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Abstract
Despite achieving remarkable performance on various vision-language tasks, Transformer-based Vision-Language
Models (VLMs) suffer from redundancy in inputs and parameters, significantly hampering their efficiency in
real-world applications. Moreover, the degree of redundancy in token representations and model parameters,
such as attention heads, varies significantly for different inputs. In light of the challenges, we propose Smart-
Trim, an adaptive acceleration framework for VLMs, which adjusts the computational overhead per instance.
Specifically, we integrate lightweight modules into the original backbone to identify and prune redundant token
representations and attention heads within each layer. Furthermore, we devise a self-distillation strategy to
enhance the consistency between the predictions of the pruned model and its fully-capacity counterpart. Ex-
perimental results across various vision-language tasks consistently demonstrate that SmartTrim accelerates
the original model by 2-3 times with minimal performance degradation, highlighting the effectiveness and ef-
ficiency compared to previous approaches. Code will be available at https://github.com/kugwzk/SmartTrim.
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How many clocks
do you see?

Is there a glass? How many bananas
are in the bowl?

What is the visible portion of the
name of the railroad in yellow?
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Figure 1: FLOPs histogram of SmartTrim on VQA.
SmartTrim allocates diverse computational over-
head based on cross-modal complexity, assigning
fewer computations to easy instances (left) and
more to hard ones (right).

1. Introduction

Transformer-based (Vaswani et al., 2017) Vision-
Language Models (VLMs) have shown great suc-
cess on various vision-language tasks with their del-
icate model structures (Radford et al., 2021; Wang
et al., 2023b; Chen et al., 2023). Despite achieving
superior performance, these models are computa-
tionally expensive due to the long input sequences
and large number of parameters, hindering their

deployment in the production environment.
In pursuit of efficient VLMs, a few acceleration

approaches have been proposed, including knowl-
edge distillation (Fang et al., 2021; Wang et al.,
2023a), parameter pruning (Gan et al., 2022; Shi
et al., 2023), and token pruning (Jiang et al., 2022;
Cao et al., 2023). These methods reduce inference
overhead, implying that a large proportion of pa-
rameters and token representations are redundant.
However, they adhere to a static computational ar-
chitecture for all instances, overlooking the variation
of complexities among different instances, leading
to severe performance degradation at higher accel-
eration ratios (Kaya et al., 2019; Liu et al., 2020). As
demonstrated in Figure 1, the instances involving
complex cross-modal interactions naturally require
more computations to fully comprehend the intri-
cate details of images and associated questions.
Conversely, easy instances can be solved with less
overhead. Consequently, enormous original VLMs
may overthink simple instances, leading to wasted
computation, while static accelerated models strug-
gle with complex ones, incurring extensive perfor-
mance degradation.

To this end, we focus on adaptive acceleration
on a per-input basis, which is orthogonal to static
approaches and more flexible to meet different con-
straints. In this work, we propose SmartTrim, an
adaptive pruning framework for VLM (shown in Fig-
ure 2), which streamlines the model from two as-
pects with significant redundancy: token represen-

https://github.com/kugwzk/SmartTrim
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Figure 2: Overview of our SmartTrim framework, best viewed in color. (a) Model Architecture of
SmartTrim. We incorporate the trimmers into layers of the uni-modal encoders and the cross-modal
encoder to prune redundant tokens and heads. Given a set of image-text pairs, SmartTrim adjusts the
computations for each instance based on the trimmer outputs. (b) Self-Distillation strategy. At each
training step, the predictions of the pruned model are aligned to its fully-capacity counterpart.

tation and attention heads. SmartTrim integrates
the lightweight modules (called trimmers) into lay-
ers of the original backbone to identify redundant
tokens and heads guided by cross-modal informa-
tion. Specifically, the XModal-aware token trimmers
are introduced to determine which tokens to retain
considering not only their representations but also
their importance in cross-modal interactions. For
head pruning, we introduce Modal-adaptive head
trimmers in different attention modules to adaptively
select which heads to activate. During training, we
propose a self-distillation strategy, which encour-
ages the predictions of the pruned model to align
with its fully-capacity counterpart at the same step.
The self-distillation scheme alleviates the need for
a separately fine-tuned teacher model in conven-
tional knowledge distillation. Furthermore, with a
curriculum training scheduler, SmartTrim has a
smoother and more stable optimization process.
Compared to previous methods, our approach not
only avoids additional expensive pre-training, but
also provides more fine-grained control to better
explore efficiency-performance trade-offs.

We evaluate the proposed SmartTrim on two
representative VLMs with different architectures:
METER (Dou et al., 2022), an encoder-based
model; and BLIP (Li et al., 2022), an encoder-
decoder-based model. Experimental results reveal
that SmartTrim consistently outperforms previous
methods on various datasets. Notably, SmartTrim
achieves an impressive speed-up from 1.5× to 4×
on the original model while incurring only a marginal
performance drop (1%~3%). Further analysis indi-
cates that SmartTrim effectively learns to adap-
tively allocate computational budgets based on the

complexity of cross-modal interactions.

