
LREC-COLING 2024, pages 15012–15023
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

15012

SoftMCL: Soft Momentum Contrastive Learning for Fine-grained
Sentiment-aware Pre-training

Jin Wang†, Liang-Chih Yu‡,* and Xuejie Zhang†
†School of Information Science and Engineering, Yunnan University, Kunming, China

‡Department of Information Management, Yuan Ze University, Taoyuan, China
{wangjin, xjzhang}@ynu.edu.cn, lcyu@saturn.yzu.edu.tw

Abstract
The pre-training for language models captures general language understanding but fails to distinguish the affective
impact of a particular context to a specific word. Recent works have sought to introduce contrastive learning (CL) for
sentiment-aware pre-training in acquiring affective information. Nevertheless, these methods present two significant
limitations. First, the compatibility of the GPU memory often limits the number of negative samples, hindering the
opportunities to learn good representations. In addition, using only a few sentiment polarities as hard labels, e.g.,
positive, neutral, and negative, to supervise CL will force all representations to converge to a few points, leading to the
issue of latent space collapse. This study proposes a soft momentum contrastive learning (SoftMCL) for fine-grained
sentiment-aware pre-training. Instead of hard labels, we introduce valence ratings as soft-label supervision for CL to
fine-grained measure the sentiment similarities between samples. The proposed SoftMCL is conducted on both
the word- and sentence-level to enhance the model’s ability to learn affective information. A momentum queue
was introduced to expand the contrastive samples, allowing storing and involving more negatives to overcome the
limitations of hardware platforms. Extensive experiments were conducted on four different sentiment-related tasks,
which demonstrates the effectiveness of the proposed SoftMCL method. The code and data of the proposed SoftMCL
is available at: https://www.github.com/wangjin0818/SoftMCL/.
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1. Introduction

Pre-trained language models (PLMs), such as
BERT (Devlin et al., 2019), XLNet (Yang et al.,
2019), RoBERTa (Liu et al., 2019), and DeBERTa
(He et al., 2021), have proven their powerful ability
to learn representations for natural language under-
standing and generation tasks. To learn language
usage, these models were first trained on large-
scale unlabeled corpora by unsupervised tasks,
such as masked language model (MLM) and next
sentence prediction (NSP). Then, they can be trans-
ferred to another task by supervised training on a
smaller task-specific dataset. The great success of
those PLMs is attributed to the practical pre-training
tasks.

The core idea of pre-training is to generate
similar contextual representations for words
or sentences with similar contexts. Although
the training paradigm works well for semantic-
oriented applications with supervision for the
role of language usage, they fail to distinguish
the affective impact of a particular context to
a specific word since certain words may have
special semantics and sentiments in specific
contexts (Agrawal et al., 2018). For example,
the emotion of The battery life is long is positive,
but It takes a long time to focus is negative, even
though both sentences contain the word long.
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Similarly, The scope of his book is ambitious, and
The government’s decisions to begin the ambitious
plans which cost a lot, contain the same ambitious
vocabulary but clearly express the opposite at-
titude. As a result, PLMs are still sub-optimal
in sentiment-related tasks due to the ignorance
of the affective information in pre-training. As
reported by Kassner and Schütze (2020), It is still
hard for PLMs to handle words with contradiction
sentiment or negation expression, which are
critical in sentiment analysis tasks.

To assist PLMs in obtaining affective information,
early exploration works have sought to use either
sentiment-aware pre-training (Abdalla et al., 2019;
Fu et al., 2018) or sentiment refinement (Utsumi,
2019; Yu et al., 2018a,b). Both methods aim to
obtain representations that are similar in semantics
and sentiment. The sentiment-aware pre-training
accomplishes this goal by introducing external af-
fective information as post-training supervision on
word- or sentence-level, such as token sentiments
and emoticons (Zhou et al., 2020), aspect word
(Tian et al., 2020), linguistic knowledge (Ke et al.,
2020), and implicit sentiment information (Li et al.,
2021). The external sentiment knowledge can be
introduced by performing word- or sentence-level
polarity classification on the masked words (Ke
et al., 2020). Nevertheless, learning word senti-
ment cannot help the model understand the sen-
timent intention of the whole sentence. Since the
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expressed sentiment of a sentence is not simply
the sum of the polarities or the intensity of its con-
stituent words.

The sentiment refinement model adjusts the vec-
tor of each affective word according to a given sen-
timent lexicon (Utsumi, 2019; Yu et al., 2018a,b). It
can be used to adjust the representations of words
so that they can be closer to semantically and senti-
mentally similar words and further away from senti-
mentally dissimilar ones. Such a method is applied
as a post-processing step for already trained repre-
sentations. An obvious risk is that the improper in-
corporation of affective information may excessively
disperse the distribution of the semantic space.

