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Abstract
Recent works demonstrate that voice assistants do not perform equally well for everyone, but research on
demographic robustness of speech technologies is still scarce. This is mainly due to the rarity of large datasets with
controlled demographic tags. This paper introduces the Sonos Voice Control Bias Assessment Dataset, an open
dataset composed of voice assistant requests for North American English in the music domain (1, 038 speakers,
166 hours, 170k audio samples, with 9, 040 unique labelled transcripts) with a controlled demographic diversity
(gender, age, dialectal region and ethnicity). We also release a statistical demographic bias assessment method-
ology, at the univariate and multivariate levels, tailored to this specific use case and leveraging spoken language
understanding metrics rather than transcription accuracy, which we believe is a better proxy for user experience.
To demonstrate the capabilities of this dataset and statistical method to detect demographic bias, we consider a
pair of state-of-the-art Automatic Speech Recognition and Spoken Language Understanding models. Results show
statistically significant differences in performance across age, dialectal region and ethnicity. Multivariate tests are
crucial to shed light on mixed effects between dialectal region, gender and age.

Keywords: speech corpus, automatic speech recognition, spoken language understanding, demographic
bias, bias detection

1. Introduction

One of the main applications of Automatic Speech
Recognition (ASR) is Spoken Language Under-
standing (SLU). SLU combines speech and natu-
ral language processing techniques and is used
in voice interfaces such as domestic voice assis-
tants in smart speakers. It typically combines
several tasks like intent classification and slot fill-
ing Tur (2011). Such a field of application raises
many challenges, especially around footprint and
privacy (always-on setting, edge processing like
in He et al. (2018); Saade et al. (2019)), proper
nouns and rare words recognition (e.g. for music
entities recognition, in Liao et al. (2023); Sainath
et al. (2021)) and acoustic robustness (far-field
noisy settings typical of the home environment, like
in Braithwaite and Kleijn (2019); Défossez et al.
(2020)).

However less research is directed on what we
could call demographic robustness of voice assis-
tants. There is some evidence though that ASR
systems do not perform equally well for everyone
(see Section 2). In particular, performance degra-
dation stemming from demographic factors – gen-
der, age, accent, race – can be observed, lead-
ing to our definition of demographic bias: when

*Independent methodologist in statistics

the performance of a speech recognition system
depends on the group of people it is evaluated
upon. Such research is nonetheless mostly fo-
cused on conversational use cases of the gen-
eral domain for dictation and the underlying met-
ric to optimize is transcription accuracy or Word
Error Rate (WER). We believe these are not rep-
resentative of voice assistant usage that focuses
on the recognition of short action-oriented com-
mands and that SLU metrics are likely to be a bet-
ter proxy for voice assistant user experience. The
correct execution of voice assistant requests in-
deed strongly depends on the recognition of iso-
lated and sometimes complex entities, rather than
on the exact transcription of the entire utterance.

In this work, we propose an open dataset, the
Sonos Voice Control Bias Assessment Dataset
(1, 038 speakers, 166 hours, 170k audio samples,
with 9, 040 unique labelled transcripts), composed
of voice assistant requests in the music domain
with a controlled demographic diversity (gender,
age, dialectal region and race). The dataset
is accompanied by a statistical bias assessment
methodology tailored to this use case, leveraging
intent and entity tagging through the Exact Match
(EM) metric rather than WER. The statistical tests
include a standard univariate approach, but also
multivariate models to identify possible mixed ef-
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fects. The proposed approach is illustrated on
state-of-the-art End-to-End (E2E) ASR and SLU
models. The code to reproduce our results is avail-
able on GitHub1.

2. Related Work

2.1. Bias Assessment
Existence of biases. A number of works investi-
gate the disparities in performance of commercial
and open source ASR systems across a variety of
speaker characteristics, most of them focusing on
variations of English. Among the most studied de-
mographic variables are native vs. non-native ac-
cents (dialectal region), gender, age, and race.

Evidence is mixed regarding gender: some stud-
ies found that ASR systems favor female speak-
ers Koenecke et al. (2020); Goldwater et al. (2010);
Adda-Decker and Lamel (2005); Sawalha and
Abu Shariah (2013); Feng et al. (2024) while oth-
ers found that male speakers have a better recog-
nition rate Tatman (2017); Garnerin et al. (2019,
2021), or no significant bias at all (Meyer et al.,
2020).

ASR systems tend to better recognize native
speakers vs. non-native ones Koenecke et al.
(2020); Palanica et al. (2019); Wu et al. (2020);
Tatman and Kasten (2017); Tatman (2020); Feng
et al. (2021, 2024) due chiefly to language variabil-
ity (regional and/or socio-linguistic), accents, artic-
ulation and speech rates. Evidence of commercial
ASR systems exhibiting racial biases can be found
in Koenecke et al. (2020); Tatman (2017) between
Black and White speakers. Finally, several studies
point out that younger speakers (18 − 30) are bet-
ter understood than children and seniors Sawalha
and Abu Shariah (2013); Feng et al. (2021). This
can be explained by the challenge represented
by child speech due to their shorter vocal tracts,
more variable speaking rate and inaccurate articu-
lation Qian et al. (2017).

Bias assessment methodology. Most of pre-
vious work focus on the average relative degrada-
tion of the transcription accuracy (through word,
character or phoneme error rates) across speaker
groups (e.g. male vs. female, native vs. non-
native, White vs. African-American). To the best
of our knowledge, no previous work aims at quan-
tifying demographic bias through SLU metrics.

Only a handful of prior studies propose univari-
ate statistical tests or models to find out whether
these mean variations are statistically significant.
Statistical tests such as Wilcoxon Rank Sum,
Kruskall-Wallis Garnerin et al. (2021, 2019) and
one-way analyses of variance (ANOVA) Feng et al.

1https://github.com/sonos/
svc-demographic-bias-assessment

(2024); Meyer et al. (2020) are used. Even fewer
studies consider second order effects with, for in-
stance, linear mixed-effects regressions Tatman
(2017); DiChristofano et al. (2022) (with speaker
and year as random effects) and mixed-effects
Poisson regressions Liu et al. (2021) (with speaker
as random effect and demographic tag of interest
as fixed effect).

2.2. Available datasets
There is a lack of standard benchmarks in the
literature for demographic bias assessment in
voice assistants Ngueajio and Washington (2022).
Though previous studies are extremely valuable,
the datasets used are often small in terms of num-
ber of audio samples, speakers and transcripts
variability. For instance, the one used in Tat-
man (2017) is made of 62 words read in isola-
tion by 80 speakers. Other studies use inter-
nal datasets such as VoiceCommand in Liu et al.
(2021). It was collected through a crowd-sourcing
campaign where a limited number of 95 partici-
pants were instructed to utter voice commands.
When not limited by the number of speakers, the
datasets are not representative of the voice assis-
tant use-case but instead comprise books or sto-
ries Panayotov et al. (2015); Bradlow et al. (2010),
broadcast news (Kalluri et al., 2021), conversa-
tional speech Oostdijk (2000); Kendall and Farring-
ton; Pitt et al. (2005), human-machine interaction
speech Cucchiarini et al. (2006), interviews Hazir-
bas et al. (2021), random paragraphs Weinberger
and Kunath (2011), and improvised speech Wang
et al. (2021); Bradlow et al. (2010).