2. Preliminary

2.1. Transformer-based VLM
Uni-Modal Encoders The input image and text
are tokenized into visual and textual tokens, re-
spectively. The two sequences are fed into visual
and textual encoders to extract the respective fea-
tures, where each layer consists of a multi-head
self-attention module (MSA) and a feed-forward
network module (FFN).

Cross-Modal Encoder To capture cross-modal
interactions, the co-attention mechanism (Lu et al.,
2019) is employed in each layer of cross-modal
encoder. Specifically, in addition to MSA and FFN,
a multi-head cross-attention module (MCA) is in-
troduced, where query features are projected from
one modality (e.g., vision), while key and value
features are obtained from another modality (e.g.,
language).

2.2. Empirical Analyses
The long sequence in VLMs incurs substantial com-
putational overhead as the complexity of attention
modules scales quadratically with length. In ad-
dition, hundreds of millions of parameters further
burden the situation. Previous studies of uni-modal
Transformers reveal that redundancy is present in
token representations or attention heads (Michel
et al., 2019; Goyal et al., 2020; Wang et al., 2022a).
To investigate whether redundancy also exists in
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Figure 3: The similarities in representations of to-
kens (top) and heads (bottom) in cross-modal en-
coder of METER fine-tuned on VQA.

VLMs, we measure cosine similarities between dif-
ferent token representations and heads at each
layer of a fine-tuned METER. As shown in Figure 3,
our empirical findings are as follows: ❶ Similarities
between the representations of tokens and heads
are consistently high across all layers, implying sig-
nificant redundancy within the model. ❷ The simi-
larity of token representations increases progres-
sively with depth, indicating a growing redundancy
in deeper layers. ❸ Similarities vary greatly be-
tween instances, prompting the need to investigate
input-dependent adaptive pruning.

3. Methodology

In this section, we introduce the proposed adaptive
pruning method for VLMs named SmartTrim, as
shown in Figure 2. We first describe the details of
adaptive trimmers and then introduce the end-to-
end training recipe for SmartTrim.

3.1. Adaptive Trimmers
XModal-Aware Token Trimmer As shown in Fig-
ure 2 (a), SmartTrim progressively prunes token
representations in blocks, delivering more impor-
tant tokens to subsequent blocks, and eliminating
the rest1. To estimate the importance of token rep-
resentations, we insert a lightweight MLP-based
module (named XModal-aware trimmer) before
each block of uni-modal and cross-modal encoders.
Taking the cross-modal encoder block, for example,
the Nt token representations X ∈ RNt×D are first
fed into the local policy network:

πl
t = MLPt(X

′) = MLPt(Linear(X))

1We retain [CLS] tokens in each block of model.

where πl
t ∈ RNt is the local importance score of

tokens, X ′ ∈ RNt×D′ is obtained by the dimension
reduction of X. The πl

t is only computed based on
the independent representations of tokens, without
considering their contribution in cross-modal inter-
actions. To estimate the importance of cross-modal
interactions without imposing excessive additional
computation, we fuse global representations 2 of vi-
sual and textual modality and then project to obtain
the cross-modal global representation g, which con-
tains global information of both modalities. Then,
we feed g and X ′ to the global policy network to
calculate the XModal-global importance score πg

t :
πg
t = norm(gWgX

′⊺)

where Wg is the projection layer. The final token
importance score πt sums πl

t and πg
t : πt = πl

t+πg
t .

During inference, the pruning mask Mt ∈ {0, 1}Nt

is sampled directly from sigmoid(πt): 1 indicates
that the token is retained; otherwise, the token is re-
moved. By this pruning, our token trimmers reduce
the amount of computation in both the attention and
FFN modules for subsequent blocks.

Modal-adaptive Head Trimmer The VLMs cap-
ture intra-modal and inter-modal interactions via
MSA and MCA, respectively. However, the compu-
tational overhead required for modeling varies de-
pending on the input complexity of attention, lead-
ing to redundancy in attention modules, as shown
in Section 2.2. To this end, we integrate the modal-
adaptive head trimmer into the attention modules.
Specifically, we take the global representations of
input sequences to feed into head trimmers:

πh =

{
MLPself

h (xcls) (MSA)
MLPcross

h ([xcls,ycls])) (MCA)

where xcls,ycls are the [CLS] representations of
the self-modality and another modality, respectively.
Like the token trimmer, the head trimmer samples
Mh from sigmoid(πh) to determine which heads to
keep or remove.

Note that our trimmers introduce only a minor
number of parameters (3%) that yield a negligible
computational overhead on FLOPs (1%) compared
to the original backbone. In addition, adaptive trim-
mers are more hardware-friendly by avoiding the
use of costly operations like top-k in other meth-
ods (Wang et al., 2021).

