Probability arg maxi P(yi|x′)

DCPMI arg maxi
P(yi|x′)

P(yi|xdomain_conditional)

PMI arg maxi
P(yi|x′)

P(yi|xdomain_unconditional)

Similarity arg maxci∈C cos(e(t0), e(yi))2

Table 1: Scoring functions from (Holtzman et al.,
2022)

Learning methods. Table 2 presents the SOTA
scores for each dataset3.

3.6. Tools for Statistical Analysis

For our analysis, we make use of three main sta-
tistical tools, detailed below:

The Biweight Midcorrelation Coefficient is a
robust alternative to Pearson’s correlation co-
efficient to quantify the strength of association
between two samples. It is designed to be
less sensitive to outliers than other correlation
coefficients like Pearson’s correlation.

Analysis of Covariance - ANCOVA combines
the techniques of ANOVA and regression to
evaluate whether the means of a dependent
variable are equal across levels of a categor-
ical independent variable while statistically
controlling for the effects of other continuous
variables (covariates).

Kruskal-Wallis Test is a non-parametric method
to test whether samples originate from the
same distribution. We used it as a non-
parametric method, which does not assume
a normal distribution of the residuals, unlike
the analogous standard one-way analysis of
variance.

4. Results

We compare the performance of the LLM models
on several datasets, studying the correlation with
the number of parameters, the impact of the archi-
tecture, and the type of training strategy (instruc-
tion or not). Then, for the two types of architec-
tures (encoder-decoder & decoder-only), we study
the impact of the instruction-tuning and the differ-
ent scoring functions to understand the discriminat-
ing factors on performance.

3We removed scores from the mT0 model for some
datasets (agnews, imdb, yelp,trec) because these mod-
els were trained on those datasets.
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dataset SOTA Scores Majority Class - Scores Best Score Model Used Number of parameters

agnews 0.625 0.266 0.734 MBZUAI/LaMini-GPT-124M 163.0 Millions
bbcnews NaN 0.236 0.869 bigscience/mt0-large 1.2 Billions
cdr NaN 0.676 0.717 bigscience/bloomz-3b 3.6 Billions
chemprot 0.172 0.049 0.192 bigscience/bloomz-3b 3.6 Billions
ethos 0.667 0.566 0.597 bigscience/bloomz-1b1 1.5 Billions
financial_phrasebank 0.528 0.254 0.744 MBZUAI/LaMini-GPT-774M 838.4 Millions
imdb 0.718 0.500 0.933 MBZUAI/LaMini-Flan-T5-783M 783.2 Millions
semeval 0.435 0.054 0.270 bigscience/mt0-xxl 12.9 Billions
sms 0.340 0.464 0.699 mosaicml/mpt-7b 6.6 Billions
spouse 0.630 0.479 0.521 gpt2 163.0 Millions
sst-2 0.710 0.501 0.956 bigscience/bloomz-3b 3.6 Billions
sst-5 0.598 0.286 0.485 tiiuae/falcon-40b-instruct 41.8 Billions
trec NaN 0.072 0.324 mosaicml/mpt-7b-instruct 6.6 Billions
yelp 0.888 0.522 0.977 MBZUAI/LaMini-Flan-T5-783M 783.2 Millions
youtube 0.468 0.528 0.716 tiiuae/falcon-40b 41.8 Billions

Table 2: Table illustrating the performance metrics across various datasets:
Columns present (1) the dataset name, (2) the reported state-of-the-art (SOTA) scores, (3) scores ob-
tained when predicting the majority class, (4) the highest achieved scores (highlighted in red), (5) the
model architectures associated with these top scores, and (6) the number of parameters for each respec-
tive model. Note the presence of NaN entries, signifying datasets where SOTA benchmarks have not
been established or found.

4.1. Data-based Analysis

For the dataset-based analysis, we propose to
study: 1) the relationship between the task perfor-
mances and the model sizes (the number of pa-
rameters), 2) the task performances and the archi-
tecture, and 3) whether the model was fine-tuned
on instruction datasets.

4.1.1. Model size doesn’t really matter

Figure 1 presents the relationship between the
number of parameters and the performance in
terms of Acc/F1 scores across various datasets.
The correlations observed range from positive and
negative to zero.

To further understand these correlations, we cal-
culate the Biweight Midcorrelation Coefficient and
associated p-values for each dataset. These find-
ings are detailed in Table 3.

From our analysis, 10 of 15 datasets show
p-values exceeding 0.05, suggesting no signifi-
cant link between Acc/F1 scores and model size.
However, three datasets exhibit p-values below
0.05, indicating a notable correlation. Of these,
the direction of correlation is positive for the cdr
dataset but negative for both ethos and imdb
datasets. Two datasets, namely agnews and
chemprot, present p-values near the 0.05 thresh-
old, making their correlation inconclusive.

