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Abstract

An entailment tree is a structured reasoning path that clearly demonstrates the process of deriving hypotheses through
multiple steps of inference from known premises. It enhances the interpretability of QA systems. Existing methods for
generating entailment trees typically employ iterative frameworks to ensure reasoning faithfulness. However, they
often suffer from the issue of false feasible steps, where selected steps appear feasible but actually lead to incorrect
intermediate conclusions. Moreover, the existing iterative frameworks do not consider error-prone search branches,
resulting in error propagation. In this work, we propose SPEH: an iterative entailment tree generation framework with
Step fesibility Perception and state Error Handling mechanisms. Step Feasibility Perception enables the model to
learn how to choose steps that are not false feasible. State Error Handling includes error detection and backtracking,
allowing the model to correct errors when entering incorrect search branches. Experimental results demonstrate the
effectiveness of our approach in improving the generation of entailment trees.
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1. Introduction

The Question-Answering (QA) task provides an ef-
fective way to test the natural language reasoning
abilities of AI systems (Yang et al., 2018). Previous
QA research has often employed end-to-end ap-
proaches to predict answers, lacking explainability
by not showcasing the internal reasoning process
(Thayaparan et al., 2020). Providing the reasoning
process alongside the answers helps users under-
stand and trust the process of answer generation
(Wiegreffe and Marasovic, 2021). In certain spe-
cialized domains such as engineering or medicine,
it is essential for the model to generate decisions
that are trustworthy and reliable, necessitating a
more rigorous and interpretable reasoning process
(Miller, 2019; Papagni et al., 2023; Kim et al., 2023).

Dalvi et al. (2021) proposed a task of entailment
tree generation to enhance the interpretability of
QA systems, as illustrated in Figure 1 (a). This task
requires the model to construct an entailment tree
from a given question and background knowledge,
representing the multi-step reasoning process in a
tree structure. The leaf nodes of the tree represent
known and validated background knowledge, the
intermediate nodes represent intermediate conclu-
sions derived through inference, and the root node
represents the target of the reasoning process.

Existing methods such as METGEN (Hong et al.,
2022) and SI (Creswell and Shanahan, 2022) typ-
ically adopt an iterative framework (Tafjord et al.,
2021) in which each iteration performs one round
of inference to ensure the faithfulness of reasoning
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Figure 1: (a) An instance of Entailment Tree. (b)
False feasible step: The premises may be incor-
rectly combined, for example, i1&s4 could consume
the “source” needed for subsequent reasoning and
result in an incorrect intermediate conclusion. (c)
With the inclusion of our step feasibility percep-
tion mechanism, it becomes possible to determine
which steps are more helpful for reasoning.

(Sanyal et al., 2022). This means that the genera-
tion of intermediate conclusions is not affected by
irrelevant information. However, due to the model’s
selection of more feasible steps in each iteration,
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Figure 2: (a) Erroneous search branch: Existing
iterative frameworks are unable to handle errors,
which can result in error propagation. (b) SPEH
can detect errors and roll back to the correct state.

this approach may encounter the issue of false
feasible steps. In other words, the model may in-
correctly choose steps that appear to be feasible
but fail to combine the generated intermediate con-
clusions with other premises in subsequent steps.
This can impede the progress of reasoning or lead
to incorrect entailment trees.

As shown in Figure 1 (b), both i1 & s3 and i1 & s4
are feasible, but the latter produces an intermediate
conclusion that lacks “source”, preventing further
combination into a feasible step and resulting in
an incorrect entailment tree. Therefore, a method
is needed to determine whether a step is true fea-
sible or false feasible. Based on our observation,
steps with smaller distances to the hypothesis tend
to have fewer intermediate steps between the gen-
erated intermediate conclusion and the hypothe-
sis. Consequently, their likelihood of being a false
feasible step decreases. Hence, we consider con-
structing training samples based on distance and
enabling the model to predict the probability of a
step not being a false feasible step.

Furthermore, errors generated during iterations
can lead to error propagation. In an iterative frame-
work, once a decision is made and a search branch
is determined, there is no mechanism to detect or
address the errors that have already occurred. As
shown in Figure 2 (a), in the T = 2 iteration, the
erroneous states in the Candidate states are not de-
tected, resulting in an incorrect entailment tree be-
ing generated. Inspired by Regret aversion theory
(Loomes and Sugden, 1982), if there is a method
to detect errors and allow for rollback, the model
can revert to a state where the erroneous decision
was not taken, thereby reducing error propagation.

