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Abstract

Information extraction (IE) aims to extract complex structured information from the text. Numerous datasets have

been constructed for various IE tasks, leading to time-consuming and labor-intensive data annotations. Nevertheless,

most prevailing methods focus on training task-specific models, while the common knowledge among different IE

tasks is not explicitly modeled. Moreover, the same phrase may have inconsistent labels in different tasks, which

poses a big challenge for knowledge transfer using a unified model. In this study, we propose a regularization-based

transfer learning method for IE (TIE) via an instructed graph decoder. Specifically, we first construct an instruction

pool for datasets from all well-known IE tasks, and then present an instructed graph decoder, which decodes various

complex structures into a graph uniformly based on corresponding instructions. In this way, the common knowledge

shared with existing datasets can be learned and transferred to a new dataset with new labels. Furthermore, to

alleviate the label inconsistency problem among various IE tasks, we introduce a task-specific regularization strategy,

which does not update the gradients of two tasks with ‘opposite direction’. We conduct extensive experiments on 12

datasets spanning four IE tasks, and the results demonstrate the great advantages of our proposed method.

Keywords: Information Extraction, Transfer Learning, Instruction Learning

1. Introduction

Information extraction (IE) is a task to extract

structured information (e.g., entities, relationships,

and events) from textual data. IE encompasses

many subtasks, including named entity recognition

(NER), relation extraction (RE), event extraction

(EE), and aspect-based sentiment analysis (ABSA).

It is a challenging task due to the large label space

and complex structure of various tasks.

Existing researches in IE can be categorized

into two main classes: task-specific and unified

models. Task-specific models (Chen et al., 2023;

Wadhwa et al., 2023; You et al., 2023; Ma et al.,

2023) entail designing a unique structure for each

individual task. These independent architectures

require higher development costs and resources.

Unified models, on the other hand, deploy a cohe-

sive framework to address multiple tasks simultane-

ously. Presently, unified models predominantly em-

ploy a generative framework, translating extraction

tasks into a sequence generation architecture (Lu

et al., 2022; Huang and Chang, 2023). Although

the frameworks are structurally unified, most of the

previous methods (Lu et al., 2022; Yan et al., 2023)

merely finetune the models on the target dataset,

disregarding the common knowledge within nu-

merous existing IE datasets, including ACE 2005

(Walker et al., 2006), CoNLL03 (Sang and Meul-

der, 2003), 16-res (Pontiki et al., 2016), and others.

This paper emphasizes the acquisition of shared

knowledge across these tasks and datasets.

˚ Corresponding author.

CoNLL03 example label mention

VICORP restaurants[ORG]

names Sabourin CFO.

PER -
ORG restaurants
LOC -
... ...

ACE05-Rel example label mention

The explosion comes
after a bomb exploded

at a restaurant[FAC] in

Istanbul[GPE], leading to
damage but no injuries.

PER -
ORG -
FAC restaurant
... ...

PartWhole: restaurant,Istanbul
... ...

ACE05-Evt example label mention

Hewas a segregationist who
once closed a restaurant

he owned[Trig] rather than
served African-Americans.

Trig owned

ORG: owned,restaurant

Place: -

PER: -
... ...

16-res example label mention

The Petrus and Vonglas’s

tiny restaurant[Asp] is as

cozy[Exp] as it gets, with that
certain Parisian flair.

Expression cozy
Aspect restaurant

Positive: cozy,restaurant

Negative: -

Neutral: -

Table 1: An example of inconsistent annotations

among different subtasks. : means the relation

labels. A relation label exists between two words

with underscores.

Nevertheless, several challenges persist in

knowledge transfer across distinct IE tasks. First,

the datasets originate from various IE tasks, result-

ing in substantial diversity in data structures. More

specifically, 1) Two datasets from the same subtask

may exhibit distinct entity or relation types. Thus,

the target datasets may contain new label classes

that do not occur in the source datasets; 2) Al-

though two entity or relation types are semantically

similar in different datasets, they are labeled with
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different names. For instance, the relation types

‘OrgBased_In’ in CoNLL04 and ‘PART-WHOLE’

in ACE05-Rel share the same semantic meaning,

signifying ‘locate in’; 3) Furthermore, certain labels

encompass the meanings of multiple other labels.

‘MISC’ of CoNLL03 is applied to label diverse mis-

cellaneous entities. ACE05-Rel utilizes ‘GEN-AFF’

to denote generic affiliations without specific ref-

erences. These labels with vague semantics sig-

nificantly influence the model’s learning process.

Second, in different datasets pertaining to distinct

IE subtasks, the same phrase may have inconsis-

tent labels owing to various annotation guidelines.

As depicted in Table 1, the phrase ‘restaurant’ in

several datasets related to different IE subtasks

exhibits different annotation information, including

‘ORG’, ‘FAC’, ‘Aspect’, etc. This discrepancy intro-

duces conflicts in the comprehension of the phrase

for various IE subtasks.

To address the aforementioned challenges, we

introduce a regularization-based transfer learning

method for IE (TIE) via an instructed graph de-

coder. First, we design an instructed graph de-

coder to learn task-shared knowledge by modeling

the various formats of different IE tasks as a graph.