In conclusion, while many datasets do not
show a direct relationship between larger model
sizes and improved performance, datasets like cdr,
ethos, and imdb do. Overall, the variance in the
correlation coefficient across datasets suggests
that model size isn’t the sole determinant of per-
formance.

dataset correlation coef pvalue

agnews -0.1418 0.0536
bbcnews 0.0489 0.4877
cdr 0.2541 0.0002
chemprot 0.1318 0.0531
ethos -0.1519 0.0256
financial_phrasebank 0.0419 0.5406
imdb -0.2862 0.0001
semeval -0.0506 0.4595
sms -0.1209 0.0763
spouse -0.0254 0.7106
sst-2 0.0755 0.2693
sst-5 0.0061 0.9293
trec -0.1085 0.1403
yelp -0.0620 0.4008
youtube -0.0014 0.9836

Table 3: The Biweight Midcorrelation Coefficients
and P-values Indicating the Relationship Between
Acc/F1 and Model Size (Log-Number of Parame-
ters) Across Datasets

4.1.2. Impact of Architectural Choices on
Performance

Figure 2 illustrates the performance variations be-
tween encoder-decoder and decoder-only archi-
tectures.

Using ANCOVA, we measure the impact of the
architecture choice on Acc/F1 scores, while con-
trolling the effect of the model size variable. The
results are presented in Table 4. On one hand,
7 out of 15 datasets, namely agnews, bbcnews,
chemprot, semeval, sms, spouse, and youtube,
show p-values bellow 0.05, suggesting there the
architecture has a significant impact.

On the other hand, datasets such as cdr, ethos,
and financial_phrasebank remain unaffected by
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Figure 1: Performance Comparison of Different Model Sizes Across Datasets.
4

Dataset Statistic Pvalue Equal Variances

agnews 4.0676 0.0452 True
bbcnews 7.0640 0.0085 False
cdr 0.2519 0.6163 True
chemprot 4.4883 0.0353 True
ethos 0.3945 0.5306 False
financial_phrasebank 1.4592 0.2284 False
imdb 3.6687 0.0570 True
semeval 8.2301 0.0045 True
sms 11.9951 0.0006 False
spouse 4.7794 0.0299 True
sst-2 0.2501 0.6175 True
sst-5 0.7852 0.3766 True
trec 0.3382 0.5616 False
yelp 0.7103 0.4004 True
youtube 18.0011 0.0000 False

Table 4: ANCOVA Indicating the Impact of Archi-
tectures on Acc/F1 Across Datasets

the architectural choice. The imdb dataset demon-
strates a borderline significance.

In conclusion, while the model size might not
be a dominant factor, the architectural choice
significantly impacts performance across specific
datasets.

4.1.3. Impact of Instruction fine-tuning on
performance

In the same way as architecture, we quantified the
impact of instruction-tuning on performances while

controlling the number of parameters.
Figure 3 visually compares the impact of

instruction-tuning and performance metrics
(Acc/F1) across various datasets.

The y-axis of each graph displays the perfor-
mance metric (Acc/F1). The x-axis has two val-
ues: False and True, indicating whether instruc-
tion fine-tuning is applied to the model.

We use ANCOVA to test whether the means of
our ACC/F1 scores are equal across modalities of
instruction tuning while statistically controlling the
effect of the number of parameters.

dataset statistic pvalue Equal Variances

agnews 10.5411 0.0014 True
bbcnews 1.9492 0.1642 True
cdr 0.1635 0.6864 True
chemprot 2.3152 0.1296 True
ethos 5.8015 0.0169 True
financial_phrasebank 0.0001 0.9917 False
imdb 13.6945 0.0003 True
semeval 1.4016 0.2378 False
sms 2.6667 0.1039 True
spouse 0.3379 0.5617 True
sst-2 3.0055 0.0844 False
sst-5 1.8271 0.1779 True
trec 8.3534 0.0043 False
yelp 12.5571 0.0005 True
youtube 5.8369 0.0165 True

Table 5: ANCOVA Indicating the Impact of The in-
struction Fine-Tunning on Acc/F1 Across Datasets
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Figure 2: Performance Variation Across Different Architectures.

Figure 3: Performance Comparison between Instruction-Tuned models or not Across Datasets.

For many datasets, instruction fine-tuning im-
proves performances when compared to not fine-
tuning (e.g., agnews, ethos, imdb, trec, yelp, and
youtube). This is evident from the graphical repre-
sentation and the significant p-values from the AN-
COVA. Datasets like bbcnews, youtube, and sms
show a decrease in performance when instruction

fine-tuning is applied, but ANCOVA tells us that it
is not significant. While for ethos, it is significant.

For other datasets, while there might be visual
differences in performance with and without in-
struction fine-tuning, these differences aren’t sta-
tistically significant based on the p-values.

