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Abstract
Semantic parsing is the task of translating natural language into a structured, formal semantic representation that
can be interpreted by machines. These semantic representations are organized with complex structures. While
various models have been developed for semantic parsing, there has been limited focus on generating semantic
representations with well-formed structures. In this study, we introduce a score-based method to select well-formed
outputs from candidates generated by beam search algorithms. Our experiments focus on parsing texts into
discourse representation structures, which are innovative semantic representations designed to capture the meaning
of texts with arbitrary lengths across languages. Our experimental results demonstrate that models utilizing the
proposed method can reduce the number of ill-formed outputs and improve F1 scores in English. Furthermore, our
final model achieves significant improvements in German, Italian and Dutch zero-shot DRS parsing by effectively
preventing ill-formed outputs.

Keywords: semantic parsing, discourse representation structure, well-formed structure, score-based selec-
tion

1. Introduction

Semantic parsing is the task of translating natu-
ral language into a formal semantic representation
that can be comprehended and interpreted by ma-
chines using logical structures. These semantic
representations can take the form of executable
programming code that can be directly run by op-
erating systems (Zettlemoyer and Collins, 2005).
Also, they can manifest as symbolic representa-
tions of the meaning within textual content, allowing
for logical inference and language reasoning (Bos,
2008; Banarescu et al., 2013).

Whether the goal is to execute programming
code or make logical inferences, it is crucial that the
semantic representations produced by the parser
are well-formed and adhere to the syntactic and se-
mantic rules of the respective formal systems. How-
ever, the neural network-based approaches (Dong
and Lapata, 2016; Alvarez-Melis and Jaakkola,
2017; Cheng et al., 2017) in semantic parsing, such
as AMR parsing (Damonte et al., 2017; Konstas
et al., 2017; Lee et al., 2022; Bai et al., 2022) and
DRS parsing (Liu et al., 2018; van Noord et al.,
2018; Liu et al., 2021; Wang et al., 2023), has
predominantly focused on enhancing the parser’s
performance in terms of accuracy, often at the ex-
pense of ensuring that the generated outputs are
well-formed.

Discourse Representation Structure (DRS) is an
innovative semantic representation based on Dis-
course Representation Theory (DRT; Kamp and
Reyle 1993), designed to capture a wide range
of linguistic phenomena, including discourse rela-
tions, the interpretation of pronouns, and temporal

expressions, in texts of varying lengths and across
multiple languages. Due to its intricate structures,
the issue of producing ill-formed semantic repre-
sentations poses a more significant challenge in
DRS parsing compared to other semantic repre-
sentations. However, recent DRS parsers focusing
on clauses (van Noord et al., 2018, 2019; Liu et al.,
2019b; van Noord et al., 2020; Wang et al., 2021;
Liu et al., 2021), trees (van Noord et al., 2018, 2019;
Liu et al., 2019b; van Noord et al., 2020; Wang et al.,
2021; Liu et al., 2021), and graphs (Poelman et al.,
2022; Wang et al., 2023) have made limited efforts
in ensuring the generated DRSs with well-formed
strcutures.

In order to alleviate the problem of generating
ill-formed semantic representation, we propose
a score-based selection method with the help of
beam search algorithms. The beam search algo-
rithm is applied to generate a batch of DRS candi-
dates together with scores. We rank the candidates
according to the scores and select the well-formed
DRSs as the final outputs.

The experiments are conducted on the Parallel
Meaning Bank (PMB; Abzianidze et al. 2017), a
standard benchmark for DRS parsing. We specif-
ically transform DRSs into their graph format in
the experiments, focusing on DRS graph parsing.
The results of the experiments demonstrate that
the final models using the score-based selection
method, exhibit an improved capability to generate
well-formed DRSs compared to the baseline mod-
els. Additionally, the models achieve a substantial
increase in F1 scores on the test data. The key
contributions of this work can be summarized as
follows:
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• Our primary focus centers on the task of well-
formed DRS parsing. To achieve this, we
propose score-based method with the help
of the beam search algorithm, a commonly
used technique in sequence generation tasks,
to generate a greater number of well-formed
DRS representations.

• The models equipped with the score-based se-
lection method yield significant improvements
in F1 scores for DRS graph parsing, primarily
through the mitigation of ill-formed DRSs.

• The proposed method enhances the robust-
ness of DRS parsers, leading to a substan-
tial reduction in ill-formed DRSs in multilingual
zero-shot DRS parsing.