Then, we propose a task-specific regularization

transfer strategy to resolve conflicting knowledge

among tasks. The instructed graph decoder con-

sists of two parts: 1) Instruction pool, which con-

tains manually crafted task-specific instructions for

each dataset of different IE tasks. These instruc-

tions serve as guiding text to facilitate model’s adap-

tation to different datasets and mitigate disparities,

thereby enhancing the generalization capability; 2)

Graph decoder, which decodes various formats of

different tasks into a unified graph structure with in-

structions. The task-specific regularization strategy

does not update the gradients of two tasks ‘in the

opposite direction’, for resolving conflicting knowl-

edge across tasks, ultimately preparing the model

for testing on the target dataset. The experimental

results demonstrate that our approach achieves

state-of-the-art in most of the IE datasets, even

with improvements in data-scarce scenarios.

The main contributions of this paper can be sum-

marized as follows:

• We propose a TIE method that explicitly mod-

els the common knowledge from various IE

datasets with an instructed graph decoder.

• A task-specific regularization strategy is de-

signed to help reduce the inconsistent labels

or conflicts across diverse IE tasks, by not up-

dating the gradients ‘in the opposite direction’

during transfer learning.

• Experiments on 12 datasets of four IE sub-

tasks show the advantages of our proposed

method. Moreover, our method is superior to

the baselines on low-resource and few-shot

scenarios1.

2. Related Work

Information Extraction Information extraction

(IE), deriving structured information from unstruc-

tured source data, is an essential task in natural

language processing (NLP). Information extraction

contains several subtasks, such as named entity

recognition (Marrero et al., 2013), relation extrac-

tion (Cui et al., 2017), event extraction (Wadden

et al., 2019), aspect-based sentiment analysis (Do

et al., 2019), etc. For a period of time, researchers

tend to work on these subtasks separately.

In recent years, Lu et al. (2022) proposes a gen-

erative unified information extraction (UIE) model

with structured extraction language and structural

schema instructor. The generative paradigm gener-

ates too much redundant information and has poor

completeness. The same authors then introduce a

new framework USM (Lou et al., 2023) with token

linking operations. However, USM brings unnec-

essary loss of time in both training and inference

periods. The Plusformer architecture harnessed

by Yan et al. (2023) requires high algorithmic com-

plexity, hence simplification is indispensable. Ping

et al. (2023) converts IE tasks into span classifica-

tion via the triaffine mechanism, but the reliability

on syncretic complex-label datasets has not been

validated.

With the advent of large language models (LLMs)

(Huang and Chang, 2023), there have been sig-

nificant changes in IE. ChatIE (Wei et al., 2023)

makes an initial attempt to use ChatGPT3.5 for

performing information extraction tasks, through

multi-turn conversations. The accuracy is not as

precise as expected. Li et al. (2023); Han et al.

(2023) assess the information extraction capabili-

ties of ChatGPT3.5 systematically, and find a gap

between ChatGPT3.5 and SOTA results. Instruc-

tUIE presented by Wang et al. (2023b) tests on 32

diverse information extraction datasets, employing

language model FlanT5-11B (Chung et al., 2022)

in a generative pattern. This method consumes

a significant amount of computational resources,

making the reproducibility of results challenging.

Given the aforementioned issues, our method

leverages a simple architecture and is capable

of addressing complex annotations, finally achiev-

ing commendable performances in both small and

large language model settings.

Gradient Regularization is a regularization tech-

nique for deep learning, in order to improve gen-

eralization performance and prevent overfitting (Li

1Our codes can be found in https://github.com/141for-

ever/TransferUIE
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and Spratling, 2023). This technique is widely de-

ployed for coordinating the training of multiple tasks

and preventing interference between them (Saha

et al., 2021; Lin et al., 2022). A previous study

illustrates that If the angle between the gradients

of the current task and the past task is acute, it

is less likely to increase the loss of the previous

task (Lopez-Paz and Ranzato, 2017). This finding

serves as a critical theoretical foundation for our

method, presenting a possibility that models can

resolve inconsistent knowledge of different tasks.

Transfer Learning for IE Transfer learning is an

important approach to enhance the generalization

of deep learning. The purpose of transfer learning

is to enhance the performance of models within

target domains by leveraging the knowledge from

correlated source domains (Zhuang et al., 2021). In

the field of IE, many works indicate the superiority

of transfer learning. When it comes to NER, Bhatia

et al. (2020) proposes a dynamic transfer network

to learn sharing parameters between tasks. Di et al.

(2019) addresses the label sparsity problem of rela-

tion extraction in a real-world scenario. By combin-

ing variational information bottleneck into a model

called SharedVIB which can search for structured

common knowledge, Zhou et al. (2022) boosts the

correlation between three event argument extrac-

tion tasks. However, these works merely focus on

the knowledge among one IE subtask (intra). In

contrast, our approach focuses on the inter-task

transfer. Moreover, we explore to resolve the incon-

sistent labels or conflicts during transfer learning.

