
LREC-COLING 2024, pages 15216–15225
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

15216

SpreadNaLa: A Naturalistic Code Generation Evaluation Dataset of
Spreadsheet Formulas

Sebastian Schuster,⋄,◦ Ayesha Ansar◦, Om Agarwal∗, Vera Demberg◦
⋄ University College London ◦Saarland University ∗ Northeastern University

s.schuster@ucl.ac.uk, vera@lst.uni-saarland.de

Abstract
Automatic generation of code from natural language descriptions has emerged as one of the main use cases of large
language models (LLMs). This has also led to a proliferation of datasets to track progress in the reliability of code
generation models, including domains such as programming challenges and common data science tasks. However,
existing datasets primarily target the use of code generation models to aid expert programmers in writing code. In
this work, we consider a domain of code generation which is more frequently used by users without sophisticated
programming skills: translating English descriptions to spreadsheet formulas that can be used to do everyday data
processing tasks. We extract naturalistic instructions from StackOverflow posts and manually verify and standardize
the corresponding spreadsheet formulas. We use this dataset to evaluate an off-the-shelf code generation model
(GPT 3.5 text-davinci-003) as well as recently proposed pragmatic code generation procedures and find that Code
Reviewer reranking (Zhang et al., 2022) performs best among the evaluated methods but still frequently generates
formulas that differ from human-authored ones.

Keywords: code generation, spreadsheet formulas, dataset, English

1. Introduction

One of the common use cases of large language
models (LLMs) and LLM-based chatbots is the au-
tomatic generation of code from natural language
descriptions (Chen et al., 2021a), and there is some
preliminary evidence that LLMs have considerable
positive effects on the productivity of expert pro-
grammers (Kreitmeir and Raschky, 2023). How-
ever, also users who do not have any or much ex-
pertise in programming sometimes automate small
data processing tasks, as for example, when us-
ing formulas in spreadsheet applications such as
Microsoft Excel or Google Spreadsheets. Such ap-
plications provide a very low barrier of entry to au-
tomate simple tasks with short commands such as
SUM or AVERAGE to compute aggregate statistics.
At the same time, the underlying interpreter sup-
ports a quite expressive language that allows expert
spreadsheet users to perform relatively complex
tasks. But also in this environment, only users with
considerable experience are able to write spread-
sheet formulas that can perform more complex data
processing tasks. This would be true to a much
lesser extent if users could describe their data pro-
cessing needs in natural language but it remains an
open question to what extent current models are ca-
pable of translating natural language descriptions
to spreadsheet formulas.

In this work, we therefore introduce SpreadNaLa,
a naturalistic code generation evaluation dataset
of spreadsheet formulas with natural language
descriptions. We compile this dataset from En-
glish question-answer pairs on the programming

help community StackOverflow,1 and manually cor-
rect and harmonize the spreadsheet formulas. We
then use this dataset to evaluate GPT-3.5 (Ouyang
et al., 2022) as well as two reranking methods
on their abilities to automatically generate spread-
sheet formulas. We find that the combination of
GPT-3.5 together with the recently proposed Code
Review reranking method (Zhang et al., 2022) is
more reliable at producing well-formed and correct
spreadsheet formulas than GPT 3.5 by itself. At
the same time, all evaluated methods produce for-
mulas that considerably deviate from gold formu-
las for the majority of questions, suggesting that
generating more complex spreadsheet formulas
still poses a challenge for even very recent LLMs.
We release the SpreadNaLa dataset, an evalu-
ation script, and the experiment code at https:
//github.com/sebschu/SpreadNaLa.