In this paper, we propose SPEH: an iterative en-

tailment tree generation framework with Step fea-
sibility Perception and state Error Handling mech-
anism. The Step Feasibility Perception method
selects steps based on the probability of each step
being a false feasible step. We introduce a flex-
ible sample construction method similar to hard
negative samples (Robinson et al., 2021) based
on metric learning. By utilizing the distance be-
tween steps and the hypothesis, additional training
data is constructed to further differentiate positive
samples, leading the model to select steps with a
lower likelihood of being false feasible, as shown
in Figure 1 (c). This helps generate more effective
intermediate conclusions.

The State Error Handling mechanism incorpo-
rates states from previous iterations during the state
filtering process in the reasoning procedure. The
two-stage error detection process enables the iden-
tification of erroneous states, followed by the im-
plementation of the proposed error rollback mecha-
nism to return to a valid state, as depicted in Figure
2 (b). This effectively salvages search branches
that could have potentially led to erroneous outputs.

We make three main contributions in this re-
search:

• To enhance the effectiveness of entailment
tree construction for each reasoning step, we
propose a step feasibility perception approach
that reduces the issue of false feasible step
selection by the model.

• We introduce state error handling, a special
rollback mechanism that introduces different
iterations of states during reasoning to facilitate
error rollback and reduce error propagation.

• Experimental results demonstrate that our
innovative SPEH outperforms the baseline
model in most metrics and effectively ad-
dresses the problems we are concerned about.

2. Related Works

PLM Pre-trained language models (PLMs) are a
common approach in natural language processing,
and there are several notable works in this area,
including GPT (Radford et al.), BERT (Devlin et al.,
2019), and RoBERTa (Liu et al., 2019). These mod-
els, based on the transformer architecture (Vaswani
et al., 2017), follow a two-stage training process:
pre-training and fine-tuning. This allows them to
generate outputs in an end-to-end fashion, even for
moderately complex tasks. However, there have
been studies that raise concerns about the rea-
soning capabilities of PLMs, suggesting that their
performance stems mainly from data correlation.
These studies propose diagnostic reasoning tasks
to assess the reasoning abilities of PLMs (Sug-
awara et al., 2020; Tian et al., 2021).
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Interpretability of NLP In Natural Language Pro-
cessing (NLP) tasks that involve multi-step reason-
ing, the credibility of the answers may be ques-
tioned if the process lacks explanations. Some
research has introduced QA datasets with explana-
tions, where the sources of answers are annotated
within the text paragraphs (Yang et al., 2018; Ye
et al., 2020; DeYoung et al., 2020; Xie et al., 2020).
However, this approach fails to showcase the pre-
cise process from the given information to the an-
swers. There are also studies that express rea-
soning chains in natural language (Ho et al., 2023;
Lamm et al., 2021; Jhamtani and Clark, 2020; Wei
et al., 2022), but this unstructured process cannot
ensure that the information used in the generated
sentences originates from the provided knowledge.

Some research has begun to leverage tradi-
tional single-step logical reasoning to provide as-
surances for interpretability (Bostrom et al., 2021;
Sprague et al., 2023; Yang et al., 2022b; Young
et al., 2022). To explore longer reasoning chains,
Clark et al. (2020) introduced RuleTaker based on
multi-step deductive reasoning. Additionally, Dalvi
et al. (2021) further proposed the EntailmentBank
dataset for generating entailment trees. This struc-
tured reasoning chain explicitly showcases how
multi-step reasoning is performed from the back-
ground knowledge to arrive at answers. Due to the
high quality of the annotated data in Entailment-
Bank, some researchers have expanded its utiliza-
tion to other tasks and datasets (Sprague et al.,
2022; Huang et al., 2022).

