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Abstract
Unsupervised Domain Adaptation (UDA) of the Aspect-based Sentiment Analysis (ABSA) task aims to transfer
knowledge learned from labeled source domain datasets to unlabeled target domains on the assumption that
samples from the source domain are freely accessible during the training period. However, this assumption
can easily lead to privacy invasion issues in real-world applications, especially when the source data involves
privacy-preserving domains such as healthcare and finance. In this paper, we introduce the Source-Free Domain
Adaptation Framework for ABSA (SF-ABSA), which only allows model parameter transfer, not data transfer, between
different domains. Specifically, the proposed SF-ABSA framework consists of two parts, i.e., feature-based adaptation
and pseudo-label-based adaptation. First, in feature-based adaptation, we embed the model into the feature space of
the target domain through dependency relation prediction; and then transfer this feature-embedded model to the
source domain. Second, we use labeled data in the source domain to obtain a well-trained source model. Finally,
in pseudo-label-based adaptation, we utilize the pseudo labels predicted by the source model to obtain category
anchor points, and then reassign the pseudo labels of the target domain according to the distance between the
anchor points and the target data to obtain higher-quality pseudo labels for domain adaptation. Experiment results on
four benchmarks show that the proposed framework performs competitively with traditional unsupervised domain
adaptation methods under the premise of insufficient information, which demonstrates the superiority of our method
under privacy conditions.

Keywords: Source-Free, Domain Adaptation, Aspect-based Sentiment Analysis

1. Introduction

Aspect-based sentiment analysis (ABSA) is a data
mining technique that involves aspect extraction
and aspect sentiment classification subtasks (Qiu
et al., 2011; Poria et al., 2016; Li et al., 2018a;
Wang et al., 2018; Li et al., 2019c). For instance, in
the sentence "The AMD Turin Processor seems to
always perform much better than Intel", we detect
two aspect terms "AMD Turin Processor" and "In-
tel", and then classify their sentiment polarities as
"Positive" and "Negative", respectively. Recently
some researchers focus on End to End ABSA(E2E-
ABSA), which combines the above two subtasks
in an end-to-end manner and uses a unified tag-
ging scheme to connect the two tasks into one task
(Dredze et al., 2010; Xia et al., 2014; He et al., 2018;
Ye et al., 2020), as illustrated in Figure 1.The uni-
fied tagging scheme turns the E2E-ABSA task into
a sequence labeling task by aggregating aspect
boundary tags (e.g., B, I, O denotes the beginning
of, inside of, and no aspect term) and sentiment
polarities (e.g. POS, NEG, NEU denotes positive,
negative and neutral sentiment). Citing the same
example as above, "AMD Turin Processor" and "In-
tel" should be tagged with B-POS, I-POS, I-POS
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and B-NEG, while the remaining words are tagged
with O.

In previous studies, researchers have noticed
that the ABSA task relies heavily on large-scale
labeled data for supervised learning. Therefore, the
End2End ABSA task in the field of Unsupervised
Domain Adaptation (UDA) has recently attracted
the attention of researchers. Domain adaptation
trains a robust model in a label-rich domain and
transfers the learned knowledge to a label-poor
domain, which can well alleviate the label-lacking
problem in the ABSA task. Many methods have
been proposed, which can be broadly classified into
two categories: feature-based domain adaptation
(Ganin et al., 2016; Li et al., 2018b) and instance-
based domain adaptation (Dredze et al., 2010; Xia
et al., 2014).

Despite the effectiveness of these existing stud-
ies, domain adaptation remains a challenge in
real-world applications since UDA relies heavily on
source domain data. Considering that real-world
data are distributed across different devices and
often contain private information (e.g., data on per-
sonal phones or surveillance cameras), existing
UDA methods require access to source domain
data during the learning process, which may vio-
late data privacy. To tackle such an issue, recent
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The [Macbook]Positive is lightweight, but the [battery]Negative never held a charge longer than 1 hour !

The [screen graphics]Positiveand [clarity]Positive, and [sharpness]Positive are great.Source domain :
Laptop

Target domain :
Restaurant

The [pizzas]Positiveand [clarity]Positive, and [sharpness]Positive are great.

The [fish soup]Positive is delicious, but the [sushi]Negative never tastes as good as before !