3. Our Method

In this section, we introduce the framework of our

method (Figure 1), which consists of two parts:

instructed graph decoder and task-specific reg-

ularization. First, we manually craft instructions

for each dataset and utilize ChatGPT3.5 to para-

phrase, forming an instruction pool. Then, we

present an instructed graph decoder to obtain the

instruction-activating representations of the input

text. It also learns common knowledge by mod-

eling all the structured information with a graph

represented by a token matrix. Moreover, in order

to alleviate the conflicts between various IE tasks,

we present a task-specific regularization strategy

that does not update the gradients ‘in opposite di-

rection’ between source tasks during training on

source datasets, and finally finetune on the target

dataset.

3.1. Task Definition

We regard any single IE task as an instruction-

activating span annotation mission on dataset D.

Dataset Instruction Example

ACE04

Identify entities (organization, person,

vehicle, geographic, location, weapon,

facility) mentioned in the sentence.

CoNLL04

Explore the relationships work for,

locate in, base in, live in, and kill

someone between the entities location,

organization, people and other.

ACE05-Evt

Locate the mentioned event types:

acquit,..., trial hearing. Identify the

argument types: adjudicator,..., victim.

16-res

Find the sentiment (positive, negative

or neutral) of the sentence and identify

the expression, aspect element.

Table 2: One instruction example for four datasets

of different IE subtasks respectively.

Given an instance (x, E ,R, I) P D, where x =(
x1, . . . , x|x|

)
is the input sentence with |x| tokens.

E , R, I denotes the set of entity types, the set

of relation types and the set of instructions sep-

arately. Regarding the named entity recognition

task, R = H. As for the event extraction task,

E = T and R = A, where T regards the set of trig-

ger types or event types, and A represents the set

of argument roles. In reference to aspect-based

sentiment analysis task, E = tAspect,Expressionu

and R = tPositive,Negative,Neutralu. We aim to

achieve a scoring matrix M|x|˚|x|˚(|E|+|R|), which

can indicate the label of each span of the input

sentence. M [i, j, k] = 1 means the span (i, j) of
the input sentence has label k.

3.2. Instructed Graph Decoder

In this module, we first use an instruction pool to

translate the IE labels into instructions so that the

model can learn the representations of class ef-

fectiveness and capture new label classes. Then,

we apply a graph decoder based on instructions

obtained from the instruction pool to decode the

complex and various structures into a graph uni-

formly. We combine the instruction pool and the

graph decoder together, referring to them as an

instructed graph decoder.

Instruction Pool For various datasets or tasks,

the label spaces are different. We create a set of

instructions for each dataset D, all the instructions

are referred to as an instruction pool. Each instruc-

tion contains all entity types e P E and relation types

r P R of the corresponding dataset. In this way, the

model can learn representations of similar labels

and new classes.

For each dataset, we first write an instruction

manually. Take dataset 16-res of ABSA task as an

example, given entity types E and relation types

R, the instruction we designed artificially is: “An-

notate the polarity (positive, negative or neutral),
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Input Text:
<16-res> The staff was extremely 
accommodating and tended to my 
every need.

Selected Instruction:
<16-res> Find the polarity (whether 
positive or negative or neutral), 
expression, aspect in the text.

Context
Please rewrite the sentence ...
exhibit differences in syntax:

Manual Instruction
<16-res>Annotate the polarity
(positive, negative or neutral),
expression, aspect of the sentence

NER Instructions RE Instructions

ABSA InstructionsEE Instructions

Instruction Pool

Scoring Matrix
Relation

Entity

Instructed Graph Decoder

Biaffine

...

current 
gradient

vertical plane

previous
gradient√

Backward
ForwardTask-specific

Regularization

LM DecoderLM Encoder

positive
negative

neutral
expression

aspect
x1 x2 x3 x4

…

X|x|

x1
x2
x3

…

X|x|

Figure 1: The framework of our TIE method.

expression, aspect of the sentence.” Then, to im-

prove the diversity of the instruction, we adopt

ChatGPT3.5 to augment the instruction. Specif-

ically, the complete prompt input into ChatGPT3.5

is: “Please rewrite the following sentence several

times and make sure the rewritten sentences ex-

hibit significant differences in syntax, compared

to the original sentence: Annotate the polarity

(positive, negative or neutral), expression, aspect

of the sentence.” More details of the construction

of the instruction pool are shown in Appendix 8.1.

Instructions of the other datasets can be obtained

in the same way. We provide one instruction ex-

ample for four datasets of different IE subtasks re-

spectively in Table 2. For more examples, please

refer to Appendix 8.2.

Graph Decoder To capture the complex struc-

tures of various IE tasks, we design a graph de-

coder to decode all the structured information

as a graph. Given an input text with |x| tokens

x =
[
x1, . . . , x|x|

]
, we harness T5 (Raffel et al.,

2020; Chung et al., 2022) series to model the sen-

tences and instructions. It is an adaptable encoder-

decoder pre-trained language model (PLM) M =
[Menc,Mdec] designed to tackle many NLP tasks.

We first use the encoder of PLM to obtain the

hidden representation of input sentence x as fol-

lows.

Henc
x =

[
h1
x, . . . ,h

|x|
x

]
= Menc(

[
x1, . . . , x|x|

]
) (1)

where Henc
x P R|x|˚d, d is the dimension of hidden

layers.