Existing studies suggest introducing contrastive
learning (CL) and using the same idea as sentiment
refinement to incorporate affective information. The
idea involves training a model to pull together an an-
chor and a positive sample in the latent space and
push apart the anchor from many negative sam-
ples. Semantic learning works (Gao et al., 2021)
applied self-supervised CL, where a positive pair
often consists of data augmentations of the sam-
ple, and negative pairs are formed by the anchor
and randomly chosen samples in the batch. Un-
fortunately, this is unsuitable for sentiment-aware
pre-training. If two words with the same sentiment
polarity come from different samples in the same
batch, they will be treated as negative sample pairs
for CL, as the words clumsy and bad in Figure 1(a).

By leveraging sentiment information, recent stud-
ies (Fan et al., 2022; Li et al., 2021) applied super-
vised CL for sentiment-aware pre-training on both
word- and sentence-level. The idea is transferred
to that normalized representation from the words
or sentences with the same sentiment polarities
are pulled closer together than the ones with dif-
ferent sentiment polarities. By introducing external
knowledge, such as sentiment-annotated lexicon
or corpora, these models draw positives from sam-
ples with the same polarity as the anchor rather
than data augmentation of the anchor, as shown in
Figure 1(b).

A few practical issues should be considered
when applying CL, especially for sentiment-aware
pre-training. First is the batch size. As in most
circumstances, larger batch size is better since that
will provide more diverse and complicated negative
samples, which is crucial for learning good repre-
sentations (Chen et al., 2022). Nevertheless, the
compatibility of the GPU memory often limits the
batch size. Another important consideration is the
quality of the negative samples. Hard negatives
improve the representation quality learned by su-
pervised CL if negative samples can be strictly clas-
sified according to the sentiment labels. It is evident
that good and excellent are both positive, while the
latter is stronger than the former. By defining only

a few sentiment categories, e.g., positive, neutral,
and negative, supervised CL can also cause all rep-
resentations to converge to a few points, leading
to the issue of latent space collapse.

This study proposed a soft momentum con-
trastive learning (SoftMCL) for fine-grained
sentiment-aware pre-training. In contrast to hard
labels of sentiment polarities, we introduce valence
ratings 1 from the extended version of affective
norms of English words (E-ANEW) (Warriner et al.,
2013) and EmoBank (Buechel and Hahn, 2016,
2017) as fine-grained soft-labels supervisions for
CL. SoftMCL does not strictly distinguish between
positive and negative samples, but measures the
cross-entropy between the sentiment similarities
in continuous affective space and distribution
of semantic representations of these samples.
Further, the proposed SoftMCL is conducted on
both the word- and sentence-level to enhance the
ability to learn affective information. A momentum
queue was introduced to expand the contrastive
samples, allowing storing and involving more
negatives to overcome the limitations of hardware
platforms.

Extensive experiments were conducted on four
different sentiment-related tasks to evaluate the ef-
fectiveness of the proposed SoftMCL method. Em-
pirical results show that SoftMCL performs better
than other sentiment-aware pre-training methods.

The rest of the paper is organized as follows.
Section 2 provides the preliminary knowledge of
contrastive learning. Section 3 describes the pro-
posed sentiment-aware momentum contrastive
learning for fine-grained sentiment pre-training on
both token- and sentence-level. Section 4 sum-
marizes the comparative results against several
baselines. Section 5 introduces the related works
for affective state representation and sentiment pre-
training. Conclusions are finally drawn in Section
6.

2. Preliminary

2.1. Valence-Arousal Ratings
Affective computing research offers two ap-
proaches to representing an emotional state: cate-
gorical and dimensional (Calvo and Mac Kim, 2013).
The categorical approach models affective states
as several distinct classes, such as binary (positive
and negative), Ekman’s six fundamental emotions
(anger, happiness, fear, sadness, disgust, and sur-
prise) (Ekman, 1992), and Plutchik’s eight funda-
mental emotions (which include Ekman’s six as well
as trust and anticipation) (Plutchik, 1991). A set
of emotion categories must be established before

1The valence ratings in Figure 1 are clumsy (4.14),
bad (3.24), good (7.89), early (5.26)
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Figure 1: The conceptual diagram of using different contrastive learning strategies for sentiment-aware
pre-training. (a) The self-supervised CL contrasts a single positive for each anchor (i.e., an augmentation
of the anchor) against a set of negative consisting of the entire remainder of the batch. (b) The supervised
CL contrasts the set of samples with same polarity as positives against the negatives from the remainder
of the batch. (c) The proposed SoftMCL introducing external affective supervision to contrast the set of all
samples according to the fine-grained distance of valence ratings between samples.