Domain adaptation

Figure 1: An overview of the Cross-Domain End-to-End ABSA task, in which the goal is to migrate source
domain data to the distribution of target domain data through UDA domain adaptation method.

studies propose an interesting but challenging UDA
setting called source-free UDA.

The source-free UDA has recently been explored
in the field of computer vision, but its development
in the field of natural language processing is still
relatively under-explored. Laparra et al. (2021) de-
signed the SemEval 2021 Task 10 where labeled
source data is not accessible, only models trained
on source domain data can be shared, and little
or no labeled target data is available. SemEval
2021 Task 10 is the only work that explicitly tests
source-free domain adaptation in NLP. A variety of
techniques are applied to this task, including active
learning, self-training, and data augmentation (Su
et al., 2022). Active learning requires high-quality
labels, with strong constraints in real-world scenar-
ios. In the absence of source data and target labels,
self-training is the most anticipated study since it
can make good use of source domain models.

Despite the effectiveness of these existing meth-
ods, the source-free UDA remains some chal-
lenges: (1) Feature distribution shifts between dif-
ferent domains. For example, "battery" is an aspect
term in the laptop domain but rarely in the service
domain. The model needs some latent information
to judge their potential similarity. (2) High-quality
pseudo-labels. Due to the lack of labels in the tar-
get domain, we usually need to generate pseudo-
labels that better represent the data distribution of
the target domain, which is challenging.

In light of these challenges, we propose a Source-
free domain adaption framework for ABSA (SF-
ABSA). Specifically, the proposed SF-ABSA frame-
work consists of two parts: Feature-based adapta-
tion and Pseudo-label based adaptation. First, in
feature-based adaptation, we transfer the model
to the feature space of the target domain via de-
pendency relation prediction, and then transfer the
feature-embedded model to the source domain.
Second, we use the labeled data in the source do-
main to obtain a well-trained source model. Finally,
in pseudo-label based adaptation, we leverage self-
supervised pseudo-label annotations to reassign
the pseudo-labels predicted by the source model,
and enable domain adaptation by computing the

distance between anchors and target data.

The main contributions can be summarized as
follows:

• To the best of our knowledge, we are the first to
explore domain adaptation for the ABSA task
without access to source domain data, which
has great significance for protecting privacy.

• We propose the SF-ABSA framework, encom-
passing both feature-based adaptation and
pseudo-label-based adaptation, which can
transfer knowledge using only the parameters
of the model.

• Experimental results show that our framework
achieves competitive results compared to the
state-of-the-art results on ABSA for unsuper-
vised domain adaptation.

2. Related work

2.1. Aspect Based Sentiment Analysis
Aspect term extraction (ATE) and Aspect-level sen-
timent classification (ASC) are two subtasks in As-
pect Based Sentiment Analysis.

Aspect term extraction. Aspect term extraction
is a fundamental task of ABSA, aiming to identify
specific terms or phrases within a sentence that
people express opinions about. Traditional ma-
chine learning techniques have been used for ATE
such as Support Vector Machines (SVM) and Con-
ditional Random Fields (CRF). These models usu-
ally use lexical, syntactic, and contextual features
(Manek et al., 2017; Xiang et al., 2018). With the
advent of transformer-based models, particularly
BERT (Bidirectional Encoder Representations from
Transformers) and its variants such as RoBERTa
and ALBERT, there has been a shift towards us-
ing these pre-trained models for ATE. Fine-tuning
these models on domain-specific data has proven
to be effective for aspect term extraction (Devlin
et al., 2018; Liu et al., 2019). Considering the
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labor-intensive and costly nature of data annota-
tion, unsupervised methods and semi-supervised
methods have been explored for ATE. For instance,
bootstrapping techniques and self-training are com-
monly applied (Qiu et al., 2011; Poria et al., 2016;
Li et al., 2018a; Wang and Pan, 2018).