One of the most recent attempts to publish an
open source (under the Creative Commons CC-0
license) dataset for demographic bias assessment
is the Artie Bias Corpus introduced in Meyer et al.
(2020), a manually annotated subset of the Com-
mon Voice (Ardila et al., 2019) test set comprising
1, 712 audio clips (≈ 2.4 hours), 1, 903 utterances,
3 gender classes, 8 age ranges and 17 English
accent classes. However, the metadata is self re-
ported and sometimes incomplete (the accent la-
bel is missing for around 33% of the data). This
dataset is also very imbalanced towards younger,
male, US English speakers. As pointed out by the
authors, one of the main limitations of this dataset
is its small size which has a direct impact on the
statistical power of the tests.

3. Sonos Voice Control Bias
Assessment Dataset

The Sonos Voice Control Bias Assessment
dataset addresses the usage of a voice assistant
for music control, which is reported as the most

https://github.com/sonos/svc-demographic-bias-assessment
https://github.com/sonos/svc-demographic-bias-assessment
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common use case2, and includes 170, 413 audio
samples in North American English (≈ 166 hours)
along with their transcripts, labels, and demo-
graphic metadata about the speaker. The dataset
was designed mostly for evaluation purposes, but
splits for training and development are also made
available. Audio samples were obtained follow-
ing a directed process (read speech) described in
the following sections, based on transcript and la-
bel production on the one hand, and on speaker
specification and selection on the other hand. The
dataset is available for download and can be used
for academic and/or research purposes3.

3.1. Transcripts and labels
Transcripts of this dataset are divided into a set
of 32 intents, each standing for a class of actions
which can typically be requested within the mu-
sic domain, related to playing music, controlling
the music stream, requesting information, switch-
ing, grouping and ungrouping devices, and man-
aging the user’s library. Intents can further specify
optional or required entities, in the form of slots,
to make their semantic interpretation, in terms
of action, complete and coherent. In the case
of PlayMusic or VolumeUp, such entities can
be names and titles from the music domain, or
level quantifiers, identified as e.g. artist or
volume_level, which fill up the action of content
playing with an actual, quantifiable or identifiable
value. The music entities (artist, song, album)
contain much more distinct values than the rest of
the entities, with respectively 1, 715 artists, 2, 643
songs and 1, 626 albums values found in all the
transcripts. There are 32 unique entities in the
dataset, distributed among all intents. Transcripts
and their labels (intents and slots) are generated
through a semi-automated process that is beyond
the scope of the present paper.

Two assistant interaction contexts are usually
considered. On one hand, the PlayMusic intent
(e.g. play the song Abbey Road) which is the
only one related to content initiation, with music
entities and arguably the most complex intent: a
third of the PlayMusic queries have 3 slots or
more. On the other hand, the rest of the 31 in-
tents are denoted Transport Control intents,
e.g. Forward (fast forward a little), Again (once
more), or VolumeUp (play louder). They are typ-
ically short queries, 80% of them have either 1
or no slot, and the number of possible phrasings
is limited. There is a total of 9, 040 unique tran-
scripts in the dataset, 8, 114 for the PlayMusic
intent and 926 for Transport Control intents.

2Adobe Digital insights 2018
3https://github.com/sonos/

svc-demographic-bias-assessment

Appendix A.2 provides provides more insights on
the ontology coverage.

3.2. Speaker demographic metadata
A total of 1, 038 speakers were selected following
three dimensions of demographic characteristics:
gender (male and female here, though we recog-
nize that gender cannot be captured by a binary
variable), age range (5 age ranges starting at 9
years old) and dialectal region. The latter dimen-
sion accounts for dialectal variation, e.g. pronunci-
ation and intonation contrasts and fluctuations in-
side the United States. Six regional groups rep-
resent native speakers of American English and
two groups represent non-native speakers resid-
ing in the USA, native of Asia (Asian) and Latin
America (LatinX), with internal variations being ex-
pected within each region or group. More details
on the choice and definition of these groups can
be found in Appendix A.1.

Ethnicity was unreported in the initial version of
the dataset. Though we made sure that regions
(and more specifically cities) where ethnic diver-
sity is prominent were represented in the data col-
lection, this lack of information made it impossi-
ble to quantify bias between different racial groups.
Some context can be found in Appendix A.4. We
therefore launched an additional campaign tar-
geting specifically Caucasians (50 speakers) and
African Americans (48 speakers), present only in
the test split. The gender distribution for these
speakers is balanced (49%−51%) and the regional
distribution is roughly similar to that of the rest of
the dataset. However, recruiting children under 16
proved difficult, therefore constraints imposed on
that age group were relaxed.

3.3. Audio samples
Each of the 1, 038 speakers have recorded 193
distinct transcripts on average, except for 9 to 16
year old children (328 speakers) who recorded only
96 transcripts on average and for speakers with
ethnicity information (98 speakers) who recorded
150 transcripts on average. This disparity is ex-
plained by the difficulties encountered when hir-
ing speakers from these specific demographic
groups. Recording conditions are uniformly clean
and close-field.

The total number of audio samples is 170, 413
over 9, 040 unique transcripts, (≈ 166 hours):
77, 515 (92.88 hours) for the PlayMusic intent
and 92, 898 (72.66 hours) for the Transport
Control intents. Train, dev and test splits are
finally created by splitting speakers among 10
speaker groups, each balanced in terms of demo-
graphic characteristics. Speaker groups 1 to 5 are
used for the train (428 speakers, 69, 206 samples)

https://blog.adobe.com/en/publish/2018/09/06/adobe-2018-consumer-voice-survey
https://github.com/sonos/svc-demographic-bias-assessment
https://github.com/sonos/svc-demographic-bias-assessment
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Split Samples Speakers Duration

Train 69, 206 428 68:49
Dev 6, 703 38 6:26
Test 94, 504 572 90:30

Table 1: Description of the dataset across splits in
terms of number of samples, number of speakers
and duration (h:min).

and dev (38 speakers, 6, 703 samples) splits and
speaker groups 6 to 10 for the test split (572 speak-
ers, 94, 504 samples). A description of the splits
can be found in Table 1.

Fig. 1 displays the audio sample distribution in
the test split of the dataset for each demographic
group. We see that the dataset is skewed towards
female and younger speakers. We also note that
the LatinX and Asian groups are slightly less pop-
ulated than the other dialectal regions.

Figure 1: Audio sample distribution in the test split
of the dataset in terms of age, gender, and dialectal
region. The number of samples in each group is
displayed under the group label.

The 3 demographic dimensions included in this
dataset (gender, age, dialectal region) amount to
80 different demographic groups (not considering
the smaller subset with ethnicity labels), that we
tried to keep reasonably balanced by a minimum
speaker distribution in each of them. As an illus-
tration, Table 2 displays the age and gender dis-
tribution for each dialectal region in the test split.
We believe that the coverage in terms of speak-
ers and audio samples in the Sonos Voice Control
dataset should allow to assess potential biases of
a voice assistant related to demographic charac-
teristics of speakers. Further descriptive statistics
can be found in Appendix A and B.