classification. Custom-defined categories, how-
ever, typically cannot cover the complete emotional
spectrum. As a result, it’s possible to classify some
affective states into an undefined category. Re-
searchers may describe the same category under
different names due to cultural or other differences,
making it challenging to share categories. Based
on this representation, several methods have been
researched to provide practical applications, such
as customer review analysis, mental illnesses iden-
tification, hotspot detection and forecasting, ques-
tion answering, social text analysis, and financial
market prediction.

These are the three fundamental limitations for
discrete categorical encoding of sentiment: 1) a set
of emotion categories must be established before
classification. Custom-defined categories, how-
ever, typically cannot cover the complete emotional
spectrum. As a result, it’s possible to classify some
affective states into an undefined category. 2) Re-
search teams may describe the same category un-
der different names due to cultural or other differ-
ences, making it challenging to share categories.
3) The exceptional categories in particular domains
must be re-defined when the field of application
changes.

Continuous dimensional representations could
be preferable because they express the affective
state in a low-dimensional (2- or 3-dimensional)
space. The most widely used method is based on
Russell’s valence-arousal space (Russell, 1980),
which can precisely describe the affective state in a
2-dimensional continuous space (Lee et al., 2022).
Valence and arousal are both real values. Valence
is the pleasantness (both positive and negative)
quality of a feeling. On the other side, arousal

describes the intensity of the emotion’s activation
(such as excitement or calmness). This approach
can represent any affective state as a point in the
valence-arousal coordinate plane, effectively avoid-
ing inconsistency and incompleteness in category
definitions in a discrete representation and provid-
ing more intelligent and fine-grained sentiment ap-
plications (Wang et al., 2019, 2020).

2.2. Contrastive Learning
Contrastive learning is a self-supervised learning
paradigm that captures inherent patterns and con-
text in data without manual annotations (Gao et al.,
2021). The powerful representation learning ability
of PLMs owes to the pre-training tasks in large-
scale unlabeled data. Using contrastive learning,
the PLMs can be trained by distinguishing the dif-
ferences between samples. Given an anchor sam-
ple, a positive sample, and several negative sam-
ples, similarities are measured pairwise between
the given anchor and the rest. Data augmenta-
tion usually produces a positive sample, meaning
it belongs to the same class as the anchor sam-
ple. Conversely, negative samples indicate those
not in the same class as the anchor. By measur-
ing the similarity scores, the training objective of
contrastive learning is,

LCL = −
∑
i∈I

log
exp(h�

i · hp(i)/τ)∑
k∈A(i) exp(h

�
i · hk/τ)

(1)

where hi denotes the hidden representation of the
ith sample, I is the set of samples in a batch, · is a
dot product, τ is a temperature parameter used to
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control the density, p(i) represents its positive sam-
ple, and A(i) is the set that contains the positive
sample and the negative samples.

2.3. Supervised Contrastive Learning
In addition to self-supervised learning, the prior
knowledge of the labeled data can be incorporated.
Since the anchor label is known, the label annota-
tion can identify the positive and negative samples
(Fan et al., 2022; Li et al., 2021). Therefore, the
training objective of contrastive learning can be
generalized as follows,

LSCL = − ∑
i∈I

∑
p∈P (i)

1
|P (i)| log

exp(h�
i ·hp/τ)∑

k∈A(i)
exp(h�

i
·hk/τ)

(2)
where P (i) indicates all positives corresponding to
anchor i retrieved by the label annotation within a
batch, and |P (i)| is the number of positive samples.
Using supervised learning, the PLMs are trained to
pull the same class together while pushing apart
clusters of samples from different classes.

In the objective of CL, the labels of positive (sim-
ilar) pairs are set to 1, while the ones of negative
(dissimilar) pairs are set to 0. Such hard labels
lead to the issue of contrastive bias. Although two
words have opposite emotional polarities, they may
not differ significantly in valence.

3. Soft Momentum Contrastive
Learning

Figure 2 shows the overall architecture of the pro-
posed SoftMCL for fine-grained sentiment-aware
pre-training. We introduce the affective ratings from
the E-ANEW (Warriner et al., 2013) and EmoBank
(Buechel and Hahn, 2016, 2017). The difference
in valence ratings between samples thus mea-
sures the sentiment similarity. The SoftMCL is
performed on both token- and sentence-level to
pull together the sentimentally similar samples but
push away the dissimilar ones. In addition to the
sentiment-aware pre-training, we introduce a mo-
mentum queue to expand the contrastive samples.
The pre-trained encoder could be fine-tuned for the
downstream applications.