Recently, there has been increasing attention on
Faithful QA (FQA), where faithfulness refers to a
system that exhibits reasoning consistent with the
standard definition of logical validity (Creswell and
Shanahan, 2022). The objective of Tafjord et al.
(2022); Weir and Van Durme (2022); Hong et al.
(2023) is to ensure that the answers produced by
the model are entirely dependent on its reason-
ing process. However, the current FQA tasks are
mostly accomplished through answer enumeration
and entailment tree generation attempts. There-
fore, in our research, we focus on tackling the task
of entailment tree generation.
Generation of Entailment Tree In the past, re-
search on entailment trees often utilized the PLM
approach for selection and generation tasks. As
proposed in ProofWriter (Tafjord et al., 2021), these
models can be broadly categorized into two types.
All-At-Once For example, Saha et al. (2020) and
Sun et al. (2021) attempt to predict all variable in-
formation of the entailment tree at once, including
the existence relationships of nodes and edges.
While these models can capture global reasoning
information and make full use of the contextual
modeling capabilities of PLMs, they have gradually
been abandoned due to their opaque process and

lack of reliability. Iterative Sanyal et al. (2022) and
Creswell and Shanahan (2022) divide the selec-
tion of premises and the generation of conclusions
into two separate modules and then employ beam
search methods to search the reasoning space. Liu
et al. (2022) and Zhao et al. (2023) attempt to in-
troduce future information into the current iteration
to enhance the model’s decision-making abilities.
Yang et al. (2022a) do not differentiate between
selection and generation modules but instead pro-
pose a verifier to guide the reasoning process.

Due to the interference caused by distractors in
Task 2 and Task 3 of EntailmentBank, filtering out
irrelevant content from the premises has become
a challenging task. Approaches (Bostrom et al.,
2022; BehnamGhader et al., 2022; Ribeiro et al.,
2022; Bogatu et al., 2022) have designed special-
ized retrieval methods to address this problem. Fur-
thermore, to improve the efficiency and accuracy
of reasoning, some studies have also considered
the introduction of reverse reasoning (Liang et al.,
2021; Qu et al., 2022; Hong et al., 2022).

3. Background

The task of EntailmentBank involves a given set
of premises and a hypothesis (target), requiring
multiple-step reasoning to reach the target and gen-
erate the entailment tree. We adopt the framework
and representation proposed by Hong et al. (2022)

• Hypothesis The target to be proven in reason-
ing, represented as H.

• Fact Refers to the given premises containing
background knowledge, represented as s.

• Step In each iteration, any two facts are com-
bined to form a step, represented as p.

• Int After selecting a step, the single-step en-
tailment module performs inference to obtain
an intermediate conclusion, represented as i.

• State Represents a partial entailment tree
structure composed of the remaining facts, in-
termediate conclusions, and the reasoning tar-
get, represented as R.

The model consists of two modules: the reason-
ing controller and the single-step entailment mod-
ule. In each iteration, the reasoning controller first
selects two suitable s for a deductive step. Alterna-
tively, it constructs an abductive step using H and
one s. The single-step entailment module then per-
forms inference to obtain i and updates the R. The
filtered state is outputted to the next iteration, and
the process is repeated until no new intermediate
conclusions are generated. The reasoning in the
single-step entailment module can be categorized
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Figure 3: The reasoning process of SPEH. In step inference, the step module of the reasoning controller
selects steps based on the step quality perception mechanism, excluding false feasible steps. The state
module incorporates the state from the previous iteration to facilitate the detection and rollback of errors
in the two-stage state error handling mechanism. The bottom-left and bottom-right corners illustrate the
data construction process, where ’+’ denotes positive samples and ’-’ denotes negative samples.

into three types: Substitution, Conjunction, and If-
then. Consequently, the same premises may yield
different intermediate conclusions.

4. Our Methods

We propose SPEH: an iterative framework with
Step feasibility Perception and state Error Handling
mechanisms. The reasoning process of SPEH is
illustrated in Figure 3, and the main steps are similar
to those described in Section 3.
Step feasibility perception We enhance the train-
ing process to enable the model to choose steps in
the step inference phase that are not false feasible.
State error handling We introduce a mechanism
for handling state errors in the state filtering pro-
cess, which allows for detecting and rolling back
incorrect states to reduce the likelihood of generat-
ing erroneous entailment trees.