Dialectal region Samples Speakers Age distribution Gender distribution

Southern 15546 97

9− 16 : 17%
17− 28 : 23%
29− 41 : 34%
42− 54 : 15%
55− 100 : 11%

Female: 55%
Male: 45%

Western 13849 87

9− 16 : 19%
17− 28 : 28%
29− 41 : 24%
42− 54 : 20%
55-100: 9%

Female: 61%
Male: 39%

Inland North 12435 73

9− 16 : 10%
17− 28 : 24%
29− 41 : 34%
42− 54 : 18%
55− 100 : 14%

Female: 52%
Male: 48%

New England 6934 43

9− 16 : 20%
17− 28 : 32%
29− 41 : 31%

42-54: 9%
55-100: 8%

Female: 67%
Male: 33%

Mid Atlantic 18550 111

9− 16 : 17%
17− 28 : 23%
29− 41 : 26%
42− 54 : 19%
55− 100 : 15%

Female: 57%
Male: 43%

Midland 12554 73

9− 16 : 16%
17− 28 : 26%
29− 41 : 31%
42− 54 : 16%
55− 100 : 11%

Female: 63%
Male: 37%

LatinX 9408 56

9− 16 : 16%
17− 28 : 36%
29− 41 : 36%

42-54: 8%
55-100: 4%

Female: 66%
Male: 34%

Asian 5228 32

9− 16 : 23%
17− 28 : 36%
29− 41 : 35%

42-54: 4%
55-100: 2%

Female: 62%
Male: 38%

Table 2: Statistical distribution of audio samples for
each dialectal region in terms of age and gender in
the test split. In bold are the categories for which
we have less than 10% of data points.

3.4. Ethical considerations on the audio
collection

To perform the audio collection, we commissioned
a third-party data collection company to hire 1, 080
American English speakers (initially, later reduced
to 1, 039 for quality reasons) who met the set of
criteria we defined on ethnicity, age, gender, and
dialectal regions, based on self declaration. These
criteria amount to 80 distinct demographic groups
(not considering the smaller subset with known eth-
nicity), such as the 9-16 year old LatinX female
speakers group. We further imposed a minimum
number of speakers in each of these groups and a
minimum amount of audio recording per speaker
to guarantee a balanced distribution and enough
power for the statistical tests. We provided record-
ing scripts, as defined in 3.1.

The demographic category for a speaker was
based on self declaration and no other personal in-
formation was collected apart from gender, age, di-
alectal region and ethnicity. We also explicitly col-
lected consent from the speakers to re-distribute
audio recordings of their voice for non-commercial
academic and research purposes. The way the
data was collected and will be distributed is fully
compliant with the GDPR.
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The third-party data collection company in-
formed us that all participants were paid well above
minimum wage. Hourly rate ranges from $15 to
$40 per hour depending on the task requirements,
such as the task duration. The estimated time of
completion was tracked and adjusted based on
previous collections and internal testing of each
task to reflect the median time of completion.

All participant recruitment for child recordings is
targeted towards parents who worked with their
child(ren) to complete the recordings. The privacy
policy of the third-party data collection company
specifies that they do not process any personal
data of children under 16 years of age without con-
sent given or authorized by the holder of parental
responsibility over the child. The payment is done
directly to the parent of the child.

4. Bias Assessment Methodology

4.1. Approach

In this section, we present the proposed methodol-
ogy to assess the demographic biases of any given
ASR system in the specific context of a music voice
assistant. The SLU metric we choose as proxy for
user experience is Exact Match (EM, also called
utterance-level accuracy in some works Kashiwagi
et al. (2023)). An utterance i is said to be exactly
parsed (EMi = 1) if both the correct intent and
all the correct slots are retrieved (else EMi = 0).
In the case of a music voice assistant, EM is par-
ticularly relevant due to the intrinsic complexity of
the slots values, especially artists or songs names
that may be cross-lingual (e.g. Spanish songs or
artists in an English request) and might be harder
to pronounce for some demographic groups.

We propose to conduct statistical tests with lo-
gistic regressions McCullagh and Nelder (1989) in
order to assess the presence of demographic bias
within the SLU system, i.e. to show whether the ob-
served performance disparities are significant. EM
serves as binary response variable for the tests.
The subpopulations of interest are described by
categorical explanatory variables: gender, age,
dialectal region, and ethnicity.

Statistical testing with logistic regression helps
to identify the effect of a single variable (e.g. sin-
gling out the effect of gender), via univariate mod-
els (Section 4.2.1) on the one hand. It also al-
lows for identification of mixed effects (e.g. dialec-
tal region and gender) through multivariate ap-
proaches (Section 4.2.2) on the other hand, as
there could be demographic correlation between
variables. In any case, a descriptive analysis of
the data is always needed for the interpretation of
such tests.

The proposed methodology is valid under sev-

eral conditions. First, we assume that each obser-
vation is independent, i.e. we do not take into ac-
count the speaker-level effect. We may therefore
operate at the utterance-level for clarity of the in-
terpretation and results. Second, we suppose that
the speakers in our dataset are representative of
their sub-group. Third, we expect the response
variable (EM) to be a function of a linear combina-
tion of the considered explanatory variables (age,
gender, dialectal region, ethnicity). Finally, we pre-
sume that the transcripts’ difficulty is uniformly dis-
tributed among speakers (i.e. there are no speak-
ers who have more complicated utterances to pro-
nounce than others).

4.2. Statistical Analysis

4.2.1. Univariate models

Logistic regression is a powerful statistical tool to
measure demographic bias: it can shed light on
the magnitude of the bias on the response vari-
able through the estimated coefficients (fitted via
maximum likelihood) and odds ratios (ORs). The
probability that the Exact Match for observation i is
1: πi = P(EMi = 1) can be estimated by taking a
monotonic real function g(.) : [0, 1] → R such that
g(πi) = β0+β1xi, for instance the logit function:

g(πi) = ln πi

1− πi
with g−1(y) =

ey

1 + ey
, (1)

and xi the value of the explanatory variable for ob-
servation i, β1 its associated coefficient and β0 a
constant. The corresponding odds is:

Ωi(xi) =
P(EMi = 1)

P(EMi = 0)
=

πi

1− πi
= exp(β0+β1xi),

(2)
i.e. given xi, it is the relative chance of having
P(EMi = 1) compared to P(EMi = 0).

Illustrating this on the binary explanatory vari-
able gender, with xi = 1male, the OR is defined
as:

OR =
Ωi(1xi)

Ωi(11−xi
)
=

exp (β0 + β1)

expβ0
= expβ1, (3)

i.e. expβ1 represents the odds of a male speaker
to be exactly parsed compared to a female one, all
other things being equal. If OR = 1, then gender
has no impact on P(EMi = 1) (independence).