3.1. Sentiment Similarity
All emotions can be annotated in continuous VA
space as a real value in [1, 9] for valence, arousal,
and dominance. Values 1, 5, and 9 denote va-
lence’s most negative, neutral, and positive affec-
tive states.

Given an input sentence X = {x1, x2, ..., xn}
where n denotes the sequence length, each xi ∈ X
denotes the ith word. By adding a special token

[CLS], the input X is transformed into representa-
tion vectors, denoted as,

{h[CLS],h1,h2, ...,hn}
= Enc({x[CLS],x1,x2, ...,xn}; θ) (3)

where Enc(·) is the Transformer encoder param-
eterized by θ. The associated affective ratings
with both the sentence and words are obtained
as, Y = {y[CLS], y1, y2, ..., yn} where y[CLS] is the
valence of the whole sentence, and the length n
in Y should be equal to the length n in X. If an
affective word was split to several tokens, all tokens
should share the same valence as the word. Addi-
tionally, the yi is an annotated valence in a given
affective lexicon. If a word xi does not appear in
the affective lexicon, its corresponding yi will be
assigned to 0, such that it will be masked during
the word-level contrastive learning.

Based on the valence ratings, the sentiment sim-
ilarity between two tokens or sentences can be
defined as a normalized absolute similarity,

Δ(h1,h2) = 1− |y1 − y2|
ymax − ymin

(4)

where y1 and y2 are the valence ratings of the to-
kens x1 and x2 or the sentences X1 and X2.

3.2. Sentiment-aware Contrastive
Learning

The previous study applies unsupervised CL to
contrast sentences within a batch. We perform
both word- and sentence-level CL to enrich the
sentiment information for the encoder. Using senti-
ment similarity of valence between samples, we do
not strictly distinguish between positive and neg-
ative samples. Thus, the objective of sentiment-
aware contrastive learning aims to measure the
cross-entropy of the sentiment similarity distribu-
tion between samples and the similarity distribution
of semantic representations, denoted as,

LSentiCL =

− ∑
i∈I

∑
j∈B(i)

Δ(hi,hj)∑
l∈B(i)

Δ(hi,hl)
log

exp(h�
i ·hj/τ)∑

k∈B(i)
exp(h�

i
·hk/τ)

(5)
where B(i) is the batch size. For token-level CL,
we randomly sampled 256 tokens belonging to the
affective words appearing in the E-ANEW lexicon.
For sentence-level CL, we extract hidden represen-
tation corresponding to [CLS] token, i.e., h[CLS] to
measure the cross-entropy of the sentiment and
semantic similarity distribution of the in-batch sen-
tences.
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Figure 2: The overall architecture of the proposed SoftMCL.

3.3. Momentum Contrastive Learning

The batch size setting limits the number of con-
trastive samples. For sentence-level CL, each sam-
ple could only be paired with other B(i)−1 samples
to create additional training patterns. To further
expand the contrastive samples in batch, we pro-
posed a momentum queue strategy, which uses the
same idea as the MoCo (He et al., 2020) objective.
We applied a momentum encoder Encm(·) to learn
the sequence of hidden representations of the re-
cent samples and store them within the affective
ratings in a momentum queue Q. These stored
samples can expand the number of contrastive
samples. For implementation, the momentum en-
coder Encm(·) is copied from the initial encoder
Enc(·). The parameters θm were updated from the
parameter θ with a ratio μ, denoted as,

θm ← μθm + (1− μ)θ (6)

Based on the momentum queue Q and encoder
Encm(·), there will beQ(i) samples that belong toQ;
thus, we obtainB(i)+Q(i) contrastive samples. The
loss function still measures cross-entropy between
the distribution of sentiment similarities and the
distribution of semantic representations,

LMCL =

− ∑
i∈I

[ ∑
j∈B(i)

Δ(hi,hj)∑
l∈{B(i),Q(i)} Δ(hi,hl)

log
exp(h�

i ·hj/τ)∑
k∈{B(i),Q(i)} exp(h�

i
·hk/τ)

+
∑

m∈Q(i)

Δ(hi,hm)∑
l∈{B(i),Q(i)} Δ(hi,hl)

log
exp(h�

i ·hm/τ)∑
k∈{B(i),Q(i)} exp(h�

i
·hk/τ)

]

(7)

Dataset Train Dev Test Length #C
SST-2 8,544 1,101 2,210 19.2 2
SST-5 6,920 872 1,821 19.2 5
MR 8,534 1,078 1,050 21.7 2
CR 2,025 675 675 20.1 2
IMDB 22,500 2,500 25,000 279.2 2
Yelp-2 504,000 56,000 38,000 155.3 2
Yelp-5 594,000 56,000 50,000 156.6 5
Emobank 6,195 2,065 2,065 17.6 -
Facebook 1,736 579 579 19.8 -
Lap14 3,452 150 676 30.2 3
Rest14 2,163 150 638 25.6 3

Table 1: Statistics of datasets used in the experi-
ments. #C indicates the number of the labels.