3.2. Training Recipe
The adaptive trimmers are seamlessly integrated
into the backbone network fine-tuned with the task-

2We choose the representations of [CLS] tokens as
global representations of each modality, which is better
than other strategies in preliminary experiments, such
as average or attentive pooling.
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specific objective LTask. To achieve end-to-end
optimization, we adopt the reparameterization tech-
nique (Jang et al., 2017) to sample discrete masks
M from the output distributions of trimmers:

M =
exp((π +G′)/τ)

exp((π +G′)/τ) + exp(G′′/τ)
(1)

where G′ and G′′ are two independent Gumbel
noises, and τ is a temperature factor. To better
control the overall computations of the model, we
introduce a cost loss LCost:

LCost = (βT − γT )
2 + (βH − γH)2 (2)

βT =
1

|T |
∑
t∈T

mt

Nt
, βH =

1

|H|
∑
h∈H

mh

Nh
(3)

where βT and βH represent the retention ratios of
tokens and attention heads for each example in the
batch. T and H are the sets of modules with token
and head trimmers, respectively. γ is the overall
target budget for token and head trimmers set in
advance. m = ∥M∥0 and N represent the retained
and total number of tokens or heads in the module.

Self-Distillation During training, we propose a
self-distillation objective to encourage the predic-
tions of the pruned model θs, to align with its fully-
capacity counterpart θt, as shown in Figure 2 (b).
Note that θs and θt are share parameters, the only
difference is that the trimmers are activated in the
forward of θs while disabled in θt. At each training
step, both the sparse and full models are optimized
simultaneously. The self-distillation objective LSD

is calculated as:

LSD = LTask(θt, y) +DKL(p(θs, x) ∥ p(θt, x))

where x is the input and p are output logits. This
scheme alleviates the need for additional fine-tuned
teacher models in traditional knowledge distillation.
The overall training objective of SmartTrim is as
follows:

L = LTask + λSDLSD + λCostLCost (4)

where λSD, λCost are hyperparameters.

Curriculum Training Integrating trimmers into
the pretrained backbone introduces drastic adap-
tation to the original parameters, which potentially
causes vulnerable and unstable training. To en-
hance the stability of optimization, we propose
a training scheduler driven by curriculum learn-
ing (Bengio et al., 2009). Specifically, at the be-
ginning of training, we initialize trimmers to ensure
the retention of all tokens and heads. Subsequently,
we linearly decrease the ratio γ from 1.0 to the tar-
get ratio over a specified percentage of steps. In
this way, we encourage the training to focus on
downstream tasks initially and then gradually learn
adaptive pruning.

4. Experiments

4.1. Setup
Evaluation Datasets and Metrics We consider
a diverse set of visual-language downstream
tasks for evaluation: NLVR2 (Suhr et al., 2019),
VQA (Goyal et al., 2017) and SNLI-VE (Xie
et al., 2019) for vision-language understand-
ing, Flickr30K (Plummer et al., 2015) for image-
text retrieval, COCO (Lin et al., 2014) and No-
Caps (Agrawal et al., 2019) for image captioning.
We report the accuracy for vision-language under-
standing tasks, and mean recall metrics for image
retrieval (IR) and text retrieval (TR). BLEU-4, CIDEr
and SPICE are used to evaluate image captioning.

Implementation Details We adopt the pretrained
METER and BLIP as backbones to initialize Smart-
Trim. The adaptive trimmers consist of two linear
layers with GeLU activation (Hendrycks and Gim-
pel, 2016), we set D′ = D/12. Fine-tuning hyper-
parameters mainly follow the defaults in Dou et al.
(2022) and Li et al. (2022). We set λCost to 20.0
and λSD to 1.0. Curriculum training is performed
within the 60% training step. We employ FLOPs as
the efficiency measurement of the models, which
is hardware-independent3.

Baselines We compare SmartTrim with the fol-
lowing VLM acceleration methods in the task-
specific fine-tuning setting. On the METER
backbone: Fine-tuning Knowledge Distillation
(FTKD), which initializes the student model by trun-
cating the pretrained backbone following Sun et al.
(2019) and then fine-tunes the model with log-
its/hidden representation/attention distillation objec-
tives the same as Jiao et al. (2020). TRIPS (Jiang
et al., 2022), which performs static token pruning
based on attention scores to reduce the number of
tokens in the visual encoder. Note that we reimple-
ment the method directly in the fine-tuning stage
without additional pre-training for a fair comparison.
PuMer (Cao et al., 2023), which is another static
acceleration method that utilizes token pruning and
merging. Note that PuMer only prunes tokens in the
cross-modal encoder. MuE (Tang et al., 2023), the
only previous adaptive acceleration approach for
VLM, which performs early exiting in terms of the
similarities of layer-wise features. We exhaustively
search for the optimal settings and hyperparame-
ters for the reimplemented baselines. On the BLIP
backbone, we mainly compare with the previous
state-of-the-art method UPop (Shi et al., 2023),

