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Abstract
The task of address matching involves linking unstructured addresses to standard ones in a database. The
challenges presented by this task are manifold: misspellings, incomplete information, and variations in address
content are some examples. While there have been previous studies on entity matching in natural language
processing, for the address matching solution, existing approaches still rely on string-based similarity matching or
manually-designed rules. In this paper, we propose StructAM, a novel method based on pre-trained language models
(LMs) and graph neural networks to extract the textual and structured information of the addresses. The proposed
method leverages the knowledge acquired by large language models during the pre-training phase, and refines it
during the fine-tuning process on the address domain, to obtain address-specific semantic features. Meanwhile, it
also applies an attribute attention mechanism based on Graph Sampling and Aggregation (GraphSAGE) module
to capture internal hierarchy information of the address text. To further enhance the accuracy of our algorithm in
dirty settings, we incorporate spatial coordinates and contextual information from the surrounding area as auxiliary
guidance. We conduct extensive experiments on real-world datasets from four different countries and the results
show that StructAM outperforms state-of-the-art baseline approaches for address matching.
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1. Introduction

Nowadays, the booming e-commerce and food de-
livery industries rely heavily on location-based ser-
vices. A well-formatted and high-quality address
is a key factor in improving the quality of such
services. In the logistics industry, matching origi-
nal shipping addresses to standardized ones en-
hances distribution efficiency and reduces delivery
costs. However, users on e-commerce websites
may input incomplete, misspelled, and sometimes
wrong addresses, making it challenging to directly
match and align the data due to differences in struc-
ture and representation. This complexity poses a
daunting task for couriers in delivering goods to
specified locations and accurately locating delivery
points. To overcome these challenges, dedicated
algorithms need to be developed to handle the
complexities associated with addressing informa-
tion gaps, redundancies, ambiguities, and diversi-
ties in real-world address data while also allowing
for error tolerance.
The problem described above is known as address
matching (Drummond, 1995; Comber and Arribas-
Bel, 2019), address standardisation or address vali-
dation, and is an essential component in geocoding
systems. The main objective of address matching
solutions consists in identifying and matching a
given unstructured address with one in a struc-
tured database, as well as searching for similar or

identical addresses. Most of the existing solutions
(Adams and Janowicz, 2012; Karimzadeh et al.,
2019), primarily employ string similarity analysis
of input unstructured addresses. However, these
methods are more suitable for situations where the
available textual address information is clean and
complete. In the so-called dirty settings, where
input unstructured addresses may have missing
information or informal place names, relying solely
on textual information is no longer sufficient.
Table 1 illustrates a collection of Match (the given
address pair points to the same location or place)
and Non-Match (the given address pair points to
different locations or places) examples of address
pairs from our real-world datasets, to showcase
the challenges presented by the task of address
matching. In the first example, slight variations in
the zipcode information ( OX2 7JL ̸= OX2 7LJ )
and house name ( Portabello ̸= Portobello ) could
lead language models to split the words in differ-
ent tokens and produce embeddings. However,
it’s crucial to emphasize that the content of the
House Address column is identical. This similarity
suggests that the user may have introduced some
typographical errors. Furthermore, spatial coordi-
nates suggest a distance exceeding 500 meters,
potentially due to data collection errors. In the
second instance, the first address corresponds to
a restaurant, while the other is a hotel. However,
their unstructured address content largely overlaps,
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Table 1: Examples of address pairs that are prone to misclassification (“-”: missing information)

Label Country State City Zipcode HouseAddress HouseName Address Latitude Longitude

Match
GB - Oxford OX2 7JL 7 South Parade Portabello Portabello, 7 South Parade, Oxford,

OX2 7JL, GB
51.9456 -1.27678

GB Oxfordshire - OX2 7LJ 7 South Parade Portobello Portobello, 7 South Parade,
Oxfordshire OX2 7LJ, GB

51.6784 -1.26895

Non-Match
GB Greater London - EC2A 3HU 81 Great Eastern St Hoxton Grill Hoxton Grill, 81 Great Eastern St,

Greater London EC2A 3HU, GB
51.5254 -0.08299

GB Greater London - EC2A 3HU 81 Great Eastern St The Hoxton The Hoxton, 81 Great Eastern St,
Greater London EC2A 3HU, GB

51.5257 -0.08281

Match
GB Leicestershire Lutterworth LE17 4HB 16 St Johns Business Park Elmhurst Energy Elmhurst Energy, 16 St Johns Business