Next, to model the interaction between the sen-

tence and the instruction, the decoder part of the

PLM is leveraged to get sentence-aware instruction

representation.

As mentioned earlier, we construct several di-

verse instructions for each dataset of different IE

subtasks, which make up an instruction pool. For

each sample, we randomly select an instruction

corresponding to the dataset. The selected corre-

sponding instruction is denoted as u with length

|u| from the instruction pool and is inputted into the

decoder.

Hdec
u =

[
h1
u, . . . ,h

|u|
u

]
= Mdec(H

enc
x ;u) (2)

where Hdec
u P R|u|˚d, d is the size of the hidden

dimension.

We can then achieve the representations of

K = |E |+ |R| label slots, Hslot =
!

h
slot_index(i)
u

)K

i=1
,

where slot_index (i) is the index of the i-th label

slot in the instruction. Each h
slot_index(i)
u P Hdec

u and

Hslot P RK˚d.

Finally, to obtain the label-sensitive text repre-

sentation Hx =
[
h1, . . . ,h|x|

]
, we deploy attention

operations (Vaswani et al., 2017) to Henc
x and Hslot.

Hx = Softmax(Henc
x W1(HslotW2)

T )HslotW2 (3)

W1,W2 P Rd˚d are learnable parameters.

At last, we represent the graph structure of the

tokens using a matrix and calculate the scoring

matrix in a biaffine way (Barnes et al., 2021; Yan
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et al., 2023) with multilayer perceptron (MLP).

Hhead
x = MLPhead(Hx) (4)

Htail
x = MLPtail(Hx) (5)

Mx [i, j] =(Hhead
x [i])TW3H

tail
x [j]

+W4[H
head
x [i] ;Htail

x [j]] (6)

M = MLPscore(Mx) (7)

where Hhead
x ,Htail

x P R|x|˚d, Mx,M P R|x|˚|x|˚K ,

W3 P Rd˚K˚d,W4 P RK˚2d. [; ] means the con-

catenation between two vectors.

3.3. Task-Specific Regularization

Training all IE datasets within a unified model

can facilitate the acquisition of shared knowledge

across diverse datasets. Nevertheless, differences

in task definitions and annotation guidelines can

result in inconsistent labels. These variations in

task-specific knowledge significantly impact the ef-

fectiveness of transfer learning. Consequently, we

introduce a task-specific regularization technique,

aimed at mitigating the influence of task-specific

knowledge.

Task-Specific Knowledge Unlearning During

this step, we design a task-specific regularization

method to unlearn conflicting knowledge. Particu-

larly, to resolve the conflicting knowledge among

tasks, we do not update the model when the gradi-

ents of two consecutive tasks are ‘in an opposite

direction’. That is, parameters are updated only

when the angle between the current gradient and

the previous time step’s gradient is less than 90

degrees, otherwise, no update is performed (Lopez-

Paz and Ranzato, 2017). We ensure that all data

within one batch came from the same dataset, while

the data in the two adjacent batches come from

two different datasets of different IE tasks. Under

the circumstances, the neighboring gradients sig-

nify the updating directions for different tasks. The

angle is determined by the sign of the dot product

result between two consecutive gradients.

Update =

#

True, if xgt,gt´1y ą 0

False, otherwise
(8)

where gt and gt´1 are the gradients of the adjacent

two batches respectively. If Update = Fasle, we

freeze the parameters of the corresponding layers.

Then, we finetune the transferred model directly

on the target dataset. We take advantage of binary

cross-entropy (BCE) loss to optimize the model.

L (M,G) =

|x|
ÿ

i=1

|x|
ÿ

j=1

K
ÿ

r=1

BCE (G [i, j, r] ,M [i, j, r])

(9)

where G is the ground truth matrix, K denotes the

number of label slots and r is the index of each

label.

The task-specific regularization strategy is ap-

plied for updating parameters of the whole model,

including the instructed graph decoder, which aims

to preserve common knowledge and resolve con-

flicting knowledge among tasks during pre-training.

Then, we finetune the whole pre-trained model in-

cluding the instructed graph decoder on the target

dataset.

4. Experimental Setups

4.1. Datasets

For the main experiment, we follow the previous

works (Lu et al., 2022) and select 12 IE benchmark

datasets of 4 IE subtasks: NER, RE, EE and ABSA.

The specific datasets include: ACE04 (Mitchell

et al., 2005), ACE05-Ent (Walker et al., 2006),

CoNLL03(Sang and Meulder, 2003); CoNLL04

(Roth and Yih, 2004), ACE05-Rel (Walker et al.,

2006), SciERC (Luan et al., 2018); ACE05-Evt

(Walker et al., 2006), CASIE (Satyapanich et al.,

2020); 14-res (Pontiki et al., 2014), 14-lap (Pontiki

et al., 2014), 15-res (Pontiki et al., 2015), 16-res

(Pontiki et al., 2016). According to our transfer

learning configuration, we pre-train the model to

learn the common knowledge and alleviate the in-

consistency on 11 source datasets, and then fin-

tune on the target dataset. The specific information

about these datasets can be found in Table 3.