3To prevent pseudo-improvement caused by pruning
padding tokens, we evaluate without padding (single
instance usage), similar to previous work (Ye et al., 2021;
Modarressi et al., 2022).
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Methods NLVR2 VQA SNLI-VE ITR FLOPs(G)dev test-P test-dev val test IR TR
METER (backbone) (Dou et al., 2022) 82.05 82.32 77.43 81.24 80.91 92.5 98.1 88.5
MiniVLM (Wang et al., 2020a) 73.71 73.93 69.10 - - - - -
DistillVLM (Fang et al., 2021) - - 69.80 - - - - -
EfficientVLM (Wang et al., 2023a) 81.83 81.72 76.20 - - - - -
1 .5× acceleration ratio
MuE† (Tang et al., 2023) 66.26 66.34 72.44 75.73 75.88 65.7 86.8 66.4
TRIPS† (Jiang et al., 2022) 81.34 82.01 76.50 80.55 80.57 91.8 97.5 59.0
PuMer (Cao et al., 2023) - 82.20 76.80 - 80.30 91.7 97.6 64.7
SmartTrim 81.89 82.72 77.25 80.92 80.90 92.1 97.9 56.0
2 .0× acceleration ratio
FTKD 76.89 77.49 68.23 77.12 77.21 77.1 86.5 48.2
TRIPS† (Jiang et al., 2022) 80.42 81.35 75.92 80.65 80.47 90.4 96.9 47.1
SmartTrim 82.02 81.97 77.13 80.67 80.86 91.6 97.8 46.0
2 .5× acceleration ratio
FTKD 65.86 67.10 59.32 73.30 73.27 ✗ ✗ 32.4
TRIPS† (Jiang et al., 2022) 77.90 78.91 72.50 79.80 79.60 86.9 94.6 32.8
SmartTrim 81.18 81.55 76.60 80.53 80.57 89.8 96.8 30.7

Table 1: Results of acceleration methods on various downstream vision-language tasks with different
acceleration ratios. FLOPs are measured on VQA with the same hyper-parameters. † means the
reimplementations by us. The marker ✗ indicates methods do not achieve promising results. The best
results for each ratio are marked with boldface. The results are averaged over 3 runs with different seeds.
For a fair comparison, we de-emphasize MiniVLM, DistillVLM, EfficientVLM (by using gray color) since
they require additional pre-training and based on different backbones.

Methods NLVR2 VQA COCO FT NoCaps ZS
dev test-P test-dev B@4 C S C S

BLIP (backbone) (Li et al., 2022) 82.57 82.53 78.2 39.9 133.3 23.8 109.3 14.7
2 .0× acceleration ratio
UPop (Shi et al., 2023) 80.33 81.13 76.3 - 128.9 23.3 - -
SmartTrim 82.24 82.83 78.0 39.3 130.8 23.4 106.4 14.6
4 .0× acceleration ratio
UPop (Shi et al., 2023) 72.85 73.55 74.5 - 117.4 21.7 - -
SmartTrim 82.03 82.35 77.9 38.2 128.2 23.0 104.8 14.2

Table 2: Results of acceleration methods with BLIP backbone on various vision-language tasks across
different acceleration ratios. The results are averaged over 3 runs with different seeds. B@4: BLEU@4,
C: CIDEr, S: SPICE.

which simultaneously prunes and retrains the back-
bone in a unified progressive pruning manner. For
reference, we also present the results of efficient
VLMs that need additional pre-training, including
MiniVLM (Wang et al., 2020a), DistillVLM (Fang
et al., 2021) and EfficientVLM (Wang et al., 2023a).

4.2. Experimental Results

Overall Performance We present the evaluation
results based on the METER and BLIP architec-
tures in Table 1 and Table 2, respectively. On the
METER, SmartTrim effectively retains the perfor-
mance of the original model (97.1% ~ 100.0%), while

enjoying considerable speed-up, ranging from 1.5×
to 2.5×. To verify the generalizability of our ap-
proach, we also conduct an evaluation using BLIP
as the backbone: SmartTrim achieves competitive
results compared to the original model in ratios of
2× and 4×. Compared to static acceleration base-
lines, SmartTrim significantly outperforms previ-
ous methods across various ratios and backbones,
reflecting the effectiveness of our proposed adap-
tive pruning. Furthermore, we observe that MuE,
a previous adaptive acceleration VLM, performs
poorly on challenging VL tasks (e.g., NLVR2 and
VQA), which is due to its discarding of the entire
layers of the model during inference. In contrast,
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Figure 4: Pareto front of the efficiency-performance
trade-offs of acceleration methods based on ME-
TER or BLIP backbones.

Models Ratio NLVR2 VQA
dev test-P test-dev

UPop 2× 80.33 81.13 76.3
4× 72.85 73.55 74.5

UPop2× + SmartTrim 4× 80.52 80.85 76.0

Table 3: Results of adopting the static acceleration
model UPop as the backbone. We also provide the
target acceleration ratio for each model.

our SmartTrim focuses on more fine-grained units
and delivers promising results even when applied
at higher acceleration ratios. In addition, Smart-
Trim achieves competitive performance compared
to pretrained accelerated VLMs, further illustrating
that our method is more economical.