Aspect-level sentiment classification. Aspect-
level sentiment classification aims to predict the
sentiment polarity of the extracted aspect terms.
We can divide its method into three parts. First
is the method based on deep learning. With
the advances in neural networks, models like
Transformer, Bert and RoBERTa have been pro-
posed and brought large performance improve-
ments (Tang et al., 2016; Wang et al., 2018; Li
et al., 2019c). Secondly, some studies have specif-
ically explored the modeling of a sentence’s syntac-
tic structure for prediction, given that the relation-
ship between aspects and their associated opin-
ions, as determined by their structural relations,
frequently suggests emotional orientation. Various
methods exist for incorporating dependency and
syntactic information into ASC tasks, as exempli-
fied by (Kiritchenko et al., 2014; Brun et al., 2014).
Tiredly, some works have explored enhancing ASC
by integrating external knowledge bases (Chen and
Huang, 2019; Zhou et al., 2020; Yu et al., 2022).

2.2. Conventional Domain Adaptation
Since fine-grained sentiment polarity annotation of
sentences is costly, it is impossible to have suffi-
cient labeled data in each new domain. In the do-
main adaptation field, researchers usually unify two
subtasks into one end-to-end training task, which
is generally called End-to-End Aspect-Based Sen-
timent Analysis (E2E-ABSA). Existing research on
E2E-ABSA for domain adaptation mainly focuses
on the coarse-grained domain adaptation problem
to learn domain-invariant representations, including
semi-supervised methods (He et al., 2018; Ye et al.,
2020), domain adversarial networks (Ganin et al.,
2016; Li et al., 2018b), and pivot-based methods
(Wang et al., 2016). Another line of work focuses
on re-weighting source instances (Dredze et al.,
2010; Xia et al., 2014).

2.3. Source-free Domain Adaptation.
In the field of computer vision, the source-free set-
ting has attracted the attention of researchers, and
many source-free UDA methods have emerged.
Liang et al. (2020) utilizes information maximiza-
tion via a pseudo-labeling strategy to adapt the
trained source model to target features. Xia et al.
(2021) introduces a new target classifier to align
two domains (Source domain similar domains and
dissimilar domains) via adversarial training manner.
Ding et al. (2022) utilizes the Gaussian distribution

assumption, uses the feature of the target domain
data to approximate the distribution of the source
domain data, and solves the problem of inaccessi-
ble source domain data.

The application of source-free domain adaption
in natural language processing is still relatively lim-
ited. Though there is partially related research
on continual learning (de Masson D’Autume et al.,
2019; Sun et al., 2019) and generalization of pre-
trained models (Hendrycks et al., 2020). Laparra
et al. (2021) designed the SemEval 2021 Task 10
dataset on two tasks, i.e., negation detection and
time expression recognition. Su et al. (2022) ex-
tended self-training, active learning and data aug-
mentation baseline.

3. Task Definition

The E2E-ABSA task includes two subtasks, i.e.,
Aspect extraction and Aspect sentiment classifi-
cation. We connect the two tasks by viewing
them as a sequence tagging task with a set of
unified labels. Assuming that we have a sen-
tence x = {w1, w2, w3, ..., wT }, we get its embed-
ding e = {e1, e2, e3, ..., eT } by extracting the fea-
tures. The goal of the task is to predict the la-
bel y = {y1, y2, y3, ..., yT } with yi corresponding to
each word and satisfying that yi ∈ Ψu = {B-POS,
I-POS, B-NEG, I-NEG, B-NEU, I-NEU, O}.

In this paper, we focus on Source-free Unsuper-
vised Domain Adaptation, where source domain
data cannot be obtained, only model parameters
trained on the source domain can be obtained, and
meanwhile labeled data are not available in the
target domain. Given a set of unlabeled instances
from a target domain Du = {wu

i }
NU
i=1, and model Mi

that can be transmitted between different domains,
our goal is to predict token labels for target test
instances: yti = Mfinal(w

t
i).