2. Related Work

Translating natural language expressions to exe-
cutable code or logical forms has been a long-
standing research objective in natural language
processing research leading to the development of
many semantic parsers. Early systems generally
output specific logical forms or database queries
to interact with knowledge bases or other exter-
nal systems (e.g., Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2007; Liang et al., 2013; Berant
et al., 2013; Reddy et al., 2014; Yu et al., 2018).
More recently, there have been more general code
generation benchmarks that require the model to

1https://stackoverflow.com

https://github.com/sebschu/SpreadNaLa
https://github.com/sebschu/SpreadNaLa

15217

Examples 1,300
Description length (words) 97.8 (42–182)
Formula length (tokens) 21.8 (5-55)

Table 1: Dataset statistics. Length statistics show
the means and (in parentheses) the interquantile
range between the 5th and 95th percentile. The
formula length was measured in tokens according
to the spreadsheet formula tokenizer that we used
for evaluation (see Section 4.2).

output much longer programs in open domain pro-
gramming languages such as Java or Python (e.g.,
Agashe et al., 2019). Most of these benchmarks
are based on programming interview or challenge
problems (e.g., Hendrycks et al., 2021; Li et al.,
2022) and therefore do not really measure every-
day programming tasks. In the area of everyday
programming tasks, there has been some work for
building systems for automatic code documentation
(e.g., Liu et al., 2021) and more interactive human-
machine collaboration on programming tasks (e.g,
Li et al., 2023).

More closely related to our work are the CoNaLa
(Yin et al., 2018) and DS-1000 (Lai et al., 2023)
datasets whose examples are based on naturalis-
tic questions posted on StackOverflow. However,
unlike our work, they focus on general Python pro-
gramming and common data science problems.
Lastly, there also exist other single-line code gener-
ation datasets such as NL2Bash (Lin et al., 2018)
that can be used to evaluate systems translating
from natural language to Bash commands.

To the best of our knowledge, there is no ex-
isting dataset for evaluating translation of natu-
ral language descriptions to spreadsheet formulas.
There have been, however, several works develop-
ing datasets and methods for inferring spreadsheet
formulas from examples (Gulwani, 2011; Gulwani
et al., 2012; Chen et al., 2021b). Furthermore, Gul-
wani and Marron (2014) collected a dataset of nat-
ural language descriptions translated to a domain-
specific formal language for spreadsheet manipula-
tions and showed that a semantic parser can trans-
late these descriptions into the formal language
with high accuracy. However, the expressivity of
their language is more limited than the language of
spreadsheet formulas that we are considering.

3. Dataset

For collecting SpreadNaLa, we use a data collec-
tion protocol inspired by Yin et al. (2018). We
scraped questions and answers from StackOver-
flow, then automatically and manually filtered the
questions, and then manually corrected and har-
monized the spreadsheet formulas.

3.1. Scraping and filtering
We automatically scraped all questions and asso-
ciated answers tagged with “excel-formula” using
the StackOverflow API in November 2022, result-
ing in a dataset of 14,294 questions. This included
questions without answers, questions that were ac-
tually on another topic, and other unsuitable data
points. We therefore performed several relatively
aggressive filtering steps with the goal of curating
a high quality evaluation dataset.

We automatically removed questions with an em-
bedded image (which was often a screenshot of a
spreadsheet indicating the data format) or a table
since unimodal language models would not be able
to parse that information; we removed questions
without a “verified” answer, i.e., an answer that the
question author marked as resolving their problem;
and we removed questions whose verified answer
had more downvotes than upvotes. Finally, since
in most cases the spreadsheet formula for solving
the problem was embedded with a <code> HTML
block, we also excluded answers without such a
block. After these automatic exclusions, we were
left with 5,196 question-answer pairs.

3.2. Expert corrections
For the remaining examples, we extracted the title
and body from each question to be used as the
description, and extracted the contents of the first
code block in the answer as the target formula. We
then performed two rounds of manual annotations:
First, one of the authors manually inspected ev-
ery question and discarded examples that were
not asking for a spreadsheet formula or were not
self-contained (e.g., linked to external web pages).
They also removed all examples where the answer
did not provide a spreadsheet formula, but some
other solution (e.g., a Visual Basic for Application
(VBA) code snippet). Second, another annotator
with extensive experience in spreadsheet formulas
checked and corrected all formulas, and performed
further exclusions. This resulted in the final dataset
of 1,300 description-formula pairs. See Table 1 for
more aggregate statistics of our dataset.