Additionally, we perform hypothesis testing
(Wald test Wald (1943)) on the estimated param-
eter β1 where the null is H0 : β1 = 0. The latter is
rejected at the α-level if the corresponding p-value
is lower than α. This can be easily extended to
non-binary categorical variables by following the
method described in 4.2.2. It is used to test if all
coefficients but the constant are null. Rejecting
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this null hypothesis means that at least one esti-
mated coefficient is not null, but it does not inform
us on which one it is. To get a better grasp at which
modality impacts the EM with respect to the refer-
ence modality, one must look at the individual p-
values of each coefficient (or, equivalently, at the
confidence intervals of the ORs). Note that every
coefficient must be interpreted with respect to the
reference group (e.g. female in the above exam-
ple).

4.2.2. Multivariate models

As mentioned previously, there might be confound-
ing variables that could lead to spurious correla-
tions and impact the statistical validity of our anal-
ysis. Gender is often described as such in the
literature Tatman (2017) and age can be another
one. To uncover such potential issues, we perform
adjustment tests by augmenting the previous uni-
variate models. For the sake of simplicity, let’s il-
lustrate the approach with two discrete variables:
gender (g = 1male) and dialectal region (dj = 1j,
with J = 6 modalities, leaving out the reference
group). For the observation i, the multivariate
model writes:

g(πi) = β0 +

J∑
j=1

β1jdij + β2gi. (4)

To assert whether gender could be a potential
confusion variable with respect to the dialectal re-
gion (i.e. are observed differences in EMs be-
tween dialectal regions due to gender imbalance?),
we compare model (4) to the univariate one:

g(πi) = β′
0 +

J∑
j=1

β′
1jdi. (5)

Our proposed procedure to assess whether
adding gender to the model adds significance, i.e.
H0 : β2 = 0, is as follows:

• Maximum Likelihood Estimation (MLE) of (4)
and (5).

• Log-likelihood ratio test (LLR). Lu is the log-
likelihood (natural logarithm of the MLE func-
tion) of (5) and Lm the one of (4). Under H0,
the test statistic T = 2(Lm − Lu) ∼ χ2

r where
r is the difference between the number of pa-
rameters of the two models. Similarly as be-
fore, H0 can be rejected at the α-level when
T > qr,1−α, where T is the test statistic and
qr,1−α the 1 − α quantile of a χ2 distribution
with r degrees of freedom.

Rejecting H0 implies that gender adds informa-
tion to the model. To further assess whether it con-
founds the effect of the dialectal region, we com-
pare the p-values of the coefficients associated to

the dialectal regions in (4) and (5). If the conclu-
sions of the Wald tests in (5) are changed (i.e. p-
values becoming lower or greater than the α level),
we can say that gender is a confounding factor
for dialectal region, else there is no statistical evi-
dence supporting this claim.

5. Bias Assessment Experiments

In the following we propose an illustration of the
proposed statistical method for bias assessment
on the SLU task. To do so, we take an off-the-
shelf ASR model (wav2vec2.0 from Baevski et al.
(2020)) that we fine-tune on part of the train split of
Sonos Voice Control bias assessment dataset to
get audio transcription. Intent Classification (IC),
Slot Filling (SF) and computation of the EM metric
are done by using a JointBERT SLU model Chen
et al. (2019). The goal of this Section is to demon-
strate the capabilities of our proposed dataset and
methodology to quantify demographic bias in voice
assistants. Consequently, the ASR and SLU mod-
els have not been particularly optimized for bias
mitigation.

5.1. Models
ASR model description. The chosen ASR is an
E2E Wav2Vec2-Large-960h model, developed by
Meta and pre-trained using self-supervised learn-
ing (SSL) on 960 hours of English speech data
from the Librispeech dataset introduced by Panay-
otov et al. (2015) and fine-tuned on a subset of the
train split of the Sonos Voice Control bias assess-
ment dataset: audio samples from speaker groups
2 and 3 (192 speakers). It represents 30, 602 audio
samples which amounts to 30.4 hours of data. The
entire dev split is used for validation.

In addition to the large wav2vec2.0 model, we
incorporate an extra layer with 1024 neurons and
LeakyReLU as the activation function followed by
a fully-connected layer and a final 40-dimensional
softmax layer, each dimension corresponding to a
character. This neural network architecture com-
prises a total of 316.5M trainable parameters. The
weights of the two added layers were randomly ini-
tialized, while the weights of the wav2vec2.0 were
initialized using the pre-trained weights.

This SSL model is then fine-tuned with the
additional layers, with a batch size of 12, dis-
tributed across 4 NVIDIA V100 32GB GPU cards.
Two optimizers are used: Adadelta Zeiler (2012)
for updating the additional layers’ weights and
Adam Kingma and Ba (2014) for fine-tuning the
SSL model, with initial learning rates of 1.0 and
1e−4 respectively. The maximum number of
epochs is set to 80: the best model on the vali-
dation is obtained at epoch 72, with a word error
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rate of 4.45% on the dev split of the Sonos Voice
Control bias assessment dataset. Processing an
entire epoch takes around 52 minutes. During
the fine-tuning process, a SpecAugment data aug-
mentation technique was applied to the audio sig-
nal Park et al. (2019). The ASR system has been
implemented by using the open source Speech-
brain toolkit Ravanelli et al. (2021).

SLU model description. The SLU model is
the bert-base-uncased version of the Joint-
BERT Chen et al. (2019) model, pre-trained on
BookCorpus (800M words) Zhu et al. (2015) and
English Wikipedia (2, 500M words). One linear
layer is added on top of BERT and the IC weight
in the cross-entropy loss is set to 0.01. The batch
size is 128 and the transcripts are sorted by length
and grouped into length buckets of size 10 in or-
der to ensure that batches are not padded too
much. The whole network (109M parameters) is
fine-tuned on the transcripts and labels of the full
train split of the Sonos Voice Control dataset. Dur-
ing training, each transcript has been augmented
once by replacing slot values by randomly drawing
from all possible values in the train split. We use
the Adam optimizer with a learning rate of 5e−5;
no dropout is applied. We train the model for 20
epochs and select the checkpoint achieving the
smallest weighted cross-entropy loss on the dev
set as final model.

5.2. Results
We compute the Exact Match Ratio (EMR, the frac-
tion of exactly parsed audio samples) on the test
split, using the fine-tuned E2E model for audio tran-
scription and the fine-tuned SLU model to retrieve
intents and slots. We find an EMR of 89% (76% for
PlayMusic and 99% for TransportControl)
and a WER of 2.5%. The variation of EMR per de-
mographic group can be found in Figure 2. Some
individual speakers (outlier points) are much less
well understood than others in the same demo-
graphic group. This is consistent with the liter-
ature (Tatman and Kasten, 2017; Tatman, 2020;
Feng et al., 2024). Consideration on speaker vari-
ability and more details on WER can be found
in Appendix C.

Applying the method described in Section 4, we
find statistically significant evidence of bias for all
considered explanatory variables in the univariate
setting at the 5% level. Regarding gender, men
are significantly better recognized than women
(OR = 1.05, p = 0.017). However, the OR is very
close to 1 and we see in panel (c) of Figure 2 that
the difference is slim.