4. Methods

4.1. Overview
Our task is an End2End ABSA task that connects
two ABSA subtasks (Aspect extraction and Aspect
sentiment classification) in an end-to-end manner.
Our model framework is based on Aspect Based
Sentiment Analysis datasets of different distribu-
tions. We let Ds denote source domain data and Dt

denote target domain data (Ds ̸= Dt). In order to
complete the task under the premise of protecting
data privacy, we only allow the transfer of model
parameters between the source domain and the
target domain, not allowing the transfer of data.
On this basis, we eliminate the difference between
the target domain and the source domain from two
aspects:
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Figure 2: An overview of the proposed SF-ABSA framework. SF-ABSA framework consists of two parts:
feature-based adaptation and pseudo-label-based adaptation. First, in feature-based adaptation, we
embed the model into the feature space of the target domain through dependency relation prediction, and
then transfer this feature-embedded model to the source domain. Second, we use labeled data in the
source domain to obtain a well-trained source model. Finally, in pseudo-label based adaptation, we utilize
the pseudo labels predicted by the source model to obtain category anchor points, and then reassign the
pseudo labels of the target domain according to the distance between the anchor points and the target
data to obtain higher-quality pseudo labels for domain adaptation.

(1) Feature-Based Domain Adaptation. With
domain-shared knowledge and using Mask
Language Model (MLM) task, we make the
model embed the target domain data into fea-
ture space in advance. Then we transport the
feature-embedded model to the source domain
to train on source domain data.

(2) Domain Adaptation with Self-supervised
Pseudo-labeling. After we obtain the trained
source domain model, we utilize the source
domain model to predict the labels and get the
feature vectors from the hidden layer of the
model. We use the labels and corresponding
features as anchor points to reassign the la-
bels of the target domain data according to the
distance between the anchor points and the
data instances.

We train the above two parts in order and finally get
our SF-ABSA framework, as illustrated in Figure 2.

4.2. Feature-Based Domain Adaptation
Feature extraction. We first convert the word
sequence {w1, w2, w3, . . . , wT } into a continuous
embedding {e1, e2, e3, . . . , eT }. The embedding of
each word is composed of four different types of
embeddings ei = {ti, si, pi, tagi}, where ti is the
word embedding of the word wi, si is segment em-
bedding, pi is positional embedding and tagi is
POS tag embedding. The first three embeddings
are the input of Bidirectional Encoder Representa-
tions from Transformers (BERT) defined by (Devlin

et al., 2018). The fourth one, POS tag embed-
ding, is a randomly initialized matrix trained by un-
labeled data in the target domain. The embedding
ei = {e1, e2, e3, . . . , eT } is put into BERT to extract
context-aware features Hi = {H1, H2, H3, ...,HT }.

H = BERT (e). (1)

Dependency Relation Prediction. The syntac-
tic dependency is very helpful for the ABSA task,
which is capable to indicate the dependency be-
tween words and words in sentences, thus helping
us to identify the aspect term in the sentence. In
the ABSA task in the field of domain transfer, al-
though the aspect terms in different domains are
different and the opinion words are also different,
they all follow the same grammatical rules. There-
fore, We can regard syntactic dependencies as
domain-independent macroscopic features that are
important for passive unsupervised domain trans-
fer tasks. So we embed the dependency features
of the target domain data into the feature space of
the model. We put the above context-aware feature
Hi into two different nonlinear transformation func-
tions, with Hhead = hhead

1 , hhead
2 , hhead

3 , ..., hhead
T

and Htail = htail
1 , htail

2 , htail
3 , ..., htail

T being the two
outputs respectively.

hhead
i = tanh(W1hi + b1), (2)

htail
i = tanh(W2hi + b2), (3)

where W1 and W2 are learnable parameters, hhead
i

and htail
i represent the head token and child token
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in the dependency tree. Assuming that the i-th
word and j-th word in a sentence are connected in
the dependency tree, and they are the head token
and child token in the dependency relationship re-
spectively, we use mij to predict the type of their
dependency relationship:

mij = [hhead
i ;htail

j ;hhead
i − htail

j ;hhead
i · htail

j ], (4)

where the semicolon indicates concatenation oper-
ation, the minus sign indicates element-wise sub-
traction and the dot indicates element-wise dot mul-
tiplication. Then mij is converted to pdepij :

pdepij = softmax(Wdepmij + bdep), (5)

where Wdep is the weight matrix for relation clas-
sification, and pdepij represents the probabilities of
all the forty-seven classes of dependency relation-
ships. In the dependency tree, if two words are
connected, we will predict their dependency rela-
tionship, and we will not predict the words that are
not connected. So we use I(ij) to express whether
the i-th word is connected to the j-th word. It can
be considered that I(ij) is an indicator function,
if it is connected in the dependency tree, it is 1,
otherwise, it is 0. The optimization function is as
follows:

Ldep =
∑
Xt

T∑
i

T∑
j

I(ij)CrossEntropy(pdepij , ydepij ),

(6)
where Xt is unlabeled data in the target domain,
T is the maximum length of sentences and ydepij is
the actual dependency relationship. Based on the
above optimization model, we embed the model
into the feature space of the target domain data
and obtain the model M0.