3.4. Training Objectives
In addition to sentiment-aware pre-training, masked
language modeling (MLM) was also implemented
for pre-training. Like the previous settings, 15% of
words were first masked. Further, we masked affec-
tive words in the input sentence using the E-ANEW
lexicon with a specific ratio . The MLM objective
is to predict the masked words within the given
contexts. Then, SoftMCL was performed to dis-
tinguish the valence difference between samples.
The training objective is,

L = LMLM + λ1Lword
MCL + λ2Lsent

MCL (8)

where λ1 and λ2 balance the contribution of differ-
ent subtasks.

For fine-tuning, the pre-trained model generates
a sequence of hidden representations using Eq.(3).
The aspect term was appended to the sequence
with the [SEP] token for aspect-level sentiment
classification. The hidden representation of the
[CLS] token was used to predict the sentiment
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Model Word Phrase
k ↑ ρ ↑ k ↑ ρ ↑

General pre-trained models
BERT 0.638 0.841 0.624 0.829
XLNet 0.644 0.852 0.637 0.833
RoBERTa 0.656 0.868 0.642 0.849
DeBERTa 0.667 0.866 0.644 0.852

Sentiment-aware pre-trained models
BERT-PT 0.704 0.880 0.688 0.877
SentiBERT 0.699 0.886 0.692 0.882
SentiLARE 0.712 0.894 0.702 0.891

Proposed models with ablation study
SoftMCL 0.778 0.928 0.775 0.922

w/o WP 0.698 0.878 0.692 0.874
w/o SP 0.702 0.889 0.685 0.865
w/o MoCL 0.724 0.895 0.713 0.904

Table 2: Comparative results of different models
on phrase-level intensity prediction task.

intensity or polarity of the input sample.

4. Experiments

4.1. Tasks and Datasets
Sentiment-aware Pre-training. The proposed
SoftMCL was pre-trained using the same dataset
as RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2021), which is a combination of Wikipedia,
Bookcorpus, CCNews, Stories, and OpenWebText.
We sampled 2 million sentences with a maximum
length of 128 for word-level pre-training. We intro-
duce the E-ANEW (Warriner et al., 2013) to provide
the word-level VA annotation. For sentence-level
CL, we adopted a corpus from the training split of
EmoBank (Buechel and Hahn, 2016, 2017), which
contains 40,000 sentences with valence annota-
tion.

The empirical experiments were conducted on
four sentiment-related tasks: phrase-level inten-
sity prediction, sentence-level classification and re-
gression, and aspect-level sentiment analysis. The
details are presented as follows.
Phrase-level Intensity Prediction. The dataset
was the SemEval-2016 task 7 (general English sub-
task) (Kiritchenko et al., 2016), which contained
2,799 terms, including 1,330 words and 1,469
phrases. Each term was annotated within the
range of [0, 1]. The metrics contain Kendall’s rank
correlation coefficient (k) and Spearman’s rank cor-
relation coefficient (ρ).
Sentence-level Classification. The benchmarks
include Stanford Sentiment Treebank (SST-2/5)
(Socher et al., 2013), Movie Review (MR) (Pang
and Lee, 2005), and Customer Review (CR) (Con-
neau and Kiela, 2018), IMDB (Maas et al., 2011)
and Yelp-2/5 (Zhang et al., 2013). The evaluation
metric is accuracy.

Sentence-level Regression. Instead of using bi-
nary or fine-grained labels, both the test split of
Emobank (Buechel and Hahn, 2016, 2017) and
Facebook (Preotiuc-Pietro et al., 2016) use real-
valued VA ratings in the range of (1, 9). The valence
denotes the degree of positive and negative senti-
ment. The metrics are mean absolute error (MAE)
and Pearson’s correlation coefficient (r).
Aspect-level Sentiment Classification. This task
requires the identification of aspects in text, as well
as the assignment of sentiment labels to those as-
pects. The datasets are SemEval-2014 task 4 (Pon-
tiki et al., 2014) in laptop (Lap14) and restaurant
(Res14). The evaluation metric is accuracy and
F1-score.