Therefore, while instruction fine-tuning has the
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potential to enhance model performance on many
datasets, its impact may vary depending on the
specific dataset.

4.2. Architecture-based Analysis
In our analysis, we shift our attention to which
features among the model size, instruction-tuning,
and scoring functions have an impact on perfor-
mance.

4.2.1. relationship between model size and
performances per architecture

Table 6 presents The Biweight Midcorrelation Co-
efficients between the model sizes (log-number of
parameters) and performance metrics (Acc/F1) for
either encoder-decoder and decoder-only.

dataset correlation coef pvalue

causal -0.0435 0.0299
seq2seq 0.0065 0.8728

Table 6: The Biweight Midcorrelation Coefficients
and P-values Indicating the Relationship Between
Acc/F1 and Model Size (Log-Number of Parame-
ters) Across Architectures

Table 6 shows a slight but significant correla-
tion for decoder models but largely insignificant for
encoder-decoder ones.

This suggests that decoder-only could be more
sensitive to the number of parameters; too many
parameters could harm performance.

4.2.2. Impact of Instruction Fine-tuning and
Performances per architecture

Figure 4 visually compares the impact of
instruction-tuning and performance metrics
(Acc/F1) for the two architectures.

The y-axis is the performance metric (Acc/F1).
The x-axis has two values: False and True, indi-
cating whether instruction fine-tuning is applied to
the model.

An ANCOVA is made to quantify the impact of
instruction-tuning on each architecture (encoder-
decoder/decoder-only) while statistically control-
ling for the effect of the model size feature. Table 7
reports statistics and p-values.

dataset statistic pvalue Equal Variances

causal 0.1825 0.6693 True
seq2seq 6.9406 0.0086 False

Table 7: ANCOVA Indicating the Impact of instruc-
tion_ft on Acc/F1 Across Architectures.

For the causal architecture, there is no signifi-
cant impact of instruction-tuning on Acc/F1 scores.
The p-value for the decoder-only architecture is
0.6693, much greater than 0.05. For the seq2seq
architecture, there is a significant impact of instruc-
tion tuning on Acc/F1 scores. The p-value for the
encoder-decoder architecture is highlighted in red
as 0.0086, less than 0.05. Additionally, the vari-
ances between the groups for seq2seq are not
equal.

The difference in results between the two archi-
tectures suggests that the impact of instruction-
tuning might be architecture-dependent. Both the
graphical analysis and the ANCOVA show an ef-
fect of instruction-tuning on encoder-decoder ar-
chitecture.

Figure 4: Performance Comparison between
Instruction-Tuned models or not, Across Model Ar-
chitecture

4.2.3. Impact of Scoring Functions and
Performances per architecture

Table 8 reports the ANCOVA results of the impact
of different scoring functions on performances for
the two architectures.

Architecture statistic pvalue Equal Variances

causal 0.6711 0.5113 False
seq2seq 0.5003 0.6066 True

Table 8: ANCOVA Indicating the Impact of Scoring
Functions on Acc/F1 Across Architectures.

For both encoder-decoder and decoder-only
models, values are above the standard 0.05 by a
large margin. This suggests no significant impact
on the choice of scoring functions.

To sum it up, no matter which model architecture
we look at, the choice of scoring function doesn’t
seem to affect more than another.
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5. Conclusion & Perspectives

This paper aimed to understand better whether
we need large models to tackle classification prob-
lems through prompting.

The performance of LLM models varies based
on multiple factors, including model size, architec-
tural choices, and fine-tuning strategies. While
larger model sizes do not consistently lead to im-
proved performance across all datasets, the archi-
tectural choice significantly influences outcomes
on specific datasets. The impact of instruction fine-
tuning is also evident, but its efficacy is dependent
on the architecture. Notably, the choice of scor-
ing function doesn’t seem to make a marked differ-
ence in performance.

A comprehensive study of other emerging archi-
tectures, such as RWKV architecture (Peng et al.,
2023) or Retentive Network (Sun et al., 2023),
could bring nuances and detail to this analysis.
The varied impact of instruction fine-tuning across
datasets suggests the need for more advanced
fine-tuning techniques like incorporating informa-
tion retrieval during fine-tuning to ensure even bet-
ter classification performances during zero-shot
prompting.

6. Limitations

We limit this evaluation to simple prompting meth-
ods and hand-crafted, unoptimized prompts. We
also provide a single prompt for each dataset.

We focused on causal-decoder-only and
encoder-decoder models without comparing
them with encoder-only or non-causal decoders
as recently released models focused on those
architectures.

We did not mention external factors such as pre-
training time, data quality, or potential biases in the
datasets. These external factors might impact the
results or the generalizability of the conclusions.