For data-scarce scenarios, in order to make

a fair comparison with Lu et al. (2022), we

adopt CoNLL03, CoNLL04, ACE05-Evt and 16-res

datasets in few-shot and low-resource settings.

4.2. Metrics

We employ Micro-F1 to assess the model’s perfor-

mance across various IE tasks.

• Entity (Ent.F1). An entity is correct if its entity

type and span offsets both match a ground truth.

• Relation (Rel.F1). A relation is correct if its type,

along with the types and span offsets of both

head and tail entities all match a ground truth.

• Event trigger (Trig.F1). An event trigger is cor-

rect if its offsets and the event type both match a

ground truth.

• Event argument (Arg.F1). An event argument

is correct if its offsets, role type and event type

all match a ground truth.

• Sentiment Triplet (Senti Trip.F1). We actually

conduct an aspect sentiment triplet extraction
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Dataset #Train #Dev #Test |Ent| |Rel| |Evt|

ACE04 6,297 742 824 7 - -

CoNLL03 14,041 3,250 3,453 4 - -

ACE05-Ent 7,178 960 1,051 7 - -

ACE05-Rel 10,051 2,424 2,050 7 6 -

CoNLL04 922 231 288 4 5 -

SciERC 1,861 275 551 6 7 -

ACE05-Evt 19,204 901 676 - - 33

CASIE 5,235 1,115 2,121 - - 5

14-res 1,266 310 492 2 3 -

14-lap 906 219 328 2 3 -

15-res 605 148 322 2 3 -

16-res 857 210 326 2 3 -

Table 3: Dataset statistics. # means the number

of instances, and |*| is the number of categories of

the corresponding dataset.

(ASTE) task, so a sentiment triplet is correct if its

offsets of expression (opinion), offsets of aspect

and the sentimental polarity all match a ground

truth.

4.3. Baselines

To validate the effectiveness of our method, we

select several task-specific models and four unified

models as baselines, compared with our approach.

These task-specific methods are shown as fol-

lows.

• BERT-base2 (Devlin et al., 2019) is the most

famous PLM for many nlp tasks. The results of

ACE04 and ACE05-Ent are copied from Peng

et al. (2023), which replaces the backbone of

UIE (Lu et al., 2022) with BERT-base. The

results of four ABSA tasks are from Xu et al.

(2021). It is a span-level method, considering

the interaction between the spans of targets

and opinions.

• UnifiedNER (Yan et al., 2021) utilizes a

seq2seq framework for three NER datasets.

Given the similarity, we select the Span set-

ting.

• NERGraph (Wan et al., 2022) treats a sen-

tence as a graph, applying graph convolutional

network (GCN) for encoding.

• PURE (Zhong and Chen, 2021) works on two

independent encoders and solely uses the en-

tity model to construct the relation model.

• DEGREE (Hsu et al., 2022) manually designs

prompts to help event extraction task.

2https://huggingface.co/google-bert/bert-base-

uncased

• BDTF (Zhang et al., 2022) is a boundary-

driven table filling (BDTF) approach for ABSA

tasks.

Here, we introduce the four unified models.

• TANL (Paolini et al., 2021) is an early-stage

unified information extraction model.

• UIE (Lu et al., 2022) is a popular unified infor-

mation extraction framework in the generative

way. To ensure consistency in the backbone,

we chose results from the official UIE-base

model.

• ChatGPT3.53 (Li et al., 2023; Han et al.,

2023) is a groundbreaking conversational LLM

developed by OpenAI. Researchers assess

the information extraction capabilities of Chat-

GPT3.5 from many perspectives systemati-

cally. Since the code is not open-source, all

reports are based on zero-shot setting.

• InstructUIE (Wang et al., 2023b) is an end-to-

end LLM framework for universal information

extraction, which harnesses FlanT5-11B4 as

the backbone.

4.4. Implementation Details

In order to make a fair comparison with the four uni-

fied methods, we leverage T5-base5 (Raffel et al.,

2020) and FlanT5-3B6 (Chung et al., 2022) (due to

resource constraint). According to transfer learning

configuration, we pre-train the model on 11 source

datasets, and then fintune on the target dataset.

In light of the randomness in instruction selection,

we fix the seed, repeat the experiment five times

and average the outcomes as the reported results.

For each dataset, we train on the training set, the

reported results on the test set are derived from

the checkpoint that yields the best performance on

the development set. Except for the results of our

method, all other data is recorded from the original

papers of the baselines.

5. Experimental Analysis

5.1. Main Results

To evaluate the effectiveness of TIE, we com-

pare our method with several strong baselines (Ta-

ble 4). From the results, we can get the follow-

ing conclusions. First, there is an advantage of

TIE by deploying the conventional language model.