Tests on the age variable show that children are
not recognized as well (OR = 0.85, p = 4.145e−8
for the 9-16 group) as younger adults (17-28yo, ref-
erence group), while older groups are increasingly

better recognized (ORs are 1.11, 1.48, and 1.70 for
29-41, 42-54, and 55-100 respectively, all p-values
are < 1e−4). Interestingly, we note that when iso-
lating Transport Control requests only (sim-
pler patterns, without music entities; see Sec-
tion 3.1 for the exact definition), the disparities ob-
served between children and younger adults are
not statistically significant anymore (p = 0.070).

For dialectal region, every group is better rec-
ognized than the Asian reference group. How-
ever, while requests from all American regional
groups have around 3 times more chance to be
exactly parsed than Asians’ (ORs are around 3,
all p-values are < 1e−89), this is only just slightly
the case for the LatinX group (OR = 1.15).
This is clearly visible in panel (b) of Figure 2.
On the smaller ethnicity dataset, we found that
Caucasian speakers are better understood than
African Americans (OR = 1.59, p = 5.5e−5). Addi-
tional univariate tests were performed; results can
be found in Appendix C.1.

The multivariate analysis introduced in Sec-
tion 4.2.2 is key to shine light on possible mixed
effects. We detect several confusion variables.
On one hand, dialect is a confounding factor
for gender: the LLR test is statistically significant
(T = 1748 > q7,0.05 = 14.07) and the coeffi-
cient associated to male is no longer significant
(p = 0.8 > 0.05). The difference observed in the
univariate case for gender was actually due to the
dialectal region. This hypothesis is confirmed by
the gender distribution of the Asian group found
in Table 2 (and to a lesser extent of the LatinX
group): it is more skewed towards female speak-
ers, while being also less well recognized than the
other groups.

On the other hand, combining dialectal region
and age brings more significance to the model
as in both cases (adjustments of dialectal region
on age and of age on dialectal region), H0 is re-
jected (respectively, T = 193 > q4,0.05 = 9.49 and
T = 1559 > q7,0.05 = 14.07). The conclusions
of the respective univariate tests are not changed
(Wald p-values are still lower than 0.05). How-
ever a cross-effect of age and dialectal region
is brought to light since the corresponding ORs de-
crease from the univariate to the multivariate case
(for instance, from 3.12 to 2.91 for the Mid-Atlantic
group). This means that some of the difference ob-
served between dialectal regions is actually due to
the age disparity (and vice versa). This effect can
be seen in Figure 3. Interestingly, younger Asian
and LatinX speakers are better understood while it
is the opposite for American regional groups.

By restricting our multivariate analysis to the sub-
set of observations for which we have the ethnic-
ity label, we did not find evidence of any confu-
sion bias between ethnicity and the 3 other de-
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(a) Age group (b) Dialectal region

(c) Gender (d) Ethnicity

Figure 2: Exact Match Ratio (EMR) per speaker’s demographic group. Points indicate individual speak-
ers.

mographic groups. Appendix C.2 displays the ex-
haustive and systematic analysis of all multivariate
tests.

Figure 3: Interaction effect on the Exact Match Ra-
tio (EMR) of age and dialectal region. By splitting
across dialectal regions, the differences in EMR
between age groups are getting wider compared
to Figure 2(a).

6. Conclusion and Discussion

This paper introduces the Sonos Voice Control
bias assessment dataset, an open corpus made
of 170, 737 audio samples (166 hours) from 1, 039
different speakers with their transcripts, labels and
demographic tags (age, gender, dialectal region
and ethnicity). We also propose a statistical bias
assessment methodology (open sourcing its im-
plementation), at the univariate and multivariate
levels, tailored to the specific context of voice as-
sistants. We consider Spoken Language Under-
standing (SLU) metrics measuring the interpretabil-
ity of a user’s request, rather than the standard
transcription accuracy, as we believe it is more
representative of end-to-end user experience. Af-
ter describing the dataset (Section 3) and the sta-
tistical methodology (Section 4), their capabilities
are illustrated with state-of-the-art ASR and SLU
models (Section 5). Results on this example show
statistically significant disparities in terms of SLU
metrics across age, dialectal region and ethnicity.
Second-order considerations allow to unveil mixed
effects between dialectal region, gender and age.
We hope that releasing this dataset and statistical
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methodology will foster research on demographic
bias for voice assistants.

We identify several limitations in this study. De-
scriptive analysis of the dataset shows that the em-
pirical distribution of a demographic variable of in-
terest is not the same for the different modalities
of another demographic variable of interest (e.g.
distribution of gender across dialectal regions; Ta-
ble 2). These differences are statistically signif-
icant (unveiled by non-parametric independence
tests; results are not presented here). Therefore
there is a selection bias in our dataset leading to
a confusion bias when analyzing data. It has to
be taken into account for results’ interpretation and
motivates the need to perform multivariate analy-
sis in addition to univariate tests (as seen with gen-
der in Section 5.2).

A side effect of controlling the request distribu-
tion in the dataset, so that they are representative
of a voice assistant in the music domain, is that
the recorded samples are not spontaneous, but
must follow an imposed transcript. This setting cre-
ates two main limitations in the dataset that might
amplify bias against some demographic groups.
First, evidence shows that the performance of ASR
systems degrades in spontaneous speech condi-
tions Nakamura et al. (2008) and this degradation
may not be uniform across all groups. Second, im-
posing the transcript necessarily erases possible
lexical and grammatical particularities of each pop-
ulation, which might also amplify bias.

However, recent research seems to suggest that
observed disparities in speech recognition accu-
racy rather stem from the acoustic model rather
than the language model Koenecke et al. (2020).
Moreover, the music voice assistant use case is
constrained to a small number of possible phras-
ings (think about how one can ask about a song,
an artist or a volume set). This dampens the ef-
fects of variability in wording. Moreover, while
reading is not a perfect simulation for speech that
is directed at voice assistants, it allows for con-
trolled collection and is the only feasible option for
large-scale data collection such as ours.

We also want to emphasize that the demo-
graphic description of the speakers in the dataset
has evidently strong limitations in terms of linguis-
tic, social and geopolitical representation, and is
only acceptable in terms of the linguistic approx-
imations required for the use case at hand. In
addition, any regional split over dialectal variation
can be considered as arbitrary, since it generalises
over partial demographic estimations and since di-
alectal variation can be viewed as a linguistic con-
tinuum rather than a set of contiguous spaces. We
also only consider a binary view of gender while
there are more fluid experiences. Other factors
such as literacy, level of education, social, cul-

tural and economical background DiChristofano
et al. (2022); Chan et al. (2022) could be taken
into account, as well as possible speech impair-
ments (e.g. dysarthria in Tu et al. (2016); Moro-
Velazquez et al. (2019) or cleft lip and palate
Schuster et al. (2006)).

Moreover, modeling explicitly the speaker effect
in the statistical analysis is possible (as a random
effect for instance as in Liu et al. (2021)) but would
increase the complexity of our approach without
bringing massive improvements. We argue that
the main goal of this paper is to propose a simple
yet effective statistical methodology to assess the
demographic bias of any given SLU system and
provide clear interpretation of the results.