Spreadsheet formulas are generally used to pro-
cess information from specific cells or ranges of
cells and often take additional arguments, such
as string constants, numbers, or conditional state-
ments. However, in many cases, the description
lacks information on the specific arguments and
hence the answers may contain placeholders or ex-
ample cell references that the answer writer chose
to illustrate their solution. Considering that this in-
formation is missing from the description, neither a
model nor a human could reliably reproduce the so-
lution of the answer writer. We therefore replaced
specific instances (e.g., a reference to cell A1) with

15218

variables such as <cell1> or <string1> if they
were not mentioned in the description. Our eval-
uation metrics (see Section 4.2) consider these
variables such that models are not penalized for
generating placeholders for references and argu-
ments that were not specified in the description.

4. Models and Experiments

We use our dataset to evaluate three models based
on GPT-3.5 text-davinci-003 (Ouyang et al., 2022):
a baseline model without additional processing, the
recently proposed Code Reviewer reranking ap-
proach (Zhang et al., 2022), and a model within the
Rational Speech Act framework (RSA; Goodman
and Frank, 2016) intended to better capture the
true intention of the user. For all models, the goal
is to infer a spreadsheet formula f from a natural
language description d.

4.1. Models
Baseline. As a baseline model, we use GPT-3.5
text-davinci-003 together with a fixed prompt tem-
plate (see Appendix A). This model is assumed to
have 175B parameters, was pre-trained on large
amounts of text and code, and was further finetuned
using a proprietary instruction finetuning dataset
and a reinforcement learning from human feedback
procedure.

We use a prompt that instructs the model to gen-
erate a spreadsheet formula f based on a descrip-
tion d. To illustrate the format, we provide one ex-
ample description and the corresponding formula
as a 1-shot in-context learning example. We man-
ually created this example and it is not part of the
evaluation dataset. We take the raw generated
output as the model’s predicted formula. See Ap-
pendix B for the hyperparameters of the generation
process.

Code Reviewer. One challenge with code gener-
ation, especially from descriptions written by non-
expert programmers, is that some requirements are
not explicitly stated. We therefore also evaluated
two recently proposed models that aim to better in-
fer the true intention of the user. The first model is
the Code Reviewer reranking model (Zhang et al.,
2022). For this model, we sample 10 completions
(i.e., formulas fi ∈ F) from GPT-3.5 for each de-
scription d and compute the probability P (fi | d)
from the probabilities of each token t1, ..., tN of fi,

P (fi | d) =
N∏
j=1

GPT (tj | d, t1,...,j−1) .

We then compute the likelihood of generating the
original description d given each formula fi. We

again use GPT-3.5 to approximate this probability
by using a prompting template that instructs the
model to generate a description of a formula (see
Appendix A). Given a formula fi and the tokens
of the description u1, ..., uM , we compute the likeli-
hood

P (d | fi) =
M∏
j=1

GPT (uj | fi, u1,...,j−1) .

Note that we are using GPT-3.5 here to only score
the description; we do not sample any new tokens
from the model when computing the likelihood. To
compute the final prediction, the model returns the
formula f that maximizes the product of the two
computed quantities:

f = argmax
fi

P (fi | d)× P (d | fi) .

RSA. We also evaluated a model that is based on
the Rational Speech Act (RSA) framework. RSA
models have been used to successfully model the
interpretation of pragmatic language use which–
like descriptions of intended code behavior–is often
underspecified and involves ambiguities. Further-
more, in a toy domain, an RSA code generation
model has been shown to allow users to generate
programs more efficiently (Pu et al., 2020). The
core idea of this model is similar to the Code Re-
viewer model, such that the model not only con-
siders the probability of a formula given the de-
scription but also how likely someone would be
to describe a formula with the given description.
RSA models achieve this by explicitly modeling a
recursive reasoning process where an interpreter
L1 (fi | dk) (called listener in RSA terms) reasons
about a speaker model S1 (dk | fi) which in return
reasons about another listener L0 (fi | dk):