4.1. Step Feasibility Perception
In the original framework, the evaluation of steps did
not consider the relationship between premises and
the reasoning objective. It only took into account
the logical consistency among premises, which
could potentially lead to the derivation of irrelevant
conclusions and be detrimental to subsequent rea-

soning. To address this issue, we propose modify-
ing the step evaluation module to explicitly incorpo-
rate the features of the reasoning objective. This
adjustment will enhance the ability to discern the
relevance between each step and the objective.

Gstep(si, sj) = FFNded([h, fi, fj ]) (1)

Where h, fi, and fj represent the features of H,
si, and sj respectively, which are the outputs of
the reasoning controller. In addition to providing
hypotheses, we also guide the model to learn to
select steps that are not false feasible. We discov-
ered that it is possible to use the distance from a
step to the hypothesis to filter out steps with a lower
probability of being false feasible. The distance of a
step is determined by the depth of the two premises
it involves in the tree.

Distance(p) = (Depth(si) +Depth(sj))/2 (2)

The feasibility of a step depends not only on the
compatibility of its premises but also on whether
the generated intermediate conclusions can be fur-
ther combined to form a feasible step. The shorter
the distance between a step and the hypothesis,
the fewer steps are required for the generated inter-
mediate conclusions to reach the hypothesis. As a
result, the likelihood of such a step being a false fea-
sible step decreases. We construct specific training
samples based on the distance to train the model
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to assess whether a step is prone to deviate from
the hypothesis, thereby facilitating the selection of
more reliable and true feasible steps.

During the training process, we employ the
margin ranking loss, defined as ϕ(x1, x2,m) =
max(0, x2 − x1 + m), to facilitate the training of
the step module in the reasoning controller. Our
method constructs positive and negative training
data in the form of (x1, x2), and divides the overall
training data into two parts:

1. Preserve the original pairs of steps. Label the
gold steps as p1, and label the non-gold steps as p2
to obtain (p1, p2). Train using the original loss.

Lorigin_step =
1

N1

∑
(p1,p2)

ϕ(Gstep(p1), Gstep(p2),mstep)

(3)
2. Pair the two gold steps together. Select the

step with a smaller distance as the positive sample
p3, and the step with a larger distance as the neg-
ative sample p4 to obtain (p3, p4). Train using an
additional loss.

Lex_step =
1

N2

∑
(p3,p4)

ϕ(Gstep(p3), Gstep(p4),mstep)

(4)
Where N1 and N2 represent the number of step

pairs, and mstep is the step margin. We refer to the
gold steps that are farther apart as flexible steps.
This is because they serve as positive samples in
the first part of the data but as negative samples
in the second part. It is not fixed, and an example
of this data construction is illustrated in the bottom
left corner of Figure 3.

The step loss consists of two components.
Lstep = Lorigin_step + Lex_step (5)

In step inference, all steps are sorted according
to the Gstep, and the top k steps are retained, where
k is a hyperparameter.

4.2. State Error Handling
The state error handling mechanism primarily op-
erates during the reasoning stage and consists of
two processes: error detection and error rollback.
Firstly, we utilize a state evaluation process to de-
tect errors, which is further divided into two stages.
In the first stage, an additional hard classification
module is employed for rough filtering. In the sec-
ond stage, the previous iteration’s states are intro-
duced as an additional reference state, and a state
evaluation module is used to assess and rank the
states to identify errors. Based on the final rank-
ing results, we retain the states from the previous
iteration that exhibit better performance as rollback
states.

Let T represent the time step of the overall rea-
soning process, indicating the T − th iteration. On

the other hand, t represents the time step of a state,
indicating that Rt has undergone t effective infer-
ences. While Hong et al. (2022) maintained syn-
chrony between T and t, where t ≡ T , we propose
an asynchronous mechanism, allowing the same
operation to be performed on states from different
iterations within the same round of iteration. This
facilitates the involvement of states from different
iterations in the error detection process. Our train-
ing process ensures that the model can effectively
evaluate states from different iterations simultane-
ously. Assuming Gstate is the scoring function for
states, this requires the state evaluation module to
satisfy the following inequality constraints:

Gstate(R
+
t=T ) > Gstate(R

+
t=T−1)

> Gstate(R
−
t=T ||t=T−1)

(6)

4.2.1. Training

To improve the state module in the reasoning con-
troller, we further divided it into two sub-modules:
Gachievability and Gstate. For each of these, we
defined separate loss functions and training data.