We release the detailed experimental
settings and code that are available at
https://github.com/LeonCrashCode/
DRS-Cross-Lingual-Training.

2. Related Works

2.1. Semantic Parsing
Semantic parsing is a well-established task with
diverse applications (Woods, 1973). Semantic rep-
resentations can be broadly categorized into task-
specific and general-purpose formalisms. Task-
specific semantic parsers primarily depend on lex-
ical semantics, hand-crafted templates, and fea-
tures specific to the task (Dong and Lapata, 2016;
Alvarez-Melis and Jaakkola, 2017; Cheng et al.,
2017; Dong and Lapata, 2018; Cai et al., 2021;
Scholak et al., 2021; Qi et al., 2022; Li et al., 2023;
Ni et al., 2023; Nguyen et al., 2023). In contrast,
general-purpose semantic parsers are based on lin-
guistic features and are designed to handle a wide
range of linguistic phenomena, such as semantic
roles, presuppositions, and anaphora (Damonte
et al., 2017; Konstas et al., 2017; Lyu and Titov,
2018; Liu et al., 2018; van Noord et al., 2018; Liu
et al., 2019a; van Noord et al., 2019, 2020; Cai and
Lam, 2020; Poelman et al., 2022; Lee et al., 2022;
Bai et al., 2022; Drozdov et al., 2022; Wang et al.,
2023; Vasylenko et al., 2023; Martínez Lorenzo
et al., 2023).

2.2. Well-Formed Discourse
Representation Structure Parsing

The early work on DRS parsing introduced Boxer
(Bos, 2008), an open-domain semantic parser that
generates DRS representations in box form by
leveraging the syntactic analysis provided by a ro-
bust CCG parser (Curran et al., 2007). Due to
the constraints imposed by CCG derivations, this
parser tends to produce well-formed DRS, although

Algorithm 1 Score-Based Selection
1: Input: {(Y j , sj)}n
2: Output: Y ∗ = NULL
3: [Y 0, Y 1, . . . , Y n] = Sort({(Y j , sj)}n)
4: for j ← 1 to n do
5: if IsWellFormed(Y j) then
6: Y ∗ ← Y j

7: Break
8: end if
9: end for

10: if Y ∗ is NULL then
11: Y ∗ ← Y 0

12: end if

its accuracy is relatively low. With the advent of
neural networks, recent DRS parsing models pre-
dominantly rely on sequence-to-sequence archi-
tectures. For instance, Liu et al. (2018) employed
a finite-state machine to govern sequential gener-
ation, aiming to prevent the generation of invalid
tokens during inference.

3. Method

In this section, we first present the base model
employed for building a DRS parser. Then, we
implement the beam search algorithm to generate
output candidates and introduce the score-based
method, which is used to choose the well-formed
candidate as the final output.

3.1. Models
Following the previous work (Wang et al., 2023),
DRS graph parsing is modelled as sequence-
to-sequence generation task. We adopt pre-
trained language models as our baseline mod-
els. The input text is a sequence of words, X =
[x0, x1, . . . , xn], where n is the length of the input
words. The trained model generate a sequence of
DRS symbols, Y = [y0, y1, . . . , ym], where m is the
length of the outputted sequence.

3.2. Candidate Generation
The models are trained using input text sequences
paired with the corresponding gold DRS symbols.
After training, we adopt the beam search algorithm
to generate a set of output candidates. In the ith
step of this process, a set of candidate tokens Ti is
predicted:

Ti = BeamSearch(Ti−1, X), (1)

where |Ti| = |Ti−1| = n, n is the beam size. At
the end of the inference process, we obtain a set
of sequences Y n, where Y j = [tj0, t

j
1, . . . , t

j
m] and

tji ∈ Ti is a candidate token. Each sequence Y j

https://github.com/LeonCrashCode/DRS-Cross-Lingual-Training
https://github.com/LeonCrashCode/DRS-Cross-Lingual-Training
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is associated with a score, denoted as sj , which is
computed by averaging the scores of all the tokens
within the sequence:

sj =
1

m

m∑
i=0

sji , (2)

where sji is the score assigned to token tji , provided
by the beam search algorithm.