Future work includes considering narrower age
ranges to study the effects of younger children
without reading capabilities, or elderly adults
whose speech patterns may deviate significantly
from standard speech. On another topic, it will
be extremely interesting to generate far-field and
noisy versions of the dataset by simulating realis-
tic acoustic conditions (through room impulse re-
sponse and reverberation simulation for instance):
the performance of ASR systems is indeed partic-
ularly degraded in these conditions, while they are
typical of domestic voice assistant usage.
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A. Appendix A: Sonos Voice Control
Bias Assessment Dataset,

additional descriptive statistics

A.1. Dialectal regions definition

Dialectal regions in America are defined based on
phonemic/phonetic, lexical, and syntactic features.
Speakers from a certain region may use certain vo-
cabulary or lexical items that are specific to their re-
gion (for example ‘gym shoes’ or ‘sneaker’ all refer
to the same athletic footwear but will be heard with
varying frequency depending on the geographic lo-
cation). In the case of voice assistants, particularly
within the music domain, lexical differences and
regionalisms do not pose many issues given the
short and straightforward nature of interactions. In
a similar way, syntactic features (such as the use
of ’done’ as an auxiliary verb in Southern English
to express the past tense: I done had enough) do
not pose many issues to speech recognition within
voice assistant domains.

Regional varieties are also reflected in specific
phonetic phenomena, such as non-rhoticity (drop-
ping of the /r/ consonant in all environments except
before a vowel, sometimes heard in Boston or New
York), PIN-PEN merger (the two vowel sounds /I/
and /E/ merge before nasal sounds to sound the
same, found in standard Southern American di-
alect), or COT-CAUGHT merger (/A/ and /O/ vow-
els to sound alike, heard in most of the country).
Vowel quality and, more generally, phenomena re-
lated to the sound system of English pose more is-
sues to voice recognition, especially in the music
domain. Depending on how speakers pronounce
music values and general queries, recognition may
vary.

Identifying dialectal regions for any area or lan-
guage is always imprecise. While what is defined
in our data is one way of interpreting American
English, there are of course many different ways
of dividing regionality and the features that exist
within these groups. Within any dialectal region,
the prominence of the specific features of that di-
alect will vary greatly. While some may be inclined
to further divide into even more specific groups,
having data that represents multiple ages, gen-
ders and demographics within each dialectal re-
gion was also of importance.

The definition of dialectal region was also im-
pacted by the necessity for adequate representa-
tion from each category, while also adhering to
other constraints such as time and budget. Cre-
ating more dialectal groups would potentially im-
pede the velocity of data collection or skew sample
sizes.

Selecting these dialectal regions also facilitated
easy identification of a user within a group. With-

out being able to listen to or speak with individuals
to ‘verify’ their dialectal region selection, having no
more than six dialectal groups facilitated data col-
lection with straight-forward parameters based on
geographic location.

The Asian and LatinX categories were defined
by identifying other large speaker groups in the US
that may interact with voice assistants. These two
user groups were defined as follows: home coun-
try must be in Latin America for LatinX, in South-
ern or Eastern Asia for Asian native language must
be Spanish for LatinX, any Asian language for
Asian The definition of the LatinX group is differ-
ent from the definition one may use for Chicano
English (also known as Mexican-American English
or Spanish English). Chicano English is primar-
ily spoken by Mexican Americans in south-western
states whose first language is English. We were in-
terested in a larger pool than only Mexican Amer-
ican speakers. The speakers in our LatinX group
are native Spanish speakers from any Latin Amer-
ican country. However, many of the features in
Chicano English are also exhibited in the LatinX
participant’s speech. For example, /D/ stopping, or
the replacing of the -th- sound with /d/ in words
like ‘there’ (‘dere’) was still prevalent. The distinc-
tion between /I/ and /i/ in some speakers is lost,
making words like ‘fit’ and ‘feet’ sound alike.

General monophthongization, which may be di-
rectly due to the quality of vowels in Spanish, is
another quality of Chicano English that was seen
in the LatinX group. The motivation behind criteria
based on language and country was again largely
due to time constraints, as it can be difficult to find
enough speakers when more constraints are ap-
plied to dialectal definitions. It also facilitated the
identification of speakers - being able to identify
based on home country and native language is
easier for participants than asking if they think they
speak a certain dialect of a language. The Asian
group included Southern and Eastern Asian coun-
tries, in order to account for large populations of
both regions in the US. While the Asian group has
much more linguistic diversity within the speakers
themselves, no further division was implemented
based on budgeting and time constraints. Looking
back, if we were to reproduce this approach, In-
dian English should probably have been separated
from the other Asian groups.
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A.2. Ontology description
Among all splits, there are 9, 040 unique transcripts,
8, 114 for PlayMusic and 926 for Transport
Control. Table 3 provide the number of unique
slot values for each slot name, e.g. there are 221
different radio names.

Slot name # of unique values

abs_volume 13

activity 8

album_name 1626

artist_name 1715

call_sign 404

container_qualif_after_artist 7

container_qualif_before_artist 9

container_type 5

content_type 16

destination_group 1

destination_target 21

except 2

frequency 230

genre 272

implicit_content 1

instead 2

library 22

location 66

mood 2

only 1

origin_target 12

personal_container_name 58

playback_mode 8

playlist 599

program 86

provider 12

radio_name 221

rel_volume 10

shuffle 1

song_name 2643

target 298

target_exception 32

too 3

volume_down_subj 8

volume_obj 111

volume_set_subj 28

volume_shift_subj 9

volume_up_subj 6

Table 3: Number of unique slot values per slot
name in the proposed dataset.

Table 4: List of available slot names per intent in
the proposed dataset.

Intent Corresponding slot names

AddToLibrary

• personal_container_name
• provider
• library
• content_type
• target

ChangeMusic
• provider
• content_type
• target

ChangeTarget

• instead
• container_type
• origin_target
• destination_target

CheckBattery • target

FollowArtist • provider

Forward
• provider
• target

GetInfos
• provider
• content_type
• target

GroupTargets

• only
• target_exception
• too
• except
• destination_group
• target

Like
• provider
• content_type
• target

Mute

• container_type
• only
• target_exception
• too
• provider
• except
• target
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Intent Corresponding slot names

NextSong
• provider
• container_type
• target

Pause
• provider
• container_type
• target

Play

• container_type
• only
• volume_obj
• target_exception
• too
• volume_down_subj
• provider
• except
• volume_set_subj
• instead
• target

PlayMusic

• container_type
• only
• container_qualif_after_artist
• genre
• target_exception
• radio_name
• activity
• call_sign
• program
• artist_name
• frequency
• container_qualif_before_artist
• except
• implicit_content
• shuffle
• song_name
• album_name
• target
• playlist
• playback_mode
• mood
• too
• location
• volume_obj
• provider
• volume_set_subj
• library
• instead