TIE with backbone T5-base exceeds on 10 out of

3https://chat.openai.com/
4https://huggingface.co/google/flan-t5-xxl
5https://huggingface.co/google-t5/t5-base
6https://huggingface.co/google/flan-t5-xl
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ACE04 ACE05-Ent CoNLL03 ACE05-Rel CoNLL04 SciERC ACE05-Evt CASIE 14-res 14-lap 15-res 16-res

Ent.F1 Rel.F1 Trig.F1 Arg.F1 Trig.F1 Arg.F1 Senti Trip.F1

BERT-base 84.09 84.63 - - - - - - - - 71.85 59.38 63.27 70.26

UnifiedNER 84.22 82.31 92.88 - - - - - - - - - - -

NERGraph 86.31 85.11 - - - - - - - - - - - -

PURE - - - 63.90 - 35.60 - - - - - - - -

DEGREE - - - - - - 70.90 56.30 - - - - - -

BDTF - - - - - - - - - - 74.35 61.74 66.12 72.27

TANL - 84.90 91.70 63.70 71.40 - 68.40 47.60 - - - - - -

UIE 85.69 83.88 91.94 62.73 73.48 35.35 71.33 50.62 69.14 58.56 72.55 62.94 64.41 72.86

ChatGPT3.5 - - 67.20 40.50 - 25.90 15.50 30.90 - - 41.50 33.17 38.89 47.67

InstructUIE (FlanT5-11B) - 86.66 92.94 - - - 77.13 72.94 67.80 63.53 - - - -

TIE (T5-base) 87.59 86.42 92.92 64.44 73.58 34.41 73.09 56.71 74.43 63.14 75.69 60.36 66.78 75.17

TIE (FlanT5-3B) 88.86 87.74 93.17 64.45 74.32 40.90 74.89 63.30 75.38 66.99 76.97 62.04 66.84 74.05

Table 4: Main results of TIE and the baselines. The upper part and the middle part are task-specific

and unified methods respectively. The best result of each dataset is bolded, and the second-best is

underlined.

ACE04 ACE05-Ent CoNLL03 ACE05-Rel CoNLL04 SciERC ACE05-Evt CASIE 14-res 14-lap 15-res 16-res

Ent.F1 Rel.F1 Trig.F1 Arg.F1 Trig.F1 Arg.F1 Senti Trip.F1

TIE (T5-base) 87.59 86.42 92.92 64.44 73.58 34.41 73.09 56.71 74.43 63.14 75.69 60.36 66.78 75.17

- Instruction 86.18 84.22 91.67 62.87 71.71 32.79 71.97 52.19 68.78 57.77 73.08 58.55 64.32 72.93

- Transfer 87.44 85.11 92.15 63.69 73.49 34.11 72.85 55.11 73.57 62.38 73.95 59.69 66.61 73.79

- Regularization 86.14 85.95 91.86 64.09 73.46 33.87 72.64 55.32 74.12 62.53 72.78 58.68 65.73 73.06

Table 5: Ablation studies for 12 IE datasets with T5-base backbone.

Few-Shot Low-Resource Full
AVG

Dataset Method 1-shot 5-shot 10-shot 1% 5% 10% 100%

CoNLL03

UIE 46.43 67.09 73.90 82.84 88.34 89.63 91.94 77.16

TIE (T5-base) 49.46 70.62 74.85 87.22 89.84 90.16 92.92 79.29

w/o Transfer 46.24 68.09 74.41 85.56 88.76 90.10 92.15 77.90

CoNLL04

UIE 22.05 45.41 52.39 30.77 51.72 59.18 73.48 47.85

TIE (T5-base) 22.09 38.08 52.43 31.32 49.21 59.28 73.58 46.57

w/o Transfer 19.02 35.14 52.08 31.12 47.32 59.20 73.49 45.34

ACE05-Evt

(trigger)

UIE 38.14 51.21 53.23 41.53 55.70 60.29 71.33 53.06

TIE (T5-base) 39.12 52.88 55.56 42.86 57.84 61.20 73.09 54.65

w/o Transfer 38.88 52.14 54.94 41.80 56.11 61.28 72.85 54.00

ACE05-Evt

(argument)

UIE 11.88 27.44 33.64 12.80 30.43 36.28 50.62 29.01

TIE (T5-base) 12.31 30.63 36.36 15.75 34.73 39.42 56.71 32.27

w/o Transfer 11.92 28.56 35.17 14.58 34.38 37.68 55.11 31.05

16-res

UIE 10.50 26.24 39.11 24.24 49.31 57.61 72.86 39.98

TIE (T5-base) 6.860 27.19 39.67 24.79 50.26 58.29 75.17 40.32

w/o Transfer 5.500 25.36 39.27 24.06 48.73 58.20 73.79 39.27

Table 6: Results of few-shot and low-resource scenarios on four datasets.

12 datasets, comparing to six task-specific meth-

ods and three unified IE methods (except Instruc-

tUIE, which bases on LLM). In contrast to UIE (T5-

base), there is an average improvement of 2.09

points. This result demonstrates the effectiveness

of our approach. Second, in LLM setting, TIE
still holds an edge. When changing our backbone

with LLM FlanT5-3B, we also outperform Instruc-

tUIE (FlanT5-11B) on three out of four common

datasets. Besides, TIE (FlanT5-3B) achieves new

state-of-the-art on almost all datasets. Third, the

classification method proves to bemore potent than

the generative one in IE tasks. The poor perfor-

mance of ChatGPT3.5 in zero-shot setting proves

that there are limitations in using a conversational

generative model for information extraction tasks.

Although the parameter scale of InstructUIE is ap-

proximately four times larger than ours, we still

maintain a lead on most of the tasks, which indi-

cates the great potential of using the classification

models for information extraction (Appendix 8.3).