4.3. Source Model Generation
After the feature embedding in Section 4.2, we ob-
tain the model M0 embedded in the feature space
of the target domain data. We transfer the model
from the target domain to the location of the source
domain and use this model as the basic model for
source domain training. Then we train the model
on the source domain data by minimizing the cross-
entropy where the source domain is located:

Lsource = CrossEntropy(M0(xs), ylabel), (7)

where xs is the source domain data and ylabel is the
ABSA label corresponding to the source domain
data.

After training at the location of the source do-
main, we obtain the well-trained source model Ms.
We transfer the source model Ms to the target do-
main location for the domain transfer process of
the target domain.

4.4. Domain Adaptation with
Self-supervised Pseudo-labeling

In many recent works, pseudo-labeling is an im-
portant technique to obtain category information
of unlabeled samples, usually by exploiting high-
confidence outputs derived from models trained
on the source domain. However, due to the do-
main shift, the pseudo-labels obtained by predicting
the target domain data through the source model
usually have a lot of noise. For example, in the
E2E-ABSA field, when the model is trained in the
source domain and predicts samples in the target
domain, due to different domain keywords (e.g.,
"battery" in the laptop field and "E-trade" in the
service field), the model The output is usually un-
able to predict the answer very accurately, such as
[0.36,0.32,0.01,0.02], this kind of input is usually
simply classified as [1,0,0,0], but the original un-
confident prediction contains more syntactic level
information that cannot be captured. So how to ob-
tain higher quality pseudo-labels is a critical issue.
We use the idea of clustering to propose the idea
of using the class center anchor to reassign labels
to solve this problem.

Through the training in Section 4.3, we obtained
the source domain model Ms that was transferred
from the location of the source domain. The source
model mainly includes two parts, feature extractor
(BERT) Fs and classifier (Classifier) Cs. The fea-
ture extractor Fs is used to extract the correspond-
ing feature distribution of the sentence and the clas-
sifier Cs is used to predict and classify each word
in the sentence according to The unified tagging
scheme. First, we use the trained source model to
predict the unlabeled data of the target domain, and
obtain the preliminary sample category information:

yt = argmax(δk(Ms(xt))), (8)

where yt is the pseudo-label predicted by the
source modelMs, δk(a) = exp(ak)

Σiexp(ai)
is softmax func-

tion and xt represents target domain data. How-
ever, this pseudo-label usually contains much noise
caused by domain shift. Therefore, based on the
predicted category, we calculate the category cen-
ter point of each category and use it as the anchor
point feature of the category:

A
(0)
k =

Σxt∈Xt
δk(Ms(xt)) ∗ Fs(xt)

Σxt∈Xtδk(Ms(xt))
, (9)

where Ms(xt) = Cs(Fs(xt)), and Fs(xt) outputs
the feature extracted from target domain data. We
weight the output confidence to the sample fea-
tures and then average the features of the same
category, and use it as the category center feature
of this category. This can characterize the feature
distribution of different categories of the target do-
main more stably and reliably. We then reassign
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Dataset Domain Sentences Training Testing
L Laptop 3,845 3,045 800
R Restaurant 6,035 3,877 2,158
D Device 3,836 2,557 1,279
S Service 2,239 1,492 747

Table 1: Statistics of adopted datasets.

the labels of the target domain samples by comput-
ing the distance of each feature to the class center
feature:

ŷt = argmin
k

Dist(A
(0)
k , Fs(xt)), (10)

where Dist(a, b) = 1
2 (1−

aT b
|a|·|b| ) is cosine distance,

and ŷt is the reassigned label. Then we use the
new pseudo-label to re-find the category center
feature of the target domain, and iterate as such:

A
(m)
k =

Σxt∈Xt
I(ŷt = k) ∗ Fs(xt)

Σxt∈XtI(ŷ
t = k)

, (11)

ŷt = argmin
k

Dist(A
(m)
k , Fs(xt)), (12)

where m represents the current iteration times and
I(·) is an indicator function. The iteration will stop
when the anchor point of the target domain fea-
ture converges. When the iteration stops, we uti-
lize a confidence threshold τ ∈ (0, 1) to filter out
lower-quality answers to improve the quality of the
pseudo-labels.