Park, Lutterworth, LE17 4HB, GB
52.4562 -1.20131

GB - - - - - 16 St. John’s Park, Lutterworth, GB 52.4508 -1.19723

Non-Match
GB Carmarthenshire Carmarthen SA31 1GA St Catherine St - St Catherine St, Carmarthen,

Carmarthenshire SA31 1GA, GB
51.8590 -4.3094

GB - - SA31 1GA - St Catherine’s Walk Car Park St Catherine’s Walk Car Park, SA31
1GA, GB

51.8590 -4.3095

leading to potential incorrect matches. Upon scru-
tinizing their distinct address hierarchy attribute
details, it became apparent that the sole dissimi-
larity lies within the House Name column content.
It’s imperative to identify and amplify such minor
differences between address fields when address-
ing the challenge of different points of interest that
share similar names. In the third and final pair, de-
spite the close spatial proximity, the vast amount of
missing textual and hierarchical information poses
a considerable challenge for conventional methods.
From the case study, we can discern that the near-
est neighbours of each address or place can offer
valuable clues for address matching.
To effectively overcome the aforementioned chal-
lenges, we present StructAM, a structure-aware
address matching model that can exploit address
hierarchy, spatial coordinates, and neighbourhood
context information. The contributions of this paper
can be summarized as follows:

• We develop a fine-grained semantic address
hierarchy learning module based on Graph-
SAGE (Hamilton et al., 2017) with an addi-
tional Attribute Attention Mechanism, which
utilizes structured address attributes to cap-
ture hierarchy features.

• We incorporate a fuzzy geocode module,
which relies on structured latitude and longi-
tude inputs to acquire spatial information with
the incorporation of a bucketing module to en-
hance our decision-making process.

• We introduce a neighbourhood context min-
ing module based on Graph Attention Network
(GAT) (Veličković et al., 2017), which lever-
ages structured information both from the ad-
dress text and the network topology of the
nearest neighbours of each address to create
a more contextualised representation.

• We conduct extensive experiments on four
real-world datasets, and the experimental re-
sults demonstrate the advantages of our pro-
posed method over well-established baselines,
and show its robustness against the previously
mentioned challenges.

2. Related Work

The rule-based standardization and normalization
approach (Fan et al., 2009; Elmagarmid et al.,
2014) is one of the earliest methods employed
for address matching tasks. However, this human-
designed technique has the limitation of relying on
domain expertise and manual efforts to create and
maintain rule sets. Extensive research has proven
that this dependency renders static methods less
effective when confronted with new data sources
or matching across diverse domains. Other com-
mon strategies for address matching involve ap-
proximate string-based metrics such as the Leven-
shtein distance (Levenshtein et al., 1966), longest
common subsequence, and n-gram (Flatow et al.,
2015). Nevertheless, these string-based methods
often fall short of capturing accurate contextual
word information due to their primary focus on char-
acter sequence comparison, potentially yielding
less precise and reliable matching outcomes.
In subsequent studies, various approaches have
been proposed to address these challenges by
leveraging word embedding and deep learning
algorithms. These methods transform address
strings into word vectors and integrate them with
neural networks to quantify similarity. For instance,
(Lin et al., 2020) utilized Word2Vec (Mikolov et al.,
2013a) to embed words into a lower-dimensional
vector space, then employed the ESIM model
(Chen et al., 2016), a deep text-matching model,
to infer local and global cues for determining ad-
dress compatibility. Additionally, as a specific type
of spatial entity, certain models designed for entity-
matching tasks, such as DeepER (Ebraheem et al.,
2017) and DeepMatcher (Mudgal et al., 2018), also
adapted for address matching. DeepER applies
Glove (Pennington et al., 2014) for word embed-
dings, which are used as input for LSTM (Hochre-
iter and Schmidhuber, 1997) to learn semantic and
contextual information about entities and gener-
ate high-dimensional representations of feature
vectors. Similarly, DeepMatcher uses FastText
(Bojanowski et al., 2017) to embed the textual se-



15352

Fine-tuned BERT

...

...

...

...

Graph Sampling and Aggregation

Attribute Attention

Aggregation Layer

[CLS]

Concatenate + Linear

Embedding Layer

(2) Hierarchy Component

(3) Geocode Component

(1) Textual Component

(4) Neighborbood Component

[SEP] [SEP]

...

...

Fine-tuned BERT

...

...