3.3. Score-Based Selection
Algorithm 1 show the score-based selection ap-
proach. This algorithm operates on a set of candi-
date sequences, each associated with correspond-
ing scores, {(Y j , sj)}n. First, we sort the set of can-
didate sequences by their scores, ordering them
from highest to lowest using the function Sort.
Then, we iterate through the candidates and as-
sess whether they are well-formed or not using
the function IsWellFormed to obtain the first well-
formed sequence chosen as the final output.1 If all
candidates are ill-formed, we choose the one with
the highest score by default.

4. Experiments

We conduct experiments to investigate the effec-
tiveness of the score-based method along with the
beam search.

4.1. Experimental Settings
Data. We conducted our experiments on the stan-
dard benchmark: the Parallel Meaning Bank (PMB;
Abzianidze et al. 2017) in versions 4.0.0. These
benchmarks include English, German, Italian, and
Dutch data annotated with DRS graphs. The data
is categorized into gold and silver subsets. The
gold data is annotated by experts, while the silver
data is automatically annotated and corrected by
humans. Following the previous work, we divided
the data into train, development, and test sets.

4.2. Results
Models. The baseline model is built on the mT0
pre-trained language model (Muennighoff et al.,
2023) with the model card mT0-large.2 A sum-
mary of the models used in our experiments is
shown below:

• mt0-g The model is fine-tuned with the gold
train data and utilizes a greedy inference strat-
egy for parsing.

1The function IsWellFormed is realized according
to the ud-boxer at https://github.com/WPoelman/
ud-boxer/blob/master/ud_boxer/sbn.py

2https://huggingface.co/bigscience/
mt0-large

dev test
F1 ↑ IF ↓ F1 ↑ IF ↓

mt0-g 95.16 1.28 95.33 1.04

w/ bs

4 95.24 1.34 95.47 0.95
8 95.24 1.34 95.47 0.95
16 95.24 1.34 95.47 0.95
32 95.24 1.34 95.47 0.95

w/ sbs

4 95.76 0.29 96.09 0.00
8 95.76 0.29 96.09 0.00
16 95.85 0.19 96.09 0.00
32 95.85 0.19 96.09 0.00

mt0-sg 95.81 1.03 95.93 0.57

w/ bs

4 95.86 0.95 95.94 0.48
8 95.86 0.95 95.94 0.48
16 95.86 0.95 95.94 0.48
32 95.86 0.95 95.94 0.48

w/ sbs

4 96.19 0.19 96.34 0.09
8 96.19 0.19 96.20 0.09
16 96.22 0.10 96.40 0.00
32 96.22 0.10 96.26 0.00

Table 1: Results on development and test data
for English DRS graph parsing with various beam
sizes. The IF (%) column is the percentage of ill-
formed outputs. The best scores are highlighted in
bold.

• mt0-sg The model is initially fine-tuned on a
combination of silver data and gold train data.
Following this, the model is further fine-tuned
on the gold train data and utilizes a greedy
inference strategy for parsing.

• w/ bs Given the well-trained model, the beam
search algorithm is utilized to produce a set of
candidate outputs, and the candidate with the
highest score is selected as the final output.

• w/ sbs Given the well-trained model, the
beam search algorithm is employed to gener-
ate a set of candidate outputs, and the score-
based selection method is used to select well-
formed outputs.

Training. The models are fine-tuned with an ini-
tial learning rate of 0.001 in 100 epochs. The op-
timizer used is AdamW (Loshchilov and Hutter,
2019), along with a linear learning rate scheduler.
The batch size is 8.

Evaluation Metrics. We follow the previous work
(Wang et al., 2023) to use the F1 score calculated
by SMATCH (Cai and Knight, 2013) to evaluate

https://github.com/WPoelman/ud-boxer/blob/master/ud_boxer/sbn.py
https://github.com/WPoelman/ud-boxer/blob/master/ud_boxer/sbn.py
https://huggingface.co/bigscience/mt0-large
https://huggingface.co/bigscience/mt0-large
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de it nl
dev test dev test dev test