D′
t = {(xt

i, ŷ
t)|Dist(Fs(x

t
i), Aŷt

i
) < τ}nt

i=1. (13)

We take the final (xt, yt) as the final high-quality
labels, and use these labels as the data of the target
domain to perform the domain adaptation process
on the source model Ms. In the above formula
(11), we update the category features of the target
domain. In our experiment, the performance of the
model is the best when the number of iteratively
updating category feature anchors is 1.

5. Experiment

5.1. Datasets
We conduct experiments on four benchmark
datasets: Laptop (L), Restaurant (R), Device (D)
and Service (S). Restaurant (R) is the union set of
the restaurant datasets from SemEval ABSA chal-
lenge 2014, 2015 and 2016 (Pontiki et al., 2014,
2015, 2016). Laptop (L) containing user reviews
from the laptop domain, it is from SemEval-2014
(Pontiki et al., 2014) ABSA challenge. Device (D)
is a combination of device reviews from 5 different
digital products (Toprak et al., 2010). While sim-
ilar in nature to the Laptop dataset, this dataset

would encompass a broader range of electronic or
mechanical devices. Service (S) contains reviews
from web services, which is introduced by (Hu and
Liu, 2004). Detailed statistics are shown in Table
1.

5.2. Experimental settings

we perform our experiments on 10 source→target
pairs based on the four datasets mentioned above.
Each of these four datasets is used as the source
domain and remains are used as the target domain
for knowledge transfer. For each source→target
transfer experiment, our source domain data is con-
taining the sentences and their corresponding sen-
timent labels, and the target domain data is not
containing the corresponding sentiment labels. We
followed the setting of (Li et al., 2019b) and re-
moved D→L and L→D because the datasets of L
and D are very similar. Due to our setting for data
privacy protection, which only allows model param-
eter transfer, not data transfer, between different
domains. In other words, the source and target
domain data cannot appear in the training period of
the model at the same time. The evaluation of the
model is based on the test datasets of the target do-
main data. The dependency analysis of the target
domain data is performed using Spacy, with a total
of 47 dependencies between words and words.

In previous unsupervised domain adaptation for
ABSA tasks, the selection of the base model is
pre-trained model BERTB and extended version
BERTE . For BERTB, it refers to the uncased
BERTBase model pre-trained by (Devlin et al., 2018).
For BERTE , it refers to an extended version of
BERTBase model from (Li et al., 2019a), which
fine-tuning the pre-trained BERTB model on prod-
uct reviews from a combination of Yelp Challenge
datasets and the Electronics datasets from Amazon.
Since BERTE incorporates domain knowledge in
advance, it is often better to use BERTE as the
base model. However, in order to compare more
fairly with some other methods, and make our SF-
ABSA framework can be extended to more NLP
tasks, we do not use BERTE as our base model.

The GTX 3090 was used for this experiment. The
batch size is set to 32, and the learning rate is set
to 5 · 10−5. Due to the size of the datasets, the
epoch was set to 1.

The evaluation metric is Micro-F1. We also used
precision and recall as references in the experiment
to analyze the effect of our framework, but we did
not put all of them into the result table. We continue
to use the evaluation criteria of the previous task of
unsupervised domain adaptation, only exact match
could be counted as correct.
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Methods R→S L→S D→S S→R L→R D→R S→L R→D AVG
Source-Only

BERT-Base (Devlin et al., 2018) 19.48 25.78 30.31 42.2 40.38 30.06 29.20 29.47 30.36
Source-Required

Hier-Joint (Ding et al., 2017) 15.56 13.90 19.04 31.10 33.54 32.87 22.65 24.53 23.71
RNSCN (Wang et al., 2018) 20.04 16.59 20.03 33.21 35.65 34.60 18.87 33.26 26.09