5.2. Ablation Studies

For ablation studies, we experiment on each

dataset of different IE tasks and study the effect of

different components of our method (Table 5). ‘-

Instruction’ removes the decoder part with instruc-

tions from TIE. Whereas ‘- Transfer’ means we

train our model on target datasets without trans-
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Figure 2: The influence of instruction numbers and the syntactic diversity of instructions.

fer, which means we conduct single-task learning.

‘- Regularization’ stands for the absence of task-

specific regularization while retaining transfer.

We have several observations. First, the instruc-

tions are most important to TIE. It decreases by an
average of 2.55 F1 without instructions. Despite

transfer learning can excavate commonality, it is

the instructions that help learn a wealth of com-

mon knowledge from various tasks. Instructions

inform the model of the label information to pro-

vide proper guidance, thereby alleviating the disrup-

tion. Second, the gradient-regularization strategy

plays a role in resolving inconsistency. Removing

task-specific regularization leads to an average de-

crease of 1.036 points. However, there is only a

decrease of 0.771 F1 averagely when we conduct

single-task learning. For the inconsistency and

complexity of knowledge, direct transfer learning

does not significantly help model perform IE tasks.

In order to achieve a balance between tasks, the

regularization is indispensable.

5.3. Results on Data-scarce Scenarios

As shown in Table 6, we conduct experiments on 4

datasets of different IE subtasks in data-scarce

scenarios. TIE averagely improves the F1 for

2.13, 1.59, 3.26, 0.34, compared to UIE (Lu et al.,

2022) on CoNLL03, ACE05-Evt (Trig.F1), ACE05-

Evt (Arg.F1) and 16-res, respectively. Similarly, we

remove the transfer learning step. We observe that:

It is the transfer learning by gradient-regularization

that fosters the effectiveness of the model in data-

scarce scenarios. The effectiveness in data-scarce

scenarios demonstrates that the inconsistent knowl-

edge resolved by regularization is negative in IE

tasks. Without a large volume of training corpus,

TIE can still acquire rich semantic information from

labels within instructions. These results reveal that

TIE has good generalization performance and is

highly sensitive to new data.

5.4. Analyses on Instruction Diversity

To investigate the impact of instructions on model

learning, we conduct experiments on four datasets:

CoNLL03, CoNLL04, ACE05-Evt (Arg.F1) and 16-

res with the following setups:

• First, we investigate the influence of the number

of instructions;

• Second, we explore the influence of syntax di-

versity by customizing instructions with diverse

syntactic similarity for each dataset. We gener-

ate instructions with varying syntactic similarity

using ChatGPT3.5 and score them with GPT4.

The Influence of Instruction Numbers We se-

lect instruction with quantities of 0, 1, 5 and 10

(Figure 2). Although TIE excavates commonal-

ity and resolves inconsistency via transfer learn-

ing, it still struggles when the instruction number is

0. Instructions can provide the model with elabo-

rate task guides and label semantics, so that the

decision-making would be more accurate. TIE’s
performances on four datasets all reach the opti-

mumwhen the quantity is set to 5. However, the ac-

curacy of our method experiences a decline when

employing instructions with a quantity of 10 on each

dataset. More instructions could bring noise to the

model, thereby decreasing the property.

The Influence of Syntax Diversity of Instruc-

tions While building the instruction pool, the

prompt ‘... the rewritten sentences exhibit signif-

icant differences in syntax...’ is input into Chat-

GPT3.5, for the purpose that we want to get instruc-

tions with high syntactic richness. These rephrased
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Dataset Group1 Group2

CoNLL03 0.88 0.74

CoNLL04 0.81 0.62

ACE05-Evt 0.81 0.72

16-res 0.86 0.74

Table 7: Syntactic richness scored by GPT4 of two

instruction groups on 4 IE datasets.

instructions are assigned to Group1. As a com-

parison, we perform partial word replacements in

the manual instructions for each dataset, ensur-

ing syntactical consistency. These instructions are

allocated to Group2.

We utilize the superior LLM GPT4 to score the

syntactic richness of these instructions. The score

of two groups of instructions on four datasets is

illustrated in Table 7. Instructions in Group1 have

higher scores than the other group, which means

they have higher syntactic richness. So that we can

conclude from Figure 2: when the instruction num-

ber is 5, more diverse instructions lead to better

model performance, while the quantity is 10, in-

structions possessing a greater syntactic richness

could interfere with the model’s learning. Neverthe-

less, similar instructions, whether the quantity is 5

or 10, have a limited impact on model performance.

For information on the use of GPT4, please refer

to the Appendix 8.4. In this way, more diverse in-

structions with rich syntax will be used for a specific

dataset, which yields better results.

In a nutshell, we choose 5 instructions with higher

syntactic richness for each dataset.