Pre- processing

[CLS]

Graph Attention Network

Fine-tuned BERT Fine-tuned BERT

Fine-tuned BERT

Haversine Formula

Equi-width Bucketing

Figure 1: An overview structure of StructAM which consists of four main components: (1) Textual Com-
ponent which compares textual similarity based on Fine-tuned BERT, (2) Hierarchy Component which
utilizes GraphSAGE to learn inclusion relationship between administrative regions and apply Attribute
Attention to determine the importance of different administrative regions, (3) Geocode Component which
buckets spatial distance between the given address pair, (4) Neighbourhood Component which applies
Graph Attention Network to collect neighbourhood information for the given address pairs.

quences and utilizes Recurrent Neural Networks
(RNNs) with additional attention mechanisms to
capture representations of sequence data between
entities. Furthermore, MPM (Fu et al., 2019),
Seq2Seq (Nie et al., 2019), MCA (Zhang et al.,
2020), and HierMatcher (Fu et al., 2021) are modi-
fied based on DeepMatcher to improve their perfor-
mance on specific datasets. However, it is impor-
tant to note that deep learning models may struggle
to accurately capture the complex semantic rela-
tionships between phrases in addresses, such as
the ambiguity of "St." meaning "Street" or "Saint".
More recent advancements include the incorpora-
tion of pre-trained language models like BERT (De-
vlin et al., 2018), yielding improved performance
in address matching. These language models of-
fer robust semantic representation and contextual
understanding, enhancing the accuracy and robust-
ness of address matching tasks. Examples include
Ditto (Li et al., 2020), which fine-tunes Transformer-
based language models on extensive text cor-
pora, combining domain expertise, text summa-
rization, and data augmentation for performance
optimization. Nevertheless, most existing methods
treat geographic coordinates as scalar features for
similarity calculation, disregarding potentially valu-
able detailed geographic information. Some latest
BERT-based studies, such as Geo-BERT (Liu et al.,
2021) and Geo-ER (Balsebre et al., 2022), have
sought to address this limitation by incorporating
geocoding techniques. These methods associate
geographic coordinates with addresses, enabling

precise spatial localization for improved address
matching. Geo-BERT constructs graphs incorpo-
rating spatial distance information and employs
graph representation learning, while Geo-ER in-
troduces a distance component to compute and
embed spatial distance. Nonetheless, none of the
aforementioned solutions has accounted for cer-
tain critical factors, such as the varying importance
of administrative regions within each address and
the presence of address hierarchy information in
administrative affiliations between different regions.

3. Methodology

In this section, we establish our problem statement,
present a comprehensive framework of StructAM
illustrated in Figure 1 and expound upon StructAM,
component by component in detail.

3.1. Problem Definition and Model
Overview

Given two realistic addresses, denoted as (AddrA,
AddrB), our goal is to determine if they corre-
spond to the same real-world point of interest (POI).
Each address is identified by a set of textual at-
tributes {Country, State, City, Zipcode, House-
Address, HouseName, Address} and geographic
coordinates {latitude, longitude}.
The architecture of StructAM is summarized in Fig-
ure 1. It can be divided into four main components
that jointly contribute to the final matching decision:
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Assets

Country State City

GB London

GB London Putney

Assets

Zipcode House Address House Name

SW15 1BL Dryburgh street Putney Leisure
Centre

Dryburgh Road DC Leisure
Centre

Address

Putney Leisure Centre, Dryburgh
street, London SW15 1BL, GB
DC Leisure Centre, Dryburgh

Road, Putney, GB

(a) A candidate address pair example.

: inclusive-type connection
: belonging-type connection

(b) A local graph example

Figure 2: The illustration of a local graph. Different
coloured nodes represent address and administra-
tive regions of different levels.

(1) Textual Component, which learns the textual
features of the address pair, (2) Hierarchy Com-
ponent, which captures the inclusive relationship
between adjacent administrative regions and dy-
namically assign weights to each administrative re-
gion to obtain a new representation, (3) Geocode
Component, which reflects geographic information
of the address pair derived from geographic coor-
dinates, (4) Neighbourhood Component, which col-
lects information about the surrounding addresses.

3.2. Textual Component

The textual component aims to compare the textual
parts, and we adopt Transformer-based language
models to enable semantic comprehension. We fol-
low a fined-tuned version of BERT to learn the tex-
tual information, employing the Masked Language
Model and Next Sentence Prediction for both pre-
training and fine-tuning the language model on
our datasets. This helps to understand the tex-
tual information better and thus disambiguates it
by learning contextual information. We combine
the address strings of each candidate address pair
(AddrA, AddrB) as follows:

CombAddr = [CLS]AddressA[SEP]AddressB [SEP]

Through the Next Sentence Prediction task, we
can consider the hidden state of the [CLS] token
as the combined representation of the entire in-
put sequence that contains information about the
similarity between the address pair. Therefore, we
exclusively select [CLS] token as the output for the
textual component. We refer to the final encod-
ing of the candidate address pair for the textual
component as Stext and concatenate it with the
outputs from the other components to make the
final decision.