Efficiency-Performance Trade-offs Figure 4
presents a Pareto front of efficiency-performance
trade-offs of acceleration methods on NLVR2. We
observe that SmartTrim consistently outperforms
other acceleration methods, especially at higher
ratios (~3.0×). Surprisingly, SmartTrim performs
even better than the original models with 21%~35%
reduction in FLOPs, enjoying a "free lunch" in
acceleration. We further evaluate the latency of
METER, FTKD, TRIPS, and SmartTrim on the
VQA dataset. The models are evaluated under
the single-instance inference setting on the same
CPU. The results are shown in Figure 5. We find
that SmartTrim is significantly faster than the orig-
inal model. Overall, SmartTrim achieves superior
efficiency-performance trade-offs compared to the
original models and previous acceleration methods.

Combining with Static Acceleration Ap-
proaches The proposed SmartTrim is or-
thogonal to static acceleration approaches. For
further validation, we employ our approach on the

Models Image VQA FLOPs(G)Resolution test-dev
METER 2882 76.78 48.3
SmartTrim 2882 76.44 26.2
METER 3842 77.43 88.5
SmartTrim 3842 77.13 46.0

Table 4: Results of models fine-tuned with different
image resolutions on the VQA dataset.

static compressed model UPop, which statically
prunes the parameters of the attention and FFN
layers and achieves previous state-of-the-art
performance on BLIP. The training recipe for
SmartTrim is easily augmented to UPop without
changing the original fine-tuning process. We
utilize the UPop with the acceleration ratio 2× as
the backbone, and the results are presented in
Table 3. Comparing with UPop2×, we observe that
SmartTrim can preserve over 99% performance
while enjoying faster inference. This indicates that
our adaptive pruning can effectively complement
static acceleration approaches to achieve faster
inference and smaller sizes for VLMs. Moreover,
SmartTrim significantly outperforms UPop4×,
suggesting that combining SmartTrim with a static
compression model may be better than directly
training a smaller compression model, especially
when aiming for higher speedup ratios.

Fine-tuning with different resolutions Table 4
shows the VQA results of METER and SmartTrim
on images of varying resolutions. Our approach
reduces the computational overhead of the original
model, while maintaining performance on input im-
ages of different resolutions. On METER models,
increasing resolution improves results, but sacri-
fices efficiency, which poses a challenge in utilizing
higher resolutions. However, at higher resolution
(3842), SmartTrim retains performance while be-
ing even faster than METER with lower resolution
(2882), suggesting that SmartTrim can effectively
encode images of higher resolution to improve per-
formance while minimizing computational demands.

5. Analysis

In this section, we conduct extensive experiments
to analyze SmartTrim. All experiments are con-
ducted on the METER backbone.

5.1. Ablation Study
Effect of Adaptive Trimmers We first investigate
the effect of our adaptive pruning trimmers. For
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original model.

simplicity, we only consider the pruning in cross-
modal encoder. ❶ For token pruning, we consider
a variant of adaptive pruning without cross-modal
guidance (Local). Besides, we also include static
pruning baselines: random pruning (Random) and
attention score-based pruning (Attn; Jiang et al.
(2022)). We present the NLVR2 performance trend
with different speed-up ratios in Figure 6(a). We
find that both adaptive pruning methods outperform
static pruning methods at various ratios. Moreover,
incorporating information from cross-modal interac-
tions consistently improves performance, suggest-
ing that cross-modal semantic guidance is critical to
identifying more relevant tokens in different modal-
ities. ❷ For head pruning, we compare with ran-
dom pruning (Random), and gradient-based prun-
ing variants (Michel et al., 2019) including retaining
top-p heads in each module (Grad Local) or in the
whole model (Grad All). As shown in Figure 6(b),
our method significantly outperforms other base-
lines, especially in the low retention ratio regime
(0.25×), demonstrating the effectiveness of the pro-
posed learned-based adaptive pruning mechanism.
Another interesting phenomenon is that a slight
pruning of tokens and heads can improve perfor-
mance, which can be seen as a “free lunch” of
sparsity and also presented in BERT (Hao et al.,
2021) or ViT pruning (Chen et al., 2021).

Models NLVR2 VQA
dev test-P test-dev

SmartTrim1.5× 81.89 82.72 77.25
- Self-Distillation 81.58 82.50 77.06
- Curriculum Training 81.70 82.52 77.00

SmartTrim2.0× 82.02 81.97 77.13
- Self-Distillation 81.35 81.67 76.77
- Curriculum Training 81.58 82.01 76.35

SmartTrim2.5× 81.18 81.55 76.60
- Self-Distillation 80.51 81.30 75.79
- Curriculum Training 78.62 79.97 75.33

Table 5: Ablation studies of training strategies. Re-
sults are averaged over 3 runs.
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What type of airplane is it ? 
What type of airplane is it ? 

What is in the background ? 
What is in the background ?
What is in the background ?