AD-SAL (Li et al., 2019a) 28.01 27.20 26.62 41.03 43.04 41.01 27.04 35.44 33.71
BERT-DANN (Gong et al., 2020) 21.60 25.10 18.62 45.84 41.73 34.68 30.47 34.41 30.83
BERT-UDA (Gong et al., 2020) 33.12 27.89 28.03 47.09 45.46 42.68 34.77 34.93 35.98
CDRG (Indep) (Yu et al., 2021) 34.10 33.97 31.08 44.46 44.96 39.42 26.81 25.25 34.27
CDRG (Merge) (Yu et al., 2021) 35.14 38.14 37.22 47.92 49.79 47.64 33.69 27.46 38.98

Source-Free
SF-ABSA (Feature-based only) 26.44 26.05 31.83 48.78 40.72 41.16 34.33 36.64 35.87

SF-ABSA (All) 35.67 29.62 45.93 44.62 44.23 35.43 34.01 28.56 37.14

Table 2: Comparison results of different methods for Cross-Domain End-to-End ABSA based on Micro-
F1.The table consists of three parts: (1) Source-Only; (2) Source-Required; (3) Source-Free.

Methods R→S L→S D→S
Source-Required

BERT-DANN (Gong et al., 2020) 21.60 25.10 18.62
BERT-UDA (Gong et al., 2020) 33.12 27.89 28.03
CDRG (Yu et al., 2021) 35.14 38.14 37.22
GCDDA (Li et al., 2022) 32.07 27.22 28.52

Source-Free
SF-ABSA(our) 35.67 29.62 45.93

Table 3: Comparison results of different methods
for Cross-Domain End-to-End ABSA, which utilizing
the service dataset as the transfer target.

5.3. Baselines
We compare with several highly competitive DA
methods as follows:

• Hier-Joint (Ding et al., 2017): A recurrent neu-
ral network with syntactic rule-based auxiliary
tasks for cross-domain AE.

• RNSCN (Wang et al., 2018): A recursive neu-
ral structural correspondence network based
on syntactic structures and auto-encoders.

• AD-SAL (Li et al., 2019a): A Selective Adver-
sarial Learning method to achieve local seman-
tic alignments for fine-grained domain adapta-
tion.

• BERT-base (Devlin et al., 2018): indicates di-
rectly fine-tuning BERT-base-uncased model
on the source training data.

• BERT-DANNN: We respectively use BERT-
base as the base model, and simultaneously
perform adversarial training on each word,
which can be viewed as the BERT version of
the widely used DANN approach proposed by
(Ganin et al., 2016).

• BERTB-UDA (Gong et al., 2020): our recent
unified feature and instance-based domain

adaptation method based on BERT-base, re-
spectively.

• CDRG (Yu et al., 2021): they generate the
target domain reviews with independent and
merge training strategies.

• GCDDA (Li et al., 2022): a generative frame-
work for cross-domain data augmentation,
utilizing a pre-trained BART sequence-to-
sequence model, designed to synthesize
target-domain data accompanied by detailed
annotations..

We are the first study to consider data privacy is-
sues in the cross-domain E2E-ABSA task. In this
paper, we select conventional UDA ABSA methods
as baselines, although none of them consider the
source domain data privacy issue. In addition, our
proposed frameworks are all based on the premise
of privacy non-disclosure, so our method is more
information-deficient compared with conventional
unsupervised domain adaptation methods. There-
fore, we can take the conventional unsupervised
domain adaptation ABSA task as the upper bound
of our experiments (sufficient source domain infor-
mation) and the adaptation task directly fine-tuning
base-model on the source training data as the lower
bound of our experiments (lack of source domain in-
formation). If our method can achieve comparable
performance to conventional unsupervised domain
adaptation, it demonstrates the robust performance
of our method in the absence of information.

5.4. Results
The results are shown in Table 2.The table con-
sists of three parts: (1) Source-Only: target per-
formance without domain adaptation; (2) Source-
Required: target performance with source-
required domain adaptation; (3) Source-Free: tar-
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Methods BERT-Base SHOT SF-ABSA
R→S 42.2 26.52 35.67
L→S 20.99 17.00 29.62
D→S 13.64 10.45 45.93
S→R 42.2 37.95 44.62
L→R 39.14 33.57 44.45
D→R 30.06 26.94 35.43

Table 4: Under the same source-free setting, the
performance of each model.

get performance with source-free domain adapta-
tion.