Intent Corresponding slot names

PreviousSong
• provider
• target

RemoveFromLibrary

• personal_container_name
• provider
• library
• content_type
• target

Repeat
• provider
• content_type
• target

RestartSong
• provider
• container_type
• target

Resume
• provider
• container_type
• target

Rewind
• provider
• target

Shuffle
• provider
• target

Stop

• container_type
• only
• target_exception
• too
• provider
• except
• target

StopAndStartTarget

• instead
• container_type
• origin_target
• destination_target

StopMode
• playback_mode
• provider
• target

UnfollowArtist • provider

UngroupTargets

• only
• target_exception
• too
• except
• target

Unlike
• provider
• content_type
• target

Unmute

• container_type
• only
• target_exception
• too
• provider
• except
• target
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Intent Corresponding slot names

VolumeDown

• container_type
• only
• abs_volume
• target_exception
• too
• volume_shift_subj
• rel_volume
• volume_down_subj
• provider
• except
• volume_set_subj
• target

VolumeSet

• container_type
• only
• volume_obj
• target_exception
• too
• except
• volume_set_subj
• target

VolumeUp

• container_type
• only
• abs_volume
• volume_up_subj
• target_exception
• too
• volume_shift_subj
•rel_volume
• provider
• except
• volume_set_subj
• target

Table 4 provides the complete list of available
slot names of each intent available in the SVC Bias
Assessment Dataset.

A.3. Additional descriptive statistics per
split

In this subsection of the appendix, we provide ad-
ditional figures showing the distribution, in terms of
both samples and speakers in each of the provided
split in the Sonos Voice Control Bias Assessment
Dataset.

A.3.1. Test split

Fig. 4 displays the speaker distribution in the test
split for each demographic group.

A.3.2. Train split

Fig. 5 displays the audio sample distribution in the
train split for each demographic group.

Figure 4: Speaker distribution in the test split of
the dataset in terms of age, gender, and dialectal
region. The number of speakers in each group is
displayed under the group label.

Figure 5: Audio sample distribution in the train split
of the dataset in terms of age, gender, and dialectal
region. The number of samples in each group is
displayed under the group label.

Fig. 6 displays the speaker distribution in the test
split for each demographic group.

A.3.3. Development split

Fig. 7 displays the audio sample distribution in the
development split for each demographic group.

Fig. 8 displays the speaker distribution in the de-
velopment split for each demographic group.

There is no non-native speaker (Asian or LatinX).
This is primarily due to the small size of this set
comprising only 38 speakers.
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Figure 6: Speaker distribution in the train split of
the dataset in terms of age, gender, and dialectal
region. The number of samples in each group is
displayed under the group label.

Figure 7: Audio sample distribution in the develop-
ment split of the dataset in terms of age, gender,
and dialectal region. The number of samples in
each group is displayed under the group label.

A.4. Ethnicity dataset
Race and ethnicity are inherently difficult to define,
as these words can mean different things to differ-
ent people. There are also constraints on what can
be asked or assumed of participants when work-
ing with third party providers. For these reasons,
users were asked to self-identify and we operated
under the assumption that a person of any racial
or ethnic group would know their own identification
better than us enforcing any strict parameters. It
should also be noted that dialects such as African
American Vernacular English (AAVE) are social di-
alects and are therefore not tied to geographical lo-
cation. While not all members of an ethnic group,
such as African American/Black, will exhibit fea-
tures of the associated dialect, for example AAVE,
this approach was agreed upon with the third party
provider in charge of hiring speakers.

Figure 8: Speaker distribution in the development
split of the dataset in terms of age, gender, and
dialectal region. The number of samples in each
group is displayed under the group label.

The ethnicity tag was only reported in the
second campaign that we launched for which 98
speakers have been recruited: 50 Caucasian and
48 African American speakers. We refer to this
smaller dataset, only present in the test split, as
the ethnicity dataset.

Fig. 9 displays the audio samples distribution in
the ethnicity subset for each demographic group.

Figure 9: Audio sample distribution in ethnicity
dataset in terms of age, dialectal region and gen-
der.

Fig. 10 displays the speaker distribution in the
ethnicity subset for each demographic group.

There is no children in this dataset as their re-
cruitment proved difficult. The distribution among
the dialectal regions is similar as the one of the
original test split. It is also balanced in terms of
gender (49% of male and 51% of female speakers).



15073

Figure 10: Speaker distribution in ethnicity dataset
in terms of age, dialectal region and gender.

B. Appendix B: Confusion bias

In this section of the Appendix, we provide the com-
plete confusion bias analysis.

B.1. Age

Similarly as in Table 2, Table 5 provides the gender
and dialectal region distribution for each age group
in the test split. In bold, we highlight the categories
for which there are less than 10% of data points.

Age group Samples Speakers Gender distribution Dialectal region distribution

9-16 15788 164
Female: 62%

Male: 38%

Asian: 7%
Inland-North: 8%

LatinX: 10%
Mid-Atlantic: 20%

Midland: 13%
New England: 9%

Southern: 16%
Western: 17%

17-28 25414 129
Female: 56%

Male: 44%

Asian: 7%
Inland-North: 12%

LatinX: 13%
Mid-Atlantic: 17%

Midland: 13%
New England: 9%

Southern: 14%
Western: 15%

29-41 28920 149
Female: 60%

Male: 40%

Asian: 6%
Inland-North: 15%

LatinX: 12%
Mid-Atlantic: 17%

Midland: 14%
New England: 7%

Southern: 18%
Western: 12%

42-54 14528 74
Female: 60%

Male: 40%

Asian: 2%
Inland-North: 15%

LatinX: 5%
Mid-Atlantic: 25%

Midland: 14%
New England: 4%

Southern: 16%
Western: 19%

55-100 9854 56
Female: 61%

Male: 39%

Asian: 1%
Inland-North: 18%

LatinX: 3%
Mid-Atlantic: 28%

Midland: 14%
New England: 6%

Southern: 18%
Western: 12%

Table 5: Statistical distribution of audio samples
for each age group in terms of gender and dialectal
region in the test split.

B.2. Gender
The following Table 6 provides the age and dialec-
tal region distribution for each gender in the test
split. In bold, we highlight the categories for which
there are less than 10% of data points.

Gender Samples Speakers Age distribution Dialectal region distribution

Female 55988 336

9− 16 : 17%
17− 28 : 25%
29− 41 : 31%
42− 54 : 15%
55− 100 : 11%

Asian: 6%
Inland-North: 12%

LatinX: 11%
Mid-Atlantic: 19%

Midland: 14%
New England: 8%

Southern: 15%
Western: 15%

Male 38516 236

9− 16 : 16%
17− 28 : 29%
29− 41 : 30%
42− 54 : 15%
55− 100 : 10%

Asian: 5%
Inland-North: 15%

LatinX: 8%
Mid-Atlantic: 21%

Midland: 12%
New England: 6%

Southern: 18%
Western: 14%

Table 6: Statistical distribution of audio samples for
each gender in terms of age and dialectal region
in the test split.

B.3. Ethnicity
Table 7 provides the age, gender and dialectal re-
gion distribution for each ethnicity group in the test
split.

Ethnicity African American Caucasian

Samples 7443 7183

Speakers 50 48

Age distrib.