L1 (fi | dk) =
S1 (dk | fi)∑

fj∈F S1 (dk | fj)

S1 (dk | fi) =
L0 (fi | dk)∑

dl∈D L0 (fi | dl)

The lowest level of this recursive reasoning process,
the L0 (fi | dk) listener, is approximated by the GPT-
3.5 model:

L0 (fi | dk) ∝ GPT (fi | dk)

One challenge with RSA models is the normal-
ization in each speaker and listener model which re-
quires a distribution over every possible formula fj
and every possible description dl. Given that there
are both infinitely many valid spreadsheet formulas

15219

Model � Edit Distance ↓ Exact Match ↑ Invalid ↓
GPT3.5 text-davinci-003 16.93 5.77% 0.77%
GPT3.5 text-davinci-003 + Code Reviewer 15.85 5.85% 0.69%
GPT3.5 text-davinci-003 + RSA 17.95 3.15% 1.62%

Table 2: Performance of the baseline model and the two reranking methods on the SpreadNaLa dataset.

and infinitely many possible natural language de-
scriptions, it is impossible to compute these distribu-
tions. We therefore sample a finite set of formulas
F and a finite set of descriptions D from GPT-3.5
and perform the RSA computations based on dis-
tributions over these finite sets. See Appendix C
for the specifics of this approximation.

The main motivation of the Code Reviewer model
and the RSA model is the same, namely to also
consider how likely someone would describe a can-
didate formula with the given description, based on
the assumption that the higher this likelihood is, the
better the candidate formula matches the descrip-
tion. The difference between these two models,
though, is that the RSA model also considers alter-
native descriptions dk that could have been used
to describe the other candidate formulas.

4.2. Evaluation
For evaluating the model output, we lowercase and
tokenize both the model output and the gold for-
mula using the spreadsheet formula tokenizer from
the Python openpyxl package.2 We then compare
the list of tokens from the model output and the
gold formula and compute a) the exact match, i.e.,
whether the list of tokens is the same and b) the
Levenshtein edit distance between the two lists.
Further, as mentioned above, our gold formulas
often contain placeholders for cell references or
arguments that have not been specified in the de-
scription. In the evaluation procedure, we therefore
allow placeholders to align with any token in the
model output. Lastly, we also compute the per-
centage of invalid formulas, i.e., formulas that are
not well-formed due to unmatched parentheses or
quotation marks or other syntactic issues.

4.3. Results and Discussion
Table 2 shows the results for the evaluated models.
We find that the baseline GPT-3.5 model produces
syntactically well-formed formulas almost all the
time and fewer than 1% of the formulas are invalid.
At the same time, the percentage of examples for
which the model output exactly the gold formula is
still low and the predicted and gold formula differ
on average by almost 17 tokens. This number is

2https://openpyxl.readthedocs.io

particularly high when put in relation to the average
length of a formula of 21.76 tokens in our dataset.

Combining the baseline model with Code Re-
viewer reranking brings small but consistent gains
across all metrics, which suggests that considering
how well the description fits the generated formula
brings additional advantages. Given this finding, it
is a bit surprising that the RSA model which pro-
vides a more sophisticated method for assessing
the fit of a formula and a description performs the
worst of all the three models. One reason may be
that for the RSA model, we also sample descrip-
tions from GPT-3.5 and these descriptions ended
up being different in style from the original descrip-
tions that were derived from StackOverflow ques-
tions. Therefore, these alternative descriptions may
not really be competing descriptions and may some-
times lead the model astray.