The choice and assumptions of the statistical
tools could influence the results. There might be
newer or specialized models not included in this
study, which could exhibit different behaviors.
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Model Number of Parameters Instruction-Tuned

bigscience/bloom (?) 560M, 1B1, 1B7, 3B, 7B1 No
bigscience/bloomz (Muennighoff et al., 2023) 560M, 1B1, 1B7, 3B, 7B1 Yes
tiiuae/falcon 7B, 40B Yes/No
tiiuae/falcon-rw 7B, 40B No
MBZUAI/LaMini-Cerebras (Wu et al., 2023) 111M, 256M, 590M, 1.3B Yes
MBZUAI/LaMini-GPT (Wu et al., 2023) 124M, 774M, 1.5B Yes
mosaicml/mpt 7B 30b Yes/No
databricks/dolly-v2 3b, 7B, 12b Yes
EleutherAI/pythia (Biderman et al., 2023) 70M, 160M, 410M, 1B, 1.4B, 2.8, 6.9B, 12B No
openlm-research/open_llama 3B 7B 13B No
openlm-research/open_llama_v2 3B 7B No
pankajmathur/orca_dolly 3B Yes
pankajmathur/orca_alpaca 3B Yes
pankajmathur/orca_mini 7B, 3B, 13B Yes
pankajmathur/orca_mini_v2 7B, 13B Yes
pankajmathur/orca_mini_v3 7B, 13B Yes

Table 9: Decoder Only Models

Model Number of Parameters Instruction-Tuned

MBZUAI/LaMini-Flan-T5 (Wu et al., 2023) 77M, 248M, 783M Yes
T5 vanilla (Raffel et al., 2020) 77M, 248M, 770M, 3B, 11B No
bigscience/mt0 (Muennighoff et al., 2023) 300M, 582, 1.2B, 3.8B, 13B Yes
Bart (Lewis et al., 2020) 255M, 561M No

Table 10: Encoder-Decoder Only Models

Datasets Tasks #Classes #Test Examples Balance ratios

AGNews Topic Classification 4 12000 0.897
BBCNews Topic Classification 5 2000 0.742
CDR bio Relation Classification 2 4673 0.478
Chemprot Chemical Relation Classification 10 1607 0.004
ETHOS Sentiment Classification 2 998 0.766
financial_phrasebank Topic Classification 3 2264 0.218
IMDB Sentiment Classification 2 2500 1.000
SemEval Relation Classification 9 600 0.042
SMS Spam Classification 2 500 0.155
Spouse Relation Classification 2 2701 0.088
SST2 Sentiment Classification 2 1821 0.997
SST5 Sentiment Classification 5 2210 0.441
TREC Question Classification 6 500 0.065
Yelp Sentiment Classification 2 3800 0.915
Youtube Spam Classification 2 250 0.894

Table 11: Datasets Descriptions
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Table 12: Prompt used
dataset prompt pmi_premise dcpmi_premise

sms Is the following message spam? Answer by yes or no.\n"TEXT" : The message is a spam ?
youtube Is the following comment spam? Answer by yes or no.\n"TEXT" : The comment is a spam ?
spouse Context: "TEXT"\n\nAre ENTITY2 and ENTITY1 married? Answer by yes or no. : Are the two entity are married?
cdr Context: "TEXT"\n\nDoes ENTITY1 induce ENTITY2 ? Answer by yes or no. : Does the drug induce the disease?
chemprot Context: "TEXT"\n\nWhat is the relation between ENTITY1 and ENTITY2 ? : What is the relation between the two entities?
semeval Context: "TEXT"\n\nWhat is the relation between ENTITY1 and ENTITY2 ? : What is the relation between the two entities?
sst-2 "TEXT" has a tone that is : The quote has a tone that is
sst-5 "TEXT" has a tone that is : The quote has a tone that is
yelp "TEXT" has a tone that is : The quote has a tone that is
imdb "TEXT" has a tone that is : The quote has a tone that is
ethos "TEXT" has a tone that is : The quote has a tone that is
financial_phrasebank "TEXT" has a tone that is : The quote has a tone that is
trec "TEXT" is about : The topic is
agnews "TEXT" is about : The topic is
bbcnews "TEXT" is about : The topic is


	Introduction
	Related Work
	Zero-Shot Text Classification & Prompting

	Experimental Setup
	Tasks & Datasets
	Metrics
	Models
	Prompts & Scoring Functions
	Prompts
	Scoring Functions

	Comparison
	Tools for Statistical Analysis

	Results
	Data-based Analysis
	Model size doesn't really matter
	Impact of Architectural Choices on Performance
	Impact of Instruction fine-tuning on performance

	Architecture-based Analysis
	relationship between model size and performances per architecture
	Impact of Instruction Fine-tuning and Performances per architecture
	Impact of Scoring Functions and Performances per architecture


	Conclusion & Perspectives
	Limitations
	Acknowledgements
	Bibliographical References
	Language Resource References
	Models
	Datasets
	Prompts & Scoring functions