6. Conclusion

In this paper, we propose a regularization-based

transfer learning method for IE named TIE, apply-
ing an instructed graph decoder. It captures the

shared common knowledge among tasks while pre-

venting inconsistencies using the instructed graph

decoder and the task-specific regularization strat-

egy. Experimental results demonstrate that TIE
achieves new state-of-the-art performance on most

IE datasets, compared to both task-specific and uni-

fied baselines. The ablation studies show the great

advantages of the main components contained in

TIE. Also, we observe that TIE performs well on

data-scarce scenarios. In the future, it would be in-

teresting to explore the effectiveness of our method

with large-scale language models such as LLaMa

and Vicuna.

Limitations

In this paper, we propose a novel regularization-

based transfer learning method for IE (named TIE),
whose main component is a specially designed

instructed graph decoder. Our method pre-trains

on the source datasets and finetunes on the target

one. We conduct extensive experiments on 12

datasets spanning four IE tasks, and the results

demonstrate the great advantages of our proposed

method in both fully supervised and data-scarce

scenarios. However, there are still some limitations

of our method.

(1) Although the model’s structure is quite simple,

the entire process of pre-training on the source

datasets and finetuning on the target datasets is

relatively complex and time-consuming.

(2) Due to resource limitations, we are unable

to train the FlanT5-11B model, just as InstructUIE

does.

(3) We do not investigate how to construct in-

structions that cover an open set of options. This

is a very valuable area for our future work. And, for

each instruction, we need to extract the label slots

in the instruction sentences, which also increases

the workload.

(4) For fair comparisons, our baseline data is

sourced directly from their original papers. In the

future, we can test our method on a wider range of

models such as LLaMa and Vicuna.
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8. Appendices

8.1. The Construction of Instruction Pool

As described in Section 3.2 (Instruction Pool), we

manually write an instruction for each dataset as

the seed, such as ”Annotate the polarity (positive,

negative or neutral), expression, aspect of the sen-

tence.” for 16-res dataset.

Then we use the prompt ”Please rewrite the fol-

lowing sentence several times and make sure the

rewritten sentences exhibit significant differences

in syntax, compared to the original sentence: An-

notate the polarity (positive, negative or neutral),

expression, aspect of the sentence.” to augment

the manual instruction.

Regarding to the ChatGPT3.5 settings, we uti-

lize ChatGPT (gpt-3.5-turbo)7 with four different

temperatures ranging from 0.1 to 0.4. For each

temperature, we generate several instructions and

manually select one instruction with significant syn-

tactic differences from the results. This process is

repeated for each temperature, resulting in a total

number of five instructions (including the seed) for

each dataset.

8.2. More Examples of the Instructions

In this section, we will display all instructions for

the 14-res, 14-lap, 15-res and 16-res datasets (the

ABSA task) below. All other instructions can be

seen in our github repository.

1. Annotate the polarity (positive, negative or

neutral), expression, aspect of the sentence.

2. Get the polarity (whether positive or nega-

tive or neutral) of the sentence, and the distinct

expression and aspect of this statement.

3. Retrieve the emotional tone (positive, nega-

tive, or neutral) of the sentence and identify the

corresponding content as either expression text,

aspect text.

4. Find the sentiment (positive, negative, or neu-

tral) of the sentence and identify the expression,

aspect element.

5. Determine whether the sentiment of this sen-

tence is positive, negative, or neutral and pinpoint

the specific expression and aspect.

8.3. Explanations about the Comparison

between Generation and

Classification

ChatGPT3.5 and InstructUIE are generative mod-

els, which generate a sequence as the extraction

result directly. In contrast, our method is a classifi-

cation one, which predicts the probability of each

7https://openai.com/blog/gpt-3-5-turbo-fine-tuning-

and-api-updates
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label for each position as formulated in equation

(4)-(7), and utilizes the binary cross-entropy (BCE)

loss to optimize the model in equation (9).

This claim suggests that despite having signifi-

cantly fewer parameters compared to these base-

lines as ChatGPT3.5 and InstructUIE, our method

still achieves good performance on most datasets,

which indicates the great potential of using the clas-

sification models for information extraction.

8.4. The Details on the Use of GPT4

Inspired by the effectiveness of using GPT48 in

NLG evaluation in previous studies (Wang et al.,

2023a; Li et al., 2024), we also utilize it to better

quantify the syntax diversity of instructions. Specif-

ically, we first use the Spacy9 library to obtain

the syntactic parse trees for the instructions, and

then integrate the parsing results into the prompt

for scoring. - We will provide more details of

using GPT4 for scoring the syntax diversity, in-

cluding the prompt settings and the previously

founded studies. We use the following prompt.

——————————————————————-

Here are two sentences:

1.[sentence1] 2.[sentence2]

Here are the two syntactic parse trees of the

sentences:

1.[tree1] 2.[tree2]

Assign a score for syntactic diversity for the two

sentences on a scale of 0 to 1, where 0 is the

lowest and 1 is the highest based on the Evaluation

Criteria.

Evaluation Criteria: In the syntactic tree, each

triple consists of the first element representing

the word in the original text, the second element

representing the headword on which the word

depends, and the third element representing

the dependency relationship between them.

Syntactic Diversity (0-1) - The richness of syn-

tax between two sentences. If two sentences

express the same meaning semantically but

have different dependency relationships in their

syntactic structures, the higher the score, the

greater the difference in dependency relationships.

——————————————————————–

8https://openai.com/gpt-4
9https://spacy.io/
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