Qualitative analysis. To assess what kind of er-
rors the model makes and whether such a model
may be useful in practice, we sampled 100 exam-
ples from the dataset and also performed a man-
ual analysis of the output of the three models on
these examples. For this purpose, a research as-
sistant (RA) noted whether a formula was an exact
match modulo some minor syntactic differences
(EM; e.g., using semicolons instead of commas to
separate arguments); whether the model output a
correct formula that differed from the gold formula
in our dataset (Co); whether the model output a
non-general solution that produces the correct out-
put for the examples that the user specified in the
description but would not necessarily generalize to
other examples (NGS, e.g., because some values
are hard-coded instead of performing a lookup),
or whether it was incorrect (Inc). The RA further
annotated whether what we considered the most
important function was part of the model’s solution
(MIF)3; whether the formula was well-formed and
each function had the correct number of arguments
(WF); and whether the arguments of all functions
were correct (CA). Note that while the first set of
annotations is mutually exclusive, the last three cat-
egories can be simultaneously true. To avoid any
bias, one of the authors prepared the model output

3We included this metric, which was suggested by
an anonymous reviewer, since identifying the correct
function may already be an important step in helping a
user find a solution.

https://openpyxl.readthedocs.io

15220

Model EM Co NGS Inc MIF WF CA
GPT3.5 text-davinci-003 12% 24% 12% 52% 57% 82% 55%
GPT3.5 text-davinci-003 + Code Reviewer 14% 25% 13% 48% 54% 86% 58%
GPT3.5 text-davinci-003 + RSA 8% 19% 10% 63% 51% 78% 44%

Table 3: Results from manual analysis of 100 sampled outputs from each model. EM: Exact match, Co:
Correct but different from gold formula, NGS: Non-general solution, Inc: Incorrect, MIF: contains most
important function, WF: Syntactically well-formed formula, CA: Correct arguments. Note that EM, Co,
NGS, and Inc are mutually exclusive categories, whereas MIF, WF and CA can all simultaneously hold
for a given formula.

sample and the RA did not know which model had
generated the examples.

Table 3 shows the results from this manual analy-
sis, which confirms the general trends that we found
with the automatic analysis: The Code Reviewer
reranking method outperformed the other two meth-
ods according to every metric other than whether
it identified the most important function, and the
RSA method generally yielded lower results than
both the baseline and the Code Reviewer reranking
method. This manual analysis also suggests that
the automatic exact match metric underestimates
the usefulness of the model: For 29% of the exam-
ples, the Code Reviewer reranking method output a
formula that either closely followed the gold formula
or was a correct alternative solution and in addi-
tional 13% of the cases, it produced a solution that
worked for the example the the user specified. At
the same time, well-formedness was lower for the
models than the low rate of invalid formulas accord-
ing to the syntactic parser may suggest, and in the
sample of outputs that we analyzed the model still
frequently output incorrect cell references, halluci-
nated arguments, or oversimplified formulas com-
pared to the gold formulas. These findings show
that while the model seems to perform better than
the automatic metrics suggest, there is still signif-
icant room for improvement and current models
are likely not reliable enough to enable non-expert
spreadsheet users to perform sophisticated data
processing tasks.

5. Conclusion

In this work we presented SpreadNaLa, a novel
dataset for evaluating the ability of code generation
models to translate natural language descriptions
to spreadsheet formulas. We collected this dataset
from naturalistic questions on StackOverflow and
harmonized and corrected the target output. We
used SpreadNaLa to evaluate several code gen-
eration models based on GPT-3.5 with a focus on
evaluating pragmatic code generation methods that
have been shown to better handle information that
is not made explicit in natural language. While we
found that the Code Reviewer reranking method im-

proved over a GPT-3.5 baseline, the more complex
RSA model did not lead to improvements, which
appears to be in part caused by non-optimal alterna-
tive descriptions that were generated by GPT-3.5.

Considering that none of the models performed
close to ceiling, SpreadNaLa constitutes a bench-
mark well-suited for tracking the progress of future
code generation models and methods.

6. Limitations

One limitation of SpreadNaLa is that it only sup-
ports string-based evaluation metrics. As rightfully
pointed out by Lai et al. (2023), string-based met-
rics penalize alternative solutions that also lead to
the correct result but nevertheless differ from the
gold formula. This limitation stems from the fact
that it is not possible to interpret spreadsheet formu-
las outside of spreadsheet applications, and thus
it was not possible to design an execution-based
evaluation.