Table 1 summarizes the details of these datasets,
including the amount of training, validation, and test
splits. For MR, IMDB, and Yelp-2/5, a subset was
randomly selected from the training set for valida-
tion. For CR, Emobank, and Facebook, the evalua-
tion was performed using a 5-fold cross-validation.
For each round, each dataset was randomly split
into a training, development, and test set with a
6:2:2 ratio.

4.2. Baselines
The proposed SoftMCL was compared with several
pre-trained models, pre-trained by general tasks,
i.e., MLM and NSP, and sentiment-related tasks.

The general-purpose pre-trained models include
BERT (Devlin et al., 2019), XLNet (Yang et al.,
2019), RoBERTa (Liu et al., 2019), and DeBERTa
(He et al., 2021). The sentiment-aware pretrained
models include BERT-PT (Xu et al., 2019), SentiB-
ERT (Yin et al., 2020), SentiLARE (Ke et al., 2020),
SENTIX (Zhou et al., 2020), and SCAPT (Li et al.,
2021).

For phrase-level intensity prediction, we further
report the empirical results from the original study
with the same implementation settings (Yu et al.,
2018a,b).

4.3. Implementation Details
The backbone model we used is DeBERTa (He
et al., 2021), which is initialized from the pre-trained
checkpoint of the base version using the Hugging-
Face toolkit (Wolf et al., 2020). We use the AdamW
optimizer (Kingma and Ba, 2015) with a linear learn-
ing rate scheduler with 10% warm-up steps for pre-
training. The learning rate is initialized with 2e-
5. The maximum length is truncated to 128. The
batch size of contrastive learning is 64. The steps
of warm-up and pre-training are 1,500 and 20,000,
respectively.

For fine-tuning, the hyper-parameters were se-
lected by using a grid search strategy. The number
of epochs for each model was set depending on
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Model
Sentence-level sentiment classification Aspect-level sentiment classification

SST-2 SST-5 MR CR IMDB Yelp-2 Yelp-5 Lap14 Rest14
Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc Acc ↑ F1-score ↑ Acc ↑ F1-score ↑

General pretrained models
BERT 90.82 53.37 87.52 88.22 93.87 97.74 70.16 78.53 73.11 83.77 76.06
XLNet 92.04 56.33 89.45 88.33 96.21 97.41 70.23 80.00 75.88 84.93 76.70
RoBERTa 92.28 54.89 89.41 88.47 94.68 97.98 70.12 81.03 77.16 86.07 79.21
DeBERTa 94.82 56.89 89.52 88.49 94.92 97.88 70.22 81.14 77.22 86.12 79.43

Sentiment-aware pre-trained models
BERT-PT 91.42 53.24 87.30 86.52 93.99 97.77 69.90 78.46 73.82 85.58 77.99
SentiBERT 92.18 56.87 88.59 88.24 94.04 97.66 69.94 76.87 71.74 83.71 75.42
SentiLARE 94.28 58.59 90.82 89.52 95.71 98.22 71.57 82.16 78.70 88.32 81.63
SENTIX 93.30 55.57 - 88.72 94.78 97.83 - 80.56 - 87.32 -
SCAPT - - - - - - - 82.76 79.15 89.11 83.91

Proposed model with ablation study
SoftMCL 96.54 59.82 92.56 90.02 96.85 98.29 71.76 83.82 81.08 89.23 83.95

w/o WP 94.01 58.25 90.14 87.67 94.31 95.73 69.88 81.63 78.96 86.91 81.75
w/o SP 93.65 58.04 89.79 87.32 93.96 95.35 69.62 81.31 78.66 86.57 81.43
w/o MoCL 91.33 56.61 87.55 85.15 91.62 92.99 67.89 79.29 76.7 84.42 79.41

Table 3: Comparative results of different models on sentence-level and aspect-level sentiment classification
tasks.

Model EmoBank Facebook
MAE ↓ r ↑ MAE ↓ r ↑

General pre-trained models
BERT 0.581 0.521 0.719 0.635
XLNet 0.523 0.589 0.706 0.654
RoBERTa 0.518 0.592 0.694 0.642
DeBERTa 0.514 0.591 0.711 0.631

Sentiment-aware pre-trained models
BERT-PT 0.506 0.610 0.708 0.631
SentiBERT 0.505 0.612 0.688 0.677
SentiLARE 0.498 0.615 0.669 0.671

Proposed model with ablation study
SoftMCL 0.462 0.639 0.642 0.685

w/o WP 0.475 0.629 0.663 0.661
w/o SP 0.495 0.620 0.734 0.634
w/o MoCL 0.492 0.622 0.710 0.662

Table 4: Comparative results of different models on
sentence-level regression task to predict valence
ratings.

an early strategy, where the patient was set to 3.
The model exits when the loss does not decrease
in three epochs.