Is the plane landing ? 
Is the plane landing ? 
Is the plane landing ?

What is in the background ? 

(a)

(b)

(c)

(d)
Wrong

Figure 7: The visualizations of token trimming pro-
cess on VQA. Image process order is shown from
left to right and text is from top to bottom. (a)-(c)
are obtained by our proposed XModal-aware token
trimmer. (d) is from the local baseline that without
cross-modal guidance, which finally yields a wrong
answer.

Impact of Training Strategies We then analyze
the impact of the proposed training strategies of
SmartTrim. As shown in Table 5, we compare
the proposed SmartTrim with variants without self-
distillation or curriculum training on the NLVR2 and
VQA datasets. From the results, we observe that
both strategies improve performance at various
acceleration ratios. At higher acceleration ratios,
these strategies make training more stable, leading
to a dramatic improvement.

5.2. Qualitative Analysis

Visualization of Token Trimming We visualize
the token trimming procedure in Figure 7: (a)-
(c) are from our XModel-aware token trimmer in
SmartTrim while (d) is from the baseline without
cross-modal guidance (Local). We observe that the
XModal-aware trimmer gradually eliminates redun-
dant tokens and finally focuses on informative ones.
With the same input image, it can effectively identify



14944

0 1 2 3 4 5
Layer of Cross-Modal Encoder

0.00

0.25

0.50

0.75

1.00
R

et
en

tio
n 

R
at

io
textual self textual cross visual self visual cross

Figure 8: The head retention distribution of the
model with 50% target budget.

patches relevant to different questions, thereby giv-
ing correct answers. However, the local baseline
(Figure 7 (d)) only keeps the subject of the image
(plane) but is irrelevant to the questions. See more
results in Appendix D.

Distribution of Retained Attention Heads Fig-
ure 8 shows the distribution of the retention atten-
tion heads in SmartTrim with an overall target bud-
get ratio of 50%. We observe significant variations
in retention heads between different instances, and
SmartTrim learns distinct trimming strategies for
different attention modules.

Adaptive Computational Patterns We further
analyze the computational distribution of Smart-
Trim to investigate adaptive patterns. We use a
model with targeting on a 2 times acceleration bud-
get 4 and show the visualization in Figure 1. As
shown in Figure 1, we observe that SmartTrim can
achieve an acceleration ranging from 1.5× to 2.7×
on various instances. Furthermore, it learns to allo-
cate more computations to instances that require
complex cross-modal interactions and less to sim-
ple ones. These findings indicate that SmartTrim
can adaptively allocate computational overhead
across diverse inputs.

6. Related Work

6.1. Vision-Language Models
The Transformer-based vision-language model
(VLM) has emerged as a dominant architecture for
various vision-language tasks (Radford et al., 2021;
Kim et al., 2021; Li et al., 2021; Bao et al., 2022;
Wang et al., 2022b; Yu et al., 2022; Zeng et al.,
2022; Xu et al., 2023; Li et al., 2023). Although
they achieve satisfactory performance, the exten-
sive amount of parameters inflicts an extravagant
computational burden, impeding their scalability
and application in the production environment.

4The resolution of input images is 2882.

6.2. Transformer Acceleration

Extensive research aims at accelerating Trans-
former, which can be categorized into two streams:
Static and Adaptive approaches (Xu et al., 2021).

Static Approaches yield accelerated models
that remain static for all instances during inference
after deployment. Prior work effectively acceler-
ates uni-modal Transformers through various tech-
niques, such as knowledge distillation (Hinton et al.,
2015; Sanh et al., 2019; Sun et al., 2019; Jiao et al.,
2020; Xu et al., 2020; Wang et al., 2020b), param-
eter pruning (Han et al., 2015; Michel et al., 2019;
Wang et al., 2020c; Sanh et al., 2020; Hou et al.,
2020; Fan et al., 2020; Xia et al., 2022), and static
token reduction via pruning (Goyal et al., 2020;
Chen et al., 2021; Rao et al., 2021; Tang et al.,
2022; Liang et al., 2022; Xu et al., 2022) or merg-
ing (Ryoo et al., 2021; Bolya et al., 2023) less rele-
vant tokens. Recently, a few static methods dedi-
cated to VLMs have been proposed (Wang et al.,
2020a, 2022c; Fang et al., 2021; Gan et al., 2022).
EfficientVLM (Wang et al., 2023a) is trained under
a framework of pre-training distillation followed by
pruning. Shi et al. (2023) introduces a progressive
search-and-prune method, which needs retraining
to sustain performance. TRIPS (Jiang et al., 2022)
proposes to eliminate visual tokens using textual
information by pre-training, while they only focus
on token reduction in the visual encoder and keep
trimming ratios static for all instances. These meth-
ods require pre-training or iterative retraining to
retain performance while being computationally ex-
pensive. Cao et al. (2023) introduces static token
pruning and merging within the VLM cross-modal
encoder. Overall, static acceleration fixes architec-
ture regardless of large variations in the complexity
of instances, limiting the capability of models.