To identify significant errors, Gachievability mod-
ule is trained using binary cross-entropy (BCE)
loss.

Gachievability(R) = σ(FFNcls(f[cls])) (7)

Lachievability = BCE(Gachievability(R), state_label)
(8)

Where Gachievability has a value range of [0,1],
and a state_label of 1 indicates that the state is
a valid intermediate state in the gold tree, while a
state_label of 0 indicates the opposite. We have
made modifications to the Gstate module to calcu-
late the score of a state.

Gstate(R) = σ(FFNcls(f[cls])) (9)
f[cls] represents the cls feature output by the rea-

soning controller. This module is also trained using
margin ranking loss. Hong et al. (2022) decon-
structed the gold tree, using the gold state as the
positive sample R1 and the constructed non-gold
states as the negative sample R2 to obtain (R1, R2).
We have retained this part of the data.

Lorigin_state = ϕ(Gstate(R1), Gstate(R2),mstate)
(10)

mstate represents the state margin. To simulate
the data distribution in inequation 6, we combine
multiple states from different time steps into addi-
tional positive-negative sample pairs.

(R3, R4) = {(R+
t=T , R

+
t=T−1), (R

+
t=T , R

−
t=T−1),

(R+
t=T , R

−
t=T+1)}

(11)
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An example of data construction can be seen in
the bottom right corner of Figure 3. Similarly, we
utilize flexible states that essentially correspond to
gold states. Based on different combinations from
equation 11, they become positive samples R3 or
negative samples R4 in the sample pairs (R3, R4).
Additionally, we employ an additional loss function
for training purposes.

Lex_state = ϕ(Gstate(R3), Gstate(R4),mstate)
(12)

Lstate = Lorigin_state + Lex_state (13)

The final loss is computed using:
L = Lstep + Lstate + Lachievability (14)

4.2.2. Reasoning

During reasoning, the first step is to perform an in-
ference step, which updatesRt=T toRt=T+1. Then,
candidate states are filtered. Now, let’s define the
input set for T as Sin,T , and the output set as Sout,T .
We have applied an asynchronous mechanism that
allows states from different time steps to coexist
within the same round of iteration.

Sin,T = Sout,T−1 = {Rt=T−2, Rt=T−1} (15)

When performing inference step, we handle all
the states in the set collectively.

Sinference,T = Inference(Sin,T )

= {Rt=T−1, Rt=T }
(16)

We retain a subset of states from Sin,T , denoted
as Shold,T = {Rt=T−1 ∈ Sin,T }. From this, we
obtain the candidate set:

Scandidate,T = Sinference,T ∪ Shold,T

= {Rt=T−1, Rt=T }
(17)

In the subsequent two-stage filtering process,
the model is able to evaluate both the pre-inference
and post-inference states. In the first stage, the er-
roneous states are filtered out as follows: Sach,T =
Filterach(Scandidate,T ). This process utilizes the
median value M of all Gachievability scores as a
threshold. States with scores below this threshold
are considered erroneous and eliminated.

In the second stage, a more granular sorting
based on the Gstate criterion is performed to se-
lect a beam_num number of states, resulting in the
output: Sout,T = Filterstate(Sach,T ). As indicated
by the previous inequation 6, for incorrect Rt, the
previous iteration’s state Rt−1 contained in Sout,T

serves as a suitable rollback target.

5. Experiments

5.1. Dataset and Evaluation Metrics

We conducted experiments on Task 1 of the Entail-
mentBank dataset to evaluate our proposed model,
SPEH. This dataset consists of a total of 1840 sam-
ples, each comprising a question-answer pair along
with its corresponding entailment tree. The evalua-
tion metrics include:
Leaves Evaluating the correctness of the premises
involved in the entire reasoning process.
Steps Evaluating the correctness of the premises
for each reasoning step.
Intermediates Evaluating the correctness of the
intermediate conclusions for each reasoning step.
Overall Evaluating the extent to which the predicted
tree matches the gold tree.