In our evaluations, we used only one prompt tem-
plate to generate alternative descriptions for the
RSA model and it could be that other prompts would
have produced better alternative descriptions which
in return could have led to better performance of
the RSA reranking model. Unfortunately, the gen-
eration of many descriptions for each examples
requires generating many tokens and it would have
been prohibitively expensive to optimize the tem-
plate using a commercial model such as GPT-3.5.

Furthermore, we only used the fully closed model
GPT-3.5 and we do not know whether the model
was trained on some or all of the StackOverflow
webpages from which we scraped the descriptions
and formulas. Considering that all evaluated mod-
els rarely produced exactly the gold formula, it
seems unlikely that the model memorized all an-
swers but it could be that in practice the model
performs even worse. With the recent releases of
more oopen models such as Pythia (Biderman et al.,
2023) and Code LLama (Rozière et al., 2023), it
will therefore be important to also evaluate models
for which more information on their training data is
available, also in light of the deprecation of GPT-3.5
shortly after the submission of this paper.

15221

Acknowledgments

We thank the anonymous reviewers for their
thoughtful feedback, and Zhuchen Cao for his
help with analyzing the model outputs. This re-
search was supported by the the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 Research and Innovation Program
(Grant Agreement #948878).

7. Bibliographical References

Rajas Agashe, Srinivasan Iyer, and Luke Zettle-
moyer. 2019. JuICe: A large scale distantly su-
pervised dataset for open domain context-based
code generation. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 5436–5446, Hong
Kong, China. Association for Computational Lin-
guistics.

Jacob Andreas and Dan Klein. 2016. Reasoning
about pragmatics with neural listeners and speak-
ers. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1173–1182, Austin, Texas. Associa-
tion for Computational Linguistics.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on Free-
base from question-answer pairs. In Proceedings
of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1533–
1544, Seattle, Washington, USA. Association for
Computational Linguistics.

Stella Biderman, Hailey Schoelkopf, Quentin Gre-
gory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu
Purohit, Usvsn Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar
Van Der Wal. 2023. Pythia: A suite for analyz-
ing large language models across training and
scaling. In Proceedings of the 40th International
Conference on Machine Learning, pages 2397–
2430.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski

Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Eval-
uating large language models trained on code.
arXiv:2107.03374.

Xinyun Chen, Petros Maniatis, Rishabh Singh,
Charles Sutton, Hanjun Dai, Max Lin, and Denny
Zhou. 2021b. Spreadsheetcoder: Formula pre-
diction from semi-structured context. In Proceed-
ings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 1661–1672.

Daniel Fried, Jacob Andreas, and Dan Klein. 2018.
Unified pragmatic models for generating and
following instructions. In Proceedings of the
2018 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume
1 (Long Papers), pages 1951–1963, New Or-
leans, Louisiana. Association for Computational
Linguistics.

Noah D. Goodman and Michael C. Frank. 2016.
Pragmatic Language Interpretation as Proba-
bilistic Inference. Trends in Cognitive Sciences,
20(11):818–829.

Sumit Gulwani. 2011. Automating string processing
in spreadsheets using input-output examples. In
Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages, page 317–330.

Sumit Gulwani, William R. Harris, and Rishabh
Singh. 2012. Spreadsheet data manipulation
using examples. Commun. ACM, 55(8):97–105.

Sumit Gulwani and Mark Marron. 2014. NLyze:
Interactive programming by natural language for
spreadsheet data analysis and manipulation. In
Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data, page
803–814, New York, NY, USA. Association for
Computing Machinery.

Dan Hendrycks, Steven Basart, Saurav Kadavath,
Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song,
and Jacob Steinhardt. 2021. Measuring cod-
ing challenge competence with APPS. In Thirty-
fifth Conference on Neural Information Process-

https://doi.org/10.18653/v1/D19-1546
https://doi.org/10.18653/v1/D19-1546
https://doi.org/10.18653/v1/D19-1546
https://doi.org/10.18653/v1/D16-1125
https://doi.org/10.18653/v1/D16-1125
https://doi.org/10.18653/v1/D16-1125
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://proceedings.mlr.press/v139/chen21m.html
https://proceedings.mlr.press/v139/chen21m.html
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.1016/j.tics.2016.08.005
https://doi.org/10.1016/j.tics.2016.08.005
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2588555.2612177
https://doi.org/10.1145/2588555.2612177
https://doi.org/10.1145/2588555.2612177
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5

15222

ing Systems Datasets and Benchmarks Track
(Round 2).