4.4. Comparative Results
This section compared the proposed SoftMCL
against several previous methods on four
sentiment-related tasks. Tables 2, 3, and 4 summa-
rize the empirical results of the proposed SoftMCL
against different baselines on four different tasks.
As indicated, the proposed SoftMCL consistently
outperformed all baselines for different tasks,
demonstrating the superiority of the proposed
SoftMCL in capturing affective information in
addition to semantic learning.

Moreover, the proposed SoftMCL performs sig-

Figure 3: The effect of different balance coefficient.

(a) IMDB (b) MR

Figure 4: The effect of different temperature.

nificantly better than DeBERTa on all datasets for
four different sentiment-related tasks, indicating
the effectiveness of the proposed momentum con-
trastive learning method. Compared with other
sentiment-aware pre-trained methods, the improve-
ment mainly comes from twofolds. First, the va-
lence ratings are introduced as soft labels to su-
pervise contrastive learning. Further, the CL is per-
formed on both word- and sentence-level to guide
the model to learn more fine-grained sentiment fea-
tures.
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(a) IMDB (b) MR

Figure 5: The effect of different momentum coeffi-
cient.

(a) IMDB (b) MR

Figure 6: The effect of different queue size.

4.5. Ablation Study
We successively removed word-level pre-training
(WP), sentence-level pre-training (SP), and the mo-
mentum CL (MoCL) to investigate whether it would
reduce performance. The bottom rows of Tables 2,
3, and 4 show the ablation results, indicating each
removal produces a varying degree of performance
decline. This also proves the necessity of tailoring
pre-training paradigms for sentiment-related tasks.
The word- and sentence-level pre-training tasks
capture affective information in different granularity,
and combining multi-granularity pre-training bene-
fits performance improvement.

Further, SoftMCL w/o sentence-level pre-training
is worse than w/o word-level pre-training in most
circumstances. The performance decline can be
consistently observed on aspect-level sentiment
classification tasks. The rationale is that the global
context is essential for analyzing aspect sentiments
while focusing only on words leads to less robust
prediction.

By removing the momentum queue and encoder,
the proposed SoftMCL will degenerate to only using
contrastive samples from the same batch for CL.
This will decrease the number of contrastive sam-
ples, thus limiting the performance of the proposed
SoftMCL.

4.6. Impacts of Parameters
Balance Coefficient. The hyperparameters λ1 and
λ2 in Eq. (8) were applied to control the contribu-
tion of word- and sentence-level CL to the total
training. Figure 3 investigates the effect of different

combinations of these two parameters. The obser-
vation is that the MLM loss is still essential for the
pre-training. When λ1 = 0.25 and λ2 = 0.25, the
SoftMCL can achieve the best results on IMDB and
MR datasets.
Temperature. The temperature τ in the training
loss of CL controls the density of the softmax func-
tion. Figure 4 shows the effect of temperature on
IMDB and MR of the SoftMCL. As indicated, all
the best results can be achieved using a tempera-
ture τ = 0.1. Smaller temperatures benefit training
more than higher ones, but extremely low tempera-
tures are more challenging for CL due to numerical
instability.
Momentum Coefficient. The momentum coeffi-
cient μ can be used to update the parameters of
the momentum encoder, making the momentum
encoder evolve more smoothly than the original en-
coder. Figure 5 shows the effect of the momentum
coefficient on IMDB and MR datasets. As indicated,
a relatively large momentum, e.g., μ = 0.9 works
much better than a smaller one, suggesting that
a slowly evolving original encoder is essential to
utilize the momentum queue.
Queue Size. The size of the momentum queue
determines the number of contrastive samples that
can be stored. Figure 6 evaluates the impact of
queue size on the performance of the SoftMCL. As
indicated, the best performance can be achieved
when the size is 1024. A large queue requires bet-
ter hardware but introduces more noise samples.

4.7. Training Analysis
Figure 7 shows the training loss curve of the pro-
posed SoftMCL on word- and sentence-level pre-
training. The SoftMCL model gradually converges
within 40,000 steps for word-level pre-training since
enough emotional tokens can be introduced from
each batch for word-level CL training. Even if the
batch size setting for sentence-level pre-training
limits the number of samples used for CL in a
batch, the SoftMCL can still converge quickly within
20,000 steps. This is mainly determined by the
contrastive samples introduced by the momentum
queue. The soft samples can be stored and ap-
plied for training in other batches. The higher the
quality of the contrastive samples the momentum
queue provided, the better the representation can
be learned by the SoftMCL.