5.2. Baseline

We compared SPEH with several previous classic
approaches.
EntailmentWriter (Dalvi et al., 2021) An All-at-
once baseline model.
IRGR (Ribeiro et al., 2022) An architecture that
combines retrieval and generation.
RLET (Yang et al., 2022a) The first iterative frame-
work that incorporates reinforcement learning.
METGEN (Hong et al., 2022) A module-based iter-
ative framework.
ChatGPT-3.5 We tested the results using the All-
at-once approach in an in-context learning manner.

5.3. Experiment Setup

We adopted the settings from METGEN (Hong et al.,
2022) and utilized albert-xxlarge-v2 (Lan et al.,
2020) as the backbone for our reasoning controller.
The single-step entailment module is based on the
T5-large (Raffel et al., 2020) prefixed model pro-
vided by them, which was further fine-tuned by in-
corporating the corresponding hypothesis into the
training input data.

During the training phase, we set the batch size
to 5, learning rate to 1e-5, conducted 1000 epochs,
and set all margins to 0.1. The weights for all losses
were set to 1, and during the inference phase, we
used a beam number of 4. In the error handling
process, for each iteration, we only allowed com-
parison and rollback between the states of two ad-
jacent time steps, referred to as a span of 1 for
rollback. After testing, we found no differences in
the results for other spans, so we continued to use
a span of 1.
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Method Leaves Steps Intermediates Overall
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

EntailmentWriter (T5-11B)△ 99 89.4 51.5 38.2 71.2 52.9 35.6
ChatGPT-3.5 94 73.8 34.7 22.1 54.3 21.8 18.2
IRGR(T5-Large)△ 97.6 89.4 50.2 36.8 62.1 31.8 32.4
RLET△ 100 100 54.6 40.7 66.9 36.3 34.8
METGEN-prefixed△ 100 100 57.7 41.9 70.8 39.2 36.5
SPEH-prefixed(ours) 100 100 57.4 42.7 73.3 39.4 37.7

Table 1: Entailment tree generation results on the EntailmentBank Task 1 test split. △ indicates results
from published papers.

Figure 4: Comparison results of manual evaluation
for 50 entailment tree samples. (a) Comparison
between SPEH and METGEN. (b) Comparison be-
tween SPEH and ChatGPT-3.5.

6. Result Analysis

6.1. Main Results
As shown in Table 1, SPEH outperforms all the
compared baseline models. We achieved a 0.8%
improvement in the Step AllCorrect metric com-
pared to METGEN-prefixed. We speculate that the
slight decrease in F1 may be due to poor perfor-
mance on a small number of samples. However,
SPEH resulted in improvements of 2.5%/0.2% in
the intermediate F1 and AllCorrect metrics, respec-
tively, when considering the combined effect of both
methods. Please note that SPEH’s framework, like
METGEN-prefixed, is unable to handle steps that
include n-premises. Approximately 26% of the test
samples cannot be completely aligned with the gold
tree. However, we still outperformed METGEN by
1.2% in the Overall AllCorrect metric, demonstrat-
ing the effectiveness of our approach.

6.2. Manual Evaluation
Since automatic evaluation metrics require aligning
the predicted tree with the gold tree, it can lead to in-
accurate assessments. Therefore, we conducted a
certain amount of manual evaluation. We randomly

Method Steps Intermediates Overall
SPEH 40.3 38.5 35.9
w/o step feasibility 39.7 36.8 34.4
w/o state error 40.0 38.2 34.7

Table 2: Ablation results.

Method Steps Intermediates Overall
METGEN-base 38.5 37.1 34.4
Feasibility(None) 40.0 35.6 34.1
Feasibility(Similarity) 36.8 36.5 34.1
Feasibility(Distance) 40.0 38.2 34.7

Table 3: Evaluation of constructing training data
for different step feasibility construction methods.
“None” indicates no additional data construction.

selected 50 entailment trees generated by SPEH
and the baseline models. Three graduate students
were asked to evaluate which side performed bet-
ter based on three aspects: Step feasibility(Step),
Intermediate conclusion validity(Int), and Overall
persuasiveness(Overall).