17− 28 : 32%
29− 41 : 42%
42− 54 : 14%
55− 100 : 12%

17− 28 : 15%
29− 41 : 29%
42− 54 : 25%
55− 100 : 31%

Gender distrib. Female: 54%
Male: 46%

Female: 48%
Male: 52%

Dialectal region distrib.

Inland-North: 20%
Mid-Atlantic: 42%

Midland: 10%
Southern: 18%
Western: 10%

Inland-North: 19%

Mid-Atlantic: 15%
Midland: 17%

New England: 12%
Southern: 20%
Western: 17%

Table 7: Statistical distribution of audio samples
for each ethnicity tag in terms of age, gender and
dialectal region in the test split.

C. Appendix C: Experiments –
Exhaustive statistical analysis

We display here additional results obtained with
the off-the-shelf ASR model wav2vec2.0 and Joint-
BERT SLU model, demonstrating the capabilities
of our proposed dataset and methodology to quan-
tify demographic bias in voice assistants. Conse-
quently, we remind the reader that the ASR and
SLU models have not been particularly optimized
for bias mitigation.
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C.1. Univariate tests
While results of all univariate logistic regressions
were given in Section 5.2, we also performed addi-
tional, but not mandatory, univariate tests that can
be seen as complementary to the logistic regres-
sion.

C.1.1. Logistic regression on the ethnicity
subset

The 98 speakers for which we have an ethnicity tag
recorded 14, 626 audio samples forming the ethnic-
ity subset of the released dataset.

Performing univariate logistic regression for vari-
able on this subset revealed interesting results.

No evidence of demographic bias based on age
and gender was found. However, the univariate
logistic regression for dialectal region is statisti-
cally significant at the 5%-level. Looking deeper
in the statistical results, we see that the p-value is
close to the threshold (0.0049) and only the coeffi-
cient of Mid-Atlantic has a p-value below this
threshold (0.003). For all the other dialects, there
is no evidence of statistical bias with respect to the
reference category (Inland-North). Looking at the
odds-ratio, speakers belonging to the Mid-Atlantic
group have 0.6 times less chance to be recognized
than speakers from the Inland-North group.

C.1.2. Chi2 contingency test

The chi-squared test ( Pearson (1900)) is a sta-
tistical hypothesis test used to test for the indepen-
dence of several categories within a given popu-
lation. However, unlike the univariate logistic re-
gression, one cannot infer the direction of the bias
since there are no coefficient or odd ratios associ-
ated to this test.

Applied on the released test split, the chi-
squared tests confirm what the univariate logis-
tic regressions uncovered. All tests are statisti-
cally significant at the 5%-level: gender (p-value
= 0.01), age (p-value = 3e−80), dialect (p-value
≃ 0), ethnicity (p-value = 4e−5).

C.1.3. One-way ANOVA test

Another complementary univariate test is the One-
way ANOVA test (notably used in Meyer et al.
(2020) on the Character Error Rate). This test is
also known as the ”analysis of variance”. It com-
pares the means of at least 2 independent groups
to assess whether there is statistical evidence that
the associated population means are significantly
different.

With this test, we only found significant evidence
of bias for age (p-value = 1.36e−15) and dialectal
region (p-value = 3.41e−44).

C.2. Multivariate tests
Regarding potential mixed effects, we highlighted
the ones found in Section 5.2. Here we provide
the exhaustive and systematic analysis of all mul-
tivariate tests.

First, gender is not a confounding factor for age:
the test is statistically significant (T = 6 > q1,0.05 =
3.84) but the p-values of the multivariate and the
univariate tests are very close, therefore we can-
not conclude that gender is a confounding factor
for age. The conclusion is similar for age on gen-
der: the test is statistically significant at the 5%-
level (T = 388 > q4,0.05 = 9.49) but the p-values
and odds-ratios are very close, therefore there is
no confounding factor.

Similarly, there is no evidence that age is a
confounding factor for dialectal region as even if
the test is statistically significant (T = 1559 >
q7,0.05 = 14.07), the p-values and odds-ratios are
close, maintaining the conclusions of the univari-
ate test unchanged. We reach the same con-
clusion for dialectal region with the age variable
(T = 193 > q4,0.05 = 9.49).

Gender is not a confounding factor for dialectal
region since the test is not significant (T = 0.05 <
q1,0.05 = 3.84). The test is however significant the
other way around (T = 1748 > q7,0.05 = 14.07)
and the coefficient for male is no longer significant
at the 5%-level. We conclude that dialectal region
is a confounding factor for gender.

Each of the previous analysis are done on the
smaller ethnicity dataset in order to evaluate po-
tential mixed effects linked with ethnicity.

First, age is not a confounding factor for ethnicity
as the test is not significant (T = 1.7 < q3,0.05 =
7.81). The adjustment test of ethnicity on age is
significant (T = 14 > q1,0.05 = 3.84) but there is
no change on the conclusions about age (still no
significant age coefficients).

Similarly as above, gender is not a confounding
factor for ethnicity (T = 0.14 < q1,0.05 = 3.81).
Even the adjustment test is significant the other
way around (T = 16.8 > q1,0.05 = 3.84), conclu-
sions for gender are unchanged (still not signifi-
cant). Therefore ethnicity is not a confounding fac-
tor for gender.

Again, the conclusion is similar for dialectal re-
gion and ethnicity. The dialect is not a confound-
ing factor for ethnicity (T = 11 < q5,0.05 = 11.07).
And ethnicity is not a confounding factor for the di-
alect (T = 11 > q1,0.05 = 3.84 but the conclusions
of the univariate test remain unchanged).

C.3. Word Error Rate
We obtained a WER of 2.5% with the fine-tuned
w2v (Baevski et al., 2020). Fig. 11 displays the
variation of WER per demographic group.
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(a) Age group (b) Dialectal region

(c) Gender (d) Ethnicity

Figure 11: Word Error Rate (WER) per speaker’s demographic group. Points indicate individual speak-
ers.

Similarly as in Fig. 2, there are some cases of
high standard deviation.

C.4. Speaker variability

Fig. 2 in the main text, as well as Fig. 11 in the
previous section, showcase high standard devia-
tions in EMR and WER per speaker. Some indi-
vidual speakers (outlier points) are much less well
understood than others in the same demographic
group. This is consistent with the literature (for in-
stance Tatman and Kasten (2017); Tatman (2020)
also observe much larger WERs for some individ-
uals). Feng et al. (2024) note that the recognition
performance is affected by the large variability both
in the pronunciation and in language use within a
given speaker group.

Though it is not always possible to identify the
cause just by listening to the corresponding audio
clips, some speakers may have slight disfluencies
or hesitations when recording. Hesitation is diffi-
cult to perfect in the world of speech recognition,
as other constraints such as endpointing rules may
come into play and end recognition before the user
is finished speaking. Other speakers that simply

utter at a slower pace may also be less consistently
understood.

Lisps and other speech impediments are a third
example. Most speakers in the dataset do not
have any speech impediments, but it should be
noted that this can greatly affect the quality of
transcription. Most training data does not com-
prise atypical speech and therefore it is expected
that these cases would be less consistently under-
stood.
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