5. Conclusion

This study proposed a soft momentum contrastive
learning for sentiment-aware pre-training on both
the word- and sentence-level to enhance the PLM’s
ability to learn affective information. The continuous
affective ratings are adopted to guide the training



15020

(a) SoftMCL word-level pre-training (b) SoftMCL sentence-level pretraining

Figure 7: Training curve of the proposed SoftMCL on word- and sentence-level pretraining.

of CL precisely. A momentum queue was intro-
duced to expand the contrastive samples, allow-
ing storing and involving more negatives to over-
come the limitations of hardware platforms. Exten-
sive experiments on four different sentiment-related
tasks have proven the effectiveness of the proposed
SoftMCL method.

Future works will attempt to incorporate the sen-
timent information into decoder-only architecture to
achieve the sentiment expression ability for gener-
ative models.
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A. Related Works

The appendix briefly reviewed the related works of
sentiment embeddings and sentiment-aware pre-
training.

A.1. Sentiment-enhanced Embeddings
Using distributed representation to map words into
latent space, the technique of word embeddings
could make semantically related words appear
closer to one another. These word embeddings can
serve as the input for various neural network mod-
els to leverage the contextual information in large
corpora, thus benefiting many NLP tasks (Wang
et al., 2019, 2020). Unfortunately, the traditional se-
mantic word embeddings are not sufficiently practi-
cal or feasible when directly used for sentiment
analysis tasks. Several studies (Agrawal et al.,
2018) have reported that good is very similar to bad
in vector space because these words are commonly
used in similar contexts despite being opposite in
sentiment. As a result, two sentences with similar
contexts, respectively containing good and bad, will
be assigned a similar sentence representation.

Previous studies have suggested using
sentiment-aware pre-training (Abdalla et al., 2019;
Fu et al., 2018; Lan et al., 2016; Ren et al.,
2016; Tang et al., 2016) or sentiment refinement
(Utsumi, 2019; Yu et al., 2018b) to encode external
knowledge into word representation to enrich the
model with sentiment information.
Sentiment-aware Pre-training. The C&W model
(Collobert and Weston, 2008; Collobert et al., 2011)

is typically extended to train on a corpus with sen-
timent labels to learn sentiment embeddings from
scratch. Tang et al. (2016) proposed an end-to-end
architecture with different loss functions to incorpo-
rate sentiment and semantic information of words.
Ren et al. (2016) further integrated topic informa-
tion into sentiment embeddings to learn a multi-
prototype topic and sentiment-enriched word em-
beddings. Felbo et al. (2017) used a bi-directional
LSTM model trained from scratch on almost one
billion tweets to obtain context-aware sentiment
embeddings.
Sentiment Refinement. An alternative method is
to adjust pre-trained word embeddings with exter-
nal word- or sentence-level knowledge using an
embedding refinement model and then leverage
the modified embeddings for sentiment analysis.

The refinement model could use affective lexi-
cons to enrich word-level sentiment information to
pre-trained word embeddings. Yu et al. (2018a)
and (2018b) extracted VA ratings from affective lex-
icons to pull similar sentiment words together in the
latent space. Ye et al. (2018) used a joint learning
approach to integrate sentiment into word embed-
dings by predicting both word- and sentence-level
sentiment scores.

A.2. Sentiment-aware Transformers
For sentiment-related tasks, several studies pro-
posed to train a transformer-based model by being
supervised with sentiment labels as either a pre-
training or a post-training task. For example, ? pro-
posed BERT-PT, which conducts sentiment-related
post-training on the corpora to benefit aspect-level
sentiment analysis. Tian et al. (2020) proposed
SKEP to introduce three predictions with sentiment
knowledge to learn a unified sentiment represen-
tation for various sentiment applications. Zhou
et al. (2020) proposed SENTIX to extract domain-
invariant sentiment features from large-scale review
datasets, which can then perform cross-domain
sentiment classification without fine-tuning. (Yin
et al., 2020) proposed SentiBERT, which applied
a bi-attention mechanism on top of the BERT rep-
resentation to learn phrase-level compositional se-
mantics. Ke et al. (2020) proposed SentiLARE,
which adopted a label-aware masked language
modeling to learn sentiment-aware language rep-
resentation. (Li et al., 2021) proposed SCAPT to
obtain implicit and explicit sentiment polarity by
aligning the representation of implicit sentiment ex-
pressions to those with the same polarity.