Adaptive Approaches enable accelerated mod-
els to adjust the computation required based on
inputs dynamically. Early exiting strategy has been
applied to accelerate uni-modal Transformers by
terminating inference at an early layer (Xin et al.,
2020; Zhou et al., 2020). Another stream is adap-
tive token pruning (Ye et al., 2021; Pan et al., 2021;
Kim et al., 2022; Guan et al., 2022; Yin et al., 2022;
Meng et al., 2022; Kong et al., 2022; Zhou et al.,
2023), which uses a policy network to gradually
eliminate redundant tokens on a per-instance basis.
However, employing these uni-modal approaches
directly in multimodal scenarios is suboptimal, as
they overlook the importance of cross-modal in-
teractions. Tang et al. (2023) applies the early
exiting technique based on layerwise similarities
for an encoder-decoder-based VLM. However, the
constraint of pruning all tokens at the same layer
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is aggressive, resulting in significant performance
degradation on challenge VL tasks, as shown in
our experiments. In contrast, SmartTrim focus
on more fine-grained pruning units: token and at-
tention heads, to achieve a better performance-
efficiency trade-off.

7. Conclusion

In this work, we present SmartTrim, an adaptive
pruning framework for efficient VLMs that dynami-
cally adjusts the computation overhead in an input-
dependent manner. By integrating token and head
trimmers along with the backbone, SmartTrim
prunes redundant tokens and heads during run-
time based on the cross-modal information guid-
ance and the pre-given budget. Extensive exper-
iments across various architectures and datasets
show that SmartTrim achieves better efficiency-
performance trade-offs. We hope our endeavor will
benefit end users by making multimodal systems
more accessible.
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A. Details of Similarity Calculation

To measure the redundancy in token representa-
tions and attention heads of VLMs, we calculate
the average cosine similarity between token repre-
sentations and attention maps at each layer follow-
ing previous work (Goyal et al., 2020; Wang et al.,
2022a).
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Figure 9: The similarity visualizations of the cross-
modal encoder in METER fine-tuned on NLVR2.

Token Similarity Given the corresponding token
representations X ∈ RN×D, the averaged token
representations similarity is computed by:

ST =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

Xi ·Xj

∥Xi∥2 ∥Xj∥2

Head Similarity We use the similar metric to com-
pute head similarity for attention maps. Given the
attention map A ∈ RH×N×N with H heads, the
averaged cosine similarity between different heads
is calculated as:

SA =
2

H(H − 1)N

H∑
i=1

H∑
j=i+1

N∑
k=1

Ak
i ·Ak

j∥∥Ak
i
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where Ak
i denotes the k-th token’s attention distri-

bution in the i-th head.

More Visualization We also present the visual-
izations of different modules in VLMs on NLVR2
and VQA tasks in Figures 9, 10, and 11. Similar to
Figure 3, significant redundancy can be observed
in both token representations and attention heads
within the VLM modules on various tasks.

B. Details of Downstream Tasks

Natural Language for Visual Reasoning
(NLVR2 (Suhr et al., 2019)) is a visual reasoning
task that aims to determine whether a textual
statement describes a pair of images. For
METER-based models, we construct two pairs of
image-text, each consisting of the image and a
textual statement. For models based on BLIP, we
directly feed the two images and the text to the
encoder.
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Figure 10: The similarity visualizations of the tex-
tual encoder in METER fine-tuned on VQA and
NLVR2.
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Figure 11: The similarity visualizations of the visual
encoder in METER fine-tuned on VQA and NLVR2.

Visual Question Answering (VQA v2 (Goyal
et al., 2017)) requires the model to answer ques-
tions based on the input image. For METER-based
models, we formulate the problem as a classifica-
tion task with 3,129 answer candidates. For BLIP-
based models, we consider it as an answer genera-
tion task and use the decoder to rank the candidate
answers during inference.

Visual Entailment (SNLI-VE (Xie et al., 2019))
is a three-way classification dataset, aiming to pre-
dict the relationship between an image and a text
hypothesis: entailment, natural, and contradiction.

Image-Text Retrieval (ITR) We evaluate image-
to-text retrieval (TR) and text-to-image retrieval (IR)
on Flickr30K (Plummer et al., 2015) with the stan-
dard split (Karpathy and Fei-Fei, 2015).

Hyperparameters NLVR2 VQAv2 SNLI-VE Flickr30K
Epochs 10 10 5 10
Batch Size 256 512 64 512
Initial Learning Rate 1e-5 5e-6 2e-6 5e-6
Learning Rate Decay Linear Scheduler
Dropout 0.1
Weight Decay 0.01
Warmup Ratio 0.1
AdamW β (0.9, 0.999)
Data Augmentation RandomAugment
Image Resolution 2882

Table 6: Hyperparameters for fine-tuning Smart-
Trim-METER on various downstream VL tasks.