Our comparison results with METGEN are shown
in Figure 4 (a), where we mostly achieved compara-
ble evaluations across three metrics. We obtained
a slight advantage in the Step metric, which may
be attributed to the decline in step F1. In terms
of the Int and Overall metrics, we obtained higher
recognition due to the incorporation of SPEH, which
effectively reduced the selection of false feasible
steps and erroneous search branches, significantly
enhancing our persuasiveness.

Considering that ChatGPT-3.5 is untrained and
at a disadvantage in automated evaluation metrics,
we also compared our method against ChatGPT-
3.5 as another control group. However, 4 (b) indi-
cates that while ChatGPT reaches a similar level
to ours in some samples, we have overwhelming
advantages in all three metrics. This is as expected
for a language model without further fine-tuning.
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6.3. Ablation Study
We present the results of ablative experiments in Ta-
ble 2, where we replaced the backbone model with
albert-base, incorporating our further fine-tuned
single-step entailment module, and report the all-
correct scores for step, intermediate, and over-
all. Step Feasibility Perception Upon removing
step feasibility perception, all metrics showed a de-
crease, particularly noticeable in the intermediates
category. Our analysis suggests that this mech-
anism enables the model to learn to select steps
that are not false feasible, thereby improving not
only step accuracy but also aiding in generating
more effective intermediate conclusions. States
Error Handling The impact of removing state er-
ror handling resulted in a relatively minor effect on
the results, primarily reflected in the overall metric.
As previously analyzed, this approach allows for
comparing states before and after step inference
to detect errors and perform rollbacks, thereby re-
ducing the likelihood of errors and subsequently
enhancing overall performance.

6.4. Step Feasibility
In the step feasibility perception method, there may
be other criteria for determining whether a step is
false feasible. Therefore, when constructing the
training samples, we also tested both not creating
additional data and using similarity as a comparison
metric. We used the longest common substring as
the similarity calculation, and in Table 3, we also
reported the AllCorrect metric for Step, Int, and
Overall. The performance decrease indicates that
distance is a more suitable criterion.

6.5. Case Study

6.5.1. Step Feasibility Perception

The case presented in Figure 5 demonstrates the
process of step feasibility perception. In this exam-
ple’s reasoning process, all three premises contain
the term “object” indicating that it must be preserved
throughout the inference process until the final step,
where it is consumed to infer the hypothesis. The
model initially determines that both s1&s2 and s1&s3
can generate valid intermediate conclusions. How-
ever, the former consumes the term “object” render-
ing the intermediate conclusion unable to form a
feasible step. After undergoing step feasibility per-
ception, the model further filters and identifies the
true feasible step s1&s3 ensuring the correctness
of the reasoning process.

6.5.2. State Errors Handling

The case presented in Figure 6 illustrates the pro-
cess of handling state errors. At T = 2, the input

Figure 5: Case of step feasibility perception. Gstep

represents the scores outputted by step evaluation.
Red indicates incorrect steps.

Figure 6: Case of state error handling.
Gachievability represents the scores of state
achievability, where M is its median value. Gstate

represents the scores of state evaluation. Red
indicates incorrect states.

state has already executed step s1&s4. After the
step inference, it is possible to execute the cor-
rect step s2&s3 or the erroneous abd_step H&s3
(note that this is an abductive reasoning operation
that infers an intermediate conclusion using a hy-
pothesis and a premise). Without the mechanism
for handling state errors, the incorrect state would
be outputted in the candidate state. However, our
method is capable of detecting errors in the first
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stage and, in the second stage, rolling back to the
state where only step s1&s4 is executed. As a result,
we can obtain the correct entailment tree.

7. Conclusion

We propose SPEH for step feasibility-aware and
error-correctable entailment tree generation. The
step feasibility perception learns to select steps that
are not false feasible, while the state error handling
allows the model to detect errors and rollback to
a reasonable state, mitigating the adverse effects
of error search branches. Experimental results
demonstrate that our approach surpasses existing
baseline models.
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A. Training Details

In the methodology section, we briefly outlined the
general steps for constructing additional training

data. Given that the primary training process relies
on margin ranking loss ϕ(x1, x2,m) = max(0, x2 −
x1 +m), we made some modifications to the posi-
tive and negative samples provided by Hong et al.
(2022). The construction process relies on flexi-
ble samples, which refer to samples that, although
considered gold samples from a human cognitive
perspective, are made flexible enough to be posi-
tioned either as positive or negative samples.