F1 ↑ IF ↓ F1 ↑ IF ↓ F1 ↑ IF ↓ F1 ↑ IF ↓ F1 ↑ IF ↓ F1 ↑ IF ↓
mt0-g 85.84 4.83 86.27 3.66 84.92 6.30 86.55 3.90 86.35 2.52 85.88 3.46

w/ bs
8 86.90 3.94 86.88 3.11 85.90 5.00 87.32 3.90 87.09 2.06 86.43 3.05
16 86.92 3.94 86.89 3.11 85.95 5.00 87.30 3.69 87.10 2.06 86.44 3.05
32 86.92 3.94 86.90 3.11 85.93 5.00 87.28 3.69 87.12 2.06 86.44 3.05

w/ sbs
8 88.38 0.72 88.28 0.37 87.92 0.56 88.68 0.65 87.73 0.23 87.69 0.61
16 88.49 0.54 88.28 0.37 88.03 0.37 88.79 0.43 87.74 0.23 87.78 0.41
32 88.73 0.18 88.39 0.00 88.00 0.37 88.86 0.22 87.90 0.00 87.90 0.00

mt0-sg 82.70 1.43 82.94 1.83 76.68 4.07 78.24 3.04 83.86 0.69 82.54 2.65

w/ bs
8 82.63 1.79 83.52 1.10 77.35 2.41 78.56 3.25 83.59 1.14 82.90 2.04
16 82.64 2.15 83.48 1.10 77.32 2.41 78.56 3.25 83.55 1.14 82.69 2.24
32 82.55 1.97 83.46 1.10 77.32 2.41 78.56 3.25 83.55 1.14 82.92 2.04

w/ sbs
8 83.34 0.72 83.93 0.00 78.61 0.37 79.87 0.00 84.07 0.00 83.52 0.41
16 83.55 0.72 83.89 0.00 78.63 0.19 79.90 0.00 84.03 0.00 83.61 0.20
32 83.31 0.72 83.52 0.18 78.68 0.00 79.90 0.00 84.04 0.00 83.70 0.20

Table 2: Results on development and test data for DRS graph parsing for German (de), Italian (it) and
Dutch (nl) in zero-shot settings. The IF (%) column is the percentage of ill-formed outputs. The best
scores are highlighted in bold.

F1 ↑ IF ↓
UD-Box (Poelman et al., 2022) 81.8 0.0
N-Boxer (Poelman et al., 2022) 92.5 2.3
MLM (Wang et al., 2023) 94.7 0.3
ours 96.4 0.0

Table 3: Results on test data for English DRS
graph parsing, comparing to the state-of-the-art
systems. The IF (%) is the percentage of ill-formed
outputs.

DRS parsing . Furthermore, we compute the per-
centage of ill-formed outputs to measure the quality
of the generated DRS graphs.

Engish DRS Parsing. Table 1 shows the devel-
opment and test results for English DRS parsing.
With more training data, mt0-g outperforms mt0-sg
by 0.65% and 0.60% F1 scores in development
and test data, respectively. Additionally, mt0-sg
generates more well-formed DRSs. The models
exhibit marginal improvement in F1 scores with the
beam search algorithm, and they also reduce the
generation of ill-formed DRSs. By using the pro-
posed score-based selection method, the models
achieve the best results and significantly reduce
the number of ill-formed DRSs. In the test data, all
the DRSs generated by mt0-sg with score-based
selection are well-formed.

Multilingual Zero-shot DRS Parsing. Table 2
shows the development and test results of multi-
lingual DRS parsing in zero-shot settings, where
we use a model trained on English data without
any additional language-specific training data to
parse texts in other languages. Interestingly, with
more training data (silver), mt0-sg underperforms
mt0-g. One reason for this is that zero-shot parsing
sensitive to the quality of the supervision, and zero-
shot parsers suffers from the potentially negative
impact of low-quality data (silver). The models us-
ing beam search algorithms (w/bs) exhibit marginal
improvements in F1 score but do not succeed in
reducing the number of ill-formed DRSs, and, as
the batch size increases, the number of generated
ill-formed DRSs does not decrease. On the other
hand, the models equipped with the score-based
selection method (w/ sbs) significantly prevent the
generation of ill-formed DRSs.

Comparison with Previous Works. According
to the results in Table 1, we select mt0-sg using
score-based selection with a beam size of 16 as our
final model. As shownin Table 3, our final model at-
tains state-of-the-art results, achieving an F1 score
of 96.40% and generating well-formed DRSs (0.0%
ill-formed DRSs).

5. Conclusions

We introduced a score-based selection method
for semantic parsing, with the goal of generating
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well-formed semantic structures. The experiments
conducted on DRS parsing show that the models
equipped with this method not only achieve signifi-
cant improvements in F1 scores but also generate
more well-formed structures, both in monolingual
supervised settings and multilingual zero-shot set-
tings. Moreover, our final model attains state-of-
the-art results in the standard benchmarks of DRS
parsing.
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