David H. Kreitmeir and Paul A. Raschky. 2023. The
unintended consequences of censoring digital
technology – evidence from italy’s chatgpt ban.
arXiv:2304.09339.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi
Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-
Tau Yih, Daniel Fried, Sida Wang, and Tao Yu.
2023. DS-1000: A natural and reliable bench-
mark for data science code generation. In Pro-
ceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 18319–
18345. PMLR.

Haau-Sing (Xiaocheng) Li, Mohsen Mesgar, An-
dré Martins, and Iryna Gurevych. 2023. Python
code generation by asking clarification questions.
In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 14287–14306,
Toronto, Canada. Association for Computational
Linguistics.

Yujia Li, David Choi, Junyoung Chung, Nate
Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno,
Agustin Dal Lago, et al. 2022. Competition-
level code generation with AlphaCode. Science,
378(6624):1092–1097.

Percy Liang, Michael I. Jordan, and Dan Klein.
2013. Learning dependency-based composi-
tional semantics. Computational Linguistics,
39(2):389–446.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D. Ernst. 2018. NL2Bash: A cor-
pus and semantic parser for natural language
interface to the linux operating system. In Pro-
ceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Lan-
guage Resources Association (ELRA).

Xuye Liu, Dakuo Wang, April Wang, Yufang Hou,
and Lingfei Wu. 2021. HAConvGNN: Hierarchi-
cal attention based convolutional graph neural
network for code documentation generation in
Jupyter notebooks. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2021,
pages 4473–4485, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex

Ray, et al. 2022. Training language mod-
els to follow instructions with human feedback.
arXiv:2203.02155.

Yewen Pu, Kevin Ellis, Marta Kryven, Josh Tenen-
baum, and Armando Solar-Lezama. 2020. Pro-
gram synthesis with pragmatic communication.
In Advances in Neural Information Processing
Systems, volume 33, pages 13249–13259.

Siva Reddy, Mirella Lapata, and Mark Steedman.
2014. Large-scale semantic parsing without
question-answer pairs. Transactions of the Asso-
ciation for Computational Linguistics, 2:377–392.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
Artyom Kozhevnikov, Ivan Evtimov, Joanna Bit-
ton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis
Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code llama: Open
foundation models for code. arXiv:2308.12950.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bog-
dan Vasilescu, and Graham Neubig. 2018. Learn-
ing to mine aligned code and natural language
pairs from Stack Overflow. In Proceedings of the
15th International Conference on Mining Soft-
ware Repositories, page 476–486.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3911–3921, Brussels, Belgium. Associa-
tion for Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996.
Learning to parse database queries using induc-
tive logic programming. In Proceedings of the
Thirteenth National Conference on Artificial Intel-
ligence (AAAI), pages 1050–1055.

Luke Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for pars-
ing to logical form. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
678–687, Prague, Czech Republic. Association
for Computational Linguistics.

Tianyi Zhang, Tao Yu, Tatsunori B. Hashimoto, Mike
Lewis, Wen tau Yih, Daniel Fried, and Sida I.

https://arxiv.org/abs/2304.09339
https://arxiv.org/abs/2304.09339
https://arxiv.org/abs/2304.09339
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.18653/v1/2023.acl-long.799
https://doi.org/10.18653/v1/2023.acl-long.799
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1162/COLI_a_00127
https://doi.org/10.1162/COLI_a_00127
https://aclanthology.org/L18-1491
https://aclanthology.org/L18-1491
https://aclanthology.org/L18-1491
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://proceedings.neurips.cc/paper_files/paper/2020/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf
https://doi.org/10.1162/tacl_a_00190
https://doi.org/10.1162/tacl_a_00190
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071

15223

Wang. 2022. Coder reviewer reranking for code
generation. arXiv:2211.16490.

https://arxiv.org/abs/2211.16490
https://arxiv.org/abs/2211.16490

15224

A. Prompt templates

Tables 4 and 5 show the prompt templates that
we used to generate the most likely formula in the
baseline model, and sample formulas and descrip-
tions in the reranking models. We further used the
template in Table 5 for computing the likelihood of
a description d given a formula f , P (d | f).