Pair Type Pair Sample Probabilities
(R1, R2) (R+

t=T , R
−
t=T ) 50%

(R3, R4) (R+
t=T , R

+
t=T−1) 25%

(R3, R4) (R+
t=T , R

−
t=T−1) 25%

(R3, R4) (R+
t=T , R

−
t=T+1) 25%

Table 4: Probabilities of different training data. R+

denotes gold state and R− denotes non-gold state.

For step feasibility perception samples, we ran-
domly pair them from positive step sets and catego-
rize the shallower one as a positive sample p3 and
the deeper one as a negative sample p4, hence p4
being termed as flexible samples, creating a new
pair of step training data. To control the volume of
training data, (p1, p2) and (p3, p4) are each added
to the final training data with a 50% probability.

Regarding state error handling samples, each
positive state is treated as R3, matched with its
corresponding positive state from the previous time
step as R4, or matched with negative states from
preceding or succeeding time steps as R4. Simi-
larly, to manage the volume of training data, each
pair of (R1, R2) or (R3, R4) is finally sampled with
a certain probability as the ultimate training data,
with these probabilities as shown in Table 4.

B. Entailment Module

We constructed new data following the format: hy-
pothesis: {H} premise: {p1} premise: {p2}, and
continued fine-tuning on the T5 checkpoint pro-
vided by Hong et al. (2022) for 100 epochs, using
a batch size of 8 and a learning rate of 3e-5. Addi-
tionally, during the inference process, we modified
the inputs of the selected deductive step using the
same format to match the entailment module after
re-fine-tuning.

C. Reasoning Algorithm

To provide a more detailed explanation of the rea-
soning process for error handling, we present pseu-
docode of the inference process in Algorithm 1. It
is important to note that in each iteration, Shold,T ,
and Sinference,T respectively contain the retained
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Algorithm 1 State Error Handling
Input: Hypothesis H, initial state R0, bean size K,

Max reasoning time Tmax

Output: Completed state set Scompleted

1: T ← 0
2: Sin,T ← {}
3: Scompleted ← {}
4: while not reasoning_complete do
5: if T > 0 then
6: Sin,T ← Sout,T−1

7: end if
8: Sinference,T ← {}
9: Shold,T ← {}

10: for Rt ∈ Sin,T do
11: if t == T − 1 then
12: Shold,T ← Shold,T ∪ {Rt}
13: end if
14: Sinference,T ← Sinference,T ∪
{inference(Rt)}

15: end for
16: Scandidate,T ← Sinference,T ∪ Shold,T

17: Sach,T ← Filterach(Scandidate,T ) get top
50% states

18: Sout,T ← Filterstate(Sach,T ) get top K
states

19: for RtinSout,T do
20: if t == Tmax then
21: Scompleted ← Scompleted ∪Rt

22: end if
23: if size of Scompleted == K then
24: reasoning_complete← True
25: break
26: end if
27: end for
28: T ← T + 1
29: end while
30: return Scompleted

states from the previous round and the states after
the current inference. During the selection process,
filtering is based on the same criteria for all states.

D. ChatGPT-3.5 Prompt

We employed an in-context learning approach in
our experiments to directly generate each entail-
ment tree using ChatGPT-3.5. The process in-
volved the following prompt:

You are required to generate a proof from the
given premises and hypothesis, here is the exam-
ple:
Given premises:sent1: united states is located in
the northern hemisphere sent2: december is dur-
ing the winter in the northern hemisphere sent3:
new york / new york state is a state located in the
united states of america sent4: winter has the least
sunlight

Given hypothesis:new york state has the least sun-
light during december
Output proof:sent1 & sent3 -> int1: new york state
is located in the northern hemisphere; int1 & sent2
-> int2: december is during the winter for new york
state; int2 & sent4 -> hypothesis;
Please generate proof similar to the example for
the following sample:
Premise:sent1: {s1} sent2: {s2} sent3: {s3} ...
Hypothesis:{H}
Only generate output proof in one line, each step
ends with ’; ’

After obtaining output proof conforming to the
specified format, we automatically convert them
into entailment trees for evaluation. Outputs that
cannot be parsed are directly considered as failed
samples.
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