For Source-Only, the BERT-Base model has
been trained on the source domain dataset
and then evaluated on each target dataset with-
out any domain adaptation method. For the
Source-Required, we adopt state-of-the-art meth-
ods. These methods are mainly based on adver-
sarial training approaches and generation-based
methods, which learn domain-invariant representa-
tions by minimizing the feature differences between
the source domain and target domain or generat-
ing high-quality target domain reviews. However,
these methods heavily rely on the availability of
source and target domain data, which may lead to
privacy leakage issues. In contrast, the proposed
SF-ABSA framework does not require access to
source domain data and can preserve data privacy.

First, the proposed SF-ABSA framework per-
forms better compared to BERT-base, which indi-
cates that SF-ABSA has better domain adaptability.
Furthermore, our SF-ABSA framework achieves
comparable performance to source-required meth-
ods on the premise of only transferring model pa-
rameters without accessing source-domain data,
which demonstrates the significance of our ap-
proach in the privacy-preserving domain.

In addition, we find that both feature-based and
pseudo-label-based methods have their own ad-
vantages. When the target domain is the Service
domain dataset, the pseudo-label based approach
has a significant effect on performance improve-
ment, as shown in the Table 3, which we believe
is due to the overall smaller size of the Service
dataset and the relatively small total number of
words contained in the sentences, which results in
less noise in the computation of the category fea-
ture anchors and higher accuracy of pseudo-label
in the reassignment. For example, in the D→S
task, our method outperforms the state-of-the-art
method by 8.5 percentage points. In the case of
longer sentences, the dependency information in
the feature-based method can improve model per-
formance, but the pseudo-label method weakens
model performance.

R→S
likely, proud, impressive, work, contentious,
bearing, hated,beauty, canned, mistake, madden,
nicely,catalogue,difficulty

L→S
kind, fork, appears, weary, desk, projects,
enjoy, kindly, well-served, general, comprehensive
well, quality, nice

D→S
desk, providing, interaction, recommend,
satisfaction, robust, experience, sophisticated,
comprehensive, nicely, good, appearing

Table 5: Words with higher instance weights in our
UDA approach.

Domain m=1 m=2 m=3
R→S 35.67 31.61 30.72
L→S 29.62 25.12 25.68
D→S 45.93 41.98 40.56
S→R 44.62 41.79 41.32
L→R 44.45 42.54 40.19
D→R 35.43 32.15 31.08

Table 6: Effect of the number of iterations to reas-
sign pseudo-labels on model performance.

5.5. Analysis

In the above experiments, the conditions on which
the various models are based are not consistent,
and it is unfair to directly compare with each other,
so we choose the classic baseline SHOT in the
source-free field for comparison. SHOT is a method
in the field of computer vision, but it has a strong
generalization ability and can be generalized to our
ABSA task for comparison. Tabel 4 shows the com-
parison of our proposed method with other methods
under the same source-free setting. We compared
our method with SHOT under the same source-free
setting, and we found that our method has obvious
advantages. SHOT’s method, although highly gen-
eralizable, still does not achieve great performance,
illustrating the progress of our method in the field
of privacy.

Tabel 5 shows the words with higher instance
weights in our UDA approach. When calculating
the category center point, the feature vectors of
these words will have relatively large weights. We
can think that these words can express both the in-
formation of the source domain and the information
of the target domain.

Table 6 shows the effect of the hyperparameter
m on the performance of the model in the pseudo-
label-based method. m represents the number
of times to iteratively calculate the category cen-
ter point and then reassign the pseudo-label. We
found that the pseudo-label obtained after one iter-
ation is the best.
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6. Conclusion

In this paper, we explore the ABSA task of source-
free unsupervised domain adaptation. We propose
a joint framework of feature-based methods and
pseudo-labeling methods. Our framework achieves
comparable performance to conventional unsu-
pervised domain adaptation methods under the
premise of insufficient information and without ac-
cess to source domain data. This demonstrates
the superiority of our method under the source-free
setting. In the future, we will further explore ways to
obtain high-quality pseudo-labels across modalities
in the source-free setting.
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