B. Hyperparameters

Table 6 shows the set of hyperparameters for the
baseline model, the formula generation model, and
the description generation model. We used the
same hyperparameters for the three models except
for the temperature parameter, which guides the
diversity of generations. For the baseline model,
where we generate only one formula, we set the
temperature to 0 such that the model uses a greedy
generation process that always returns the most
probable token. For the formula generation and
description generation models used in the Code
Review and RSA reranking models, we need a
diverse set of formulas and descriptions, and there-
fore, we set the temperature parameter to higher
values of 0.8 and 1.0, respectively.

C. Approximate RSA model

As mentioned in the main text, it would be in-
tractable to exactly compute the distributions for
the pragmatic speaker S1 and the pragmatic lis-
tener L1, since we would have to normalize over
an infinite amount of possible descrtiptions and
formulas. We therefore approximate these distribu-
tions similarly to other models combining RSA with
language models (e.g., Andreas and Klein, 2016;
Fried et al., 2018). For this approxmation, we sam-
ple both up to 10 formulas and up to 10 different
descriptions from GPT-3.5. To obtain the set of
formulas F , we sample 10 formulas fi given the
prompt used for the baseline. As in some cases,
some of the samples only differed in their casing,
we de-duplicate this set such that it includes no
two formulas that only differ in their casing. For
some prompts, this resulted in a set F that con-
sists of fewer than 10 formulas. To obtain the set
of descriptions D, we sample a description dk from
GPT-3.5 for each fi ∈ F using the prompt template
in Table 5. Using these sets F and D, we then
approximate the components of the RSA model as
follows.

L0 (fi | dk) =
GPT (fi | dk)∑

fj∈F GPT (fj | dk)

S1 (dk | fi) =
L0 (fi | dk)∑

dl∈D L0 (fi | dl)

L1 (fi | dk) =
S1 (dk | fi)∑

fj∈F S1 (dk | fj)

To compute GPT (fi | dk) we again use the
prompt template in Table 4 but this time compute
the likelihood of fi given the prompt instead of sam-
pling from the language model.

15225

1-shot prompt used to compute P (f | d)
Translate the following descriptions into a spreadsheet formula.

Description: Write a spreadsheet formula to select the first letter from cell A4 and last letter
from cell B6.
Formula: concat(left(a4,1),right(b6,1))

Description: {description}
Formula:

Table 4: Baseline/formula generation prompt template. We also use this template to compute the likelihood
of a formula given a description.

1-shot prompt used to compute P (d | f)
Translate the following spreadsheet formula into a description.

Formula:concat(left(a4,1),right(b6,1))
Description: Write a spreadsheet formula to select the first letter from cell A4 and last letter
from cell B6.

Formula: {formula}
Description:

Table 5: Description generation prompt template.

Parameter Baseline Formula Generation Description Generation
Temperature 0 0.8 1.0
Max tokens 256 256 256
top-p 1.0 1.0 1.0
Frequency penalty 0 0 0
Presence penalty 0 0 0

Table 6: OpenAI API hyperparameters used for sampling formulas and descriptions from the baseline
model, the formula generation model, and the description generation model.

	Introduction
	Related Work
	Dataset
	Scraping and filtering
	Expert corrections

	Models and Experiments
	Models
	Evaluation
	Results and Discussion

	Conclusion
	Limitations
	Bibliographical References
	Prompt templates
	Hyperparameters
	Approximate RSA model