Hyperparameters NLVR2 VQAv2 Captioning
Epochs 15 10 5
Batch Size 256
Initial Learning Rate 3e-5 2e-5 1e-5
Learning Rate Decay Cosine Scheduler
Weight Decay 0.05
AdamW β (0.9, 0.999)
Data Augmentation RandomAugment
Image Resolution 3842 4802 3842

Table 7: Hyperparameters for fine-tuning Smart-
Trim-BLIP on various downstream VL tasks.

Image Captioning The image is given to the en-
coder and the decoder will generate the correspond-
ing caption with a text prompt "a picture of" fol-
lowing Li et al. (2022). In this work, we optimize
only the cross-entropy loss during fine-tuning. Our
experiments are conducted on COCO (Lin et al.,
2014), and the evaluation is performed on both the
COCO test set and the NoCaps (Agrawal et al.,
2019) validation set (zero-shot transfer).

C. Implementation Details

C.1. Hyperparameter Settings

The MLP network in our token and head trimmers
consists of two linear layers with GeLU activa-
tion (Hendrycks and Gimpel, 2016). To reduce
the computations, we set D′ = D/12. Fine-tuning
hyperparameters on METER are given in Table 6,
mainly following the defaults in Dou et al. (2022).
Fine-tuning hyperparameters on BLIP are given
in Table 7, mainly following the defaults in Li et al.
(2022). We perform token adaptive pruning in the vi-
sual encoder/cross-modal encoder and head adap-
tive pruning in the cross-modal encoder. For effi-
ciency evaluation, we use torchprofile to measure
FLOPs. As for the latency, we evaluate on an Intel
Xeon E5-466 2640 v4 CPU.
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C.2. Details of Re-implemented
Baselines

For FTKD, we initiate the student model follow-
ing Sun et al. (2019) to directly use the first k lay-
ers of the original model (k ∈ {4, 6} for the visual
encoder, k ∈ {2, 3} for the cross-modal encoder).
In our experiments, we find that this initialization
strategy is considerably better than the other meth-
ods. Then, we fine-tune the student model by
logit/hidden representation/attention distillation ob-
jectives the same as Jiao et al. (2020). For MuE,
we fine-tune the METER according to Tang et al.
(2023), and perform grid search from 0.85 to 0.99,
an interval of 0.01, for the similarity thresholds of
the visual and cross-modal encoder. For TRIPS,
we follow the original setting in Jiang et al. (2022) to
fine-tune the METER backbone. We exhaustively
search for optimal settings and hyperparameters
for the re-implemented baselines.

C.3. Details of Baselines for Trimming
Ablation

Here we provide details of baselines in the trimming
ablation.

Token Trimming For the local baseline, we re-
move the cross-modal awareness score when cal-
culating the token importance. The random base-
line randomly prunes tokens during both training
and inference. Following previous work (Goyal
et al., 2020; Liang et al., 2022; Jiang et al., 2022),
the Attn baseline adopts the token attention value
as the importance score and uses top-k operation
to select retained tokens, discarding the remaining
ones. For a fair comparison, we ensure that all
baselines incur the same computational overhead
as our method. In addition, we conduct an exhaus-
tive search to determine the optimal hyperparame-
ters for each baseline. This meticulous approach
ensures the comparability of our method with other
methods.

Head Trimming For a given retention ratio p%,
the random baseline randomly retains p% of heads
in each attention module. Gradient-based head
pruning (Michel et al., 2019) first computes loss on
pseudo-labels and then prunes attention heads with
the importance score obtained by Taylor expansion.
With given input x, importance score of head h is
defined as:

Ih = Ex

∣∣∣∣AT
h

∂L(x)
∂Ah

∣∣∣∣
Where L is the loss function, and Ah is the context
layer of head h. For the gradient-based baseline,
we introduce two variants: (1) Grad Local, which

retains the top-p% heads in each attention module,
(2) Grad All, which maintains the top-p% heads of
the entire model. We apply these methods on the
METER cross-modal encoder.

D. More Visualization Examples of
Token Trimming

To demonstrate the ability to understand cross-
modal interactions of our approach, we show more
visualization results of our XModal-aware token
trimmer in Figure 12. We can see that the final
retained image patches are highly relevant to the
textual questions. The question words (e.g., what)
are critical in VQA because they are highly corre-
lated with the category (numbers, yes/no or others)
of correct answers. Therefore, we observe that
function words (e.g., of,the) are gradually removed
while critical tokens such as question words are
retained.
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What color is the sign ? 
What color is the sign ? 
What color is the sign ?

Is there a glass ? 
Is there a glass ? 
Is there a glass ?

Do all the cars have their tail lights on ?
Do all the cars have their tail lights on ?
Do all the cars have their tail lights on ?

What is on the woman 's arm ? 
What is on the woman 's arm ? 
What is on the woman 's arm ?

What is behind the bus ? 
What is behind the bus ? 
What is behind the bus ?

Is there a building in the back of the photo ? 
Is there a building in the back of the photo ? 
Is there a building in the back of the photo ?

Figure 12: More visualization results by SmartTrim.
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