3.3. Hierarchy Component

Previous entity matching studies typically involved
comparing the attributes or properties to determine
their similarity. Nevertheless, distinct from other
categories of entities, an address is typically de-
scribed as a combination of multiple administrative
regions interconnected in a specific sequence. It
is evident that the significance of various admin-
istrative regions varies, and there is an inclusive
relationship between them. Furthermore, consider-
ing the varying precision of different administrative
levels, their importance should also differ. For in-
stance, a street name is often one of the most
specific parts of an address, making it more im-
portant relative to the country. Solely focusing on
extracting the textual information from the address
strings by language modelling, we will overlook the
address hierarchy features mentioned earlier.
Although BERT is highly effective when applied in
many NLP applications, it has limitations as it is
prone to errors caused by spelling mistakes and
slight variations in the input text. These limitations
stem from the sensitivity of BERT to token-level
changes and its reliance on the context present in
the training data. Additionally, in cases where dif-
ferent nearby POIs share similar names, address
attributes and spatial information cannot provide
sufficient information. The second and first candi-
date pairs in Table 1 show such challenges respec-
tively. To address these limitations, we propose a
solution using Graph Neural Network (GNN) with
an additional attribute attention mechanism. This
approach aims to overcome the limitations of BERT
in capturing subtle distinctions found in address
data. By leveraging the ability of GNN to model
complex interactions within the address structure,
capturing the inclusive relationship and improving
the model’s performance in cases where traditional
attribute-based matching falls short. The attribute
attention mechanism dynamically assigns different
weights to each administrative region when aggre-
gating them into a new representation.
We first obtain a pair of address hierarchy textual tu-
ples AttrA = {CountryA, StateA, CityA, ZipcodeA,
HouseAddressA, HouseNameA} and AttrB =
{CountryB, StateB, CityB, ZipcodeB, HouseAd-
dressB , HouseNameB}. Considering the inclusive
relationship among various administrative regions,
we construct an undirected local graph through the
available geographic hierarchy information with the
following rules:

• Consider each candidate address as a node
of type address;

• Consider each administrative region, regard-
less of whether the information is missing, as
a node of type region (In cases where the con-
tents of administrative regions at the same
level within the address pair are the same
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string, they are merged into a single node);
• Connect each administrative region node to

the candidate address nodes in this region,
defining the edge type as belonging;

• Connect every two adjacent administrative re-
gions, by an edge of type inclusive.

Figure 2 provides an illustrative demonstration,
where Figure 2a displays the information regarding
a candidate address pair, while Figure 2b depicts
the construction of the local graph using the infor-
mation from Figure 2a. We first employ BERT to
train the address text and administrative region text,
transforming them into the corresponding word em-
bedding sequence that serves as the values for
each node. For the k-th region-type node nodeAk ,
we identify a set of nodes neighborAk that share an
inclusive-type edge with it. Subsequently, we uti-
lize GraphSAGE (Hamilton et al., 2017) to obtain
an updated representation for each region-type
node, incorporating the inclusion information. The
process is elaborated as follows:

nA
k = Aggregate(neighborAk ) (1)

rAk = Wa · [ eAk ∥ nA
k ] (2)

In the above equations, the function Aggregate(·)
performs a max-pooling operation, Wa is a learn-
able weight matrix and the symbol ∥ denotes con-
catenation. eAk represents the original embedding
of node nodeAk , and rAk signifies the updated repre-
sentation of the same node, which is derived by the
GraphSAGE technique. To enhance the depth of
contextual information associated with each admin-
istrative region, and to capture the interrelations
between these regions, we combine the represen-
tation of each node with eA, the embedding of the
address-type node with a belonging-type edge be-
tween each region-type node. This process is cru-
cial for creating a more comprehensive contextual
understanding and incorporating the connections
between administrative regions into the final rep-
resentation, and obtaining ultimate representation
cAk for every administrative region:

cAk = Wa · [ rAk ∥ eA ] (3)

We perform the same operation for each region-
type node to obtain the new representations cBk
of nodeBk . After executing the above procedures,
every region-type node now contains textual and
inclusive information. We then utilize an attribute
attention mechanism to determine the significance
of various administrative regions. In the local
graph, both address-type nodes have k region-
type neighbours. Their neighbour nodes represent
administrative regions corresponding to each level.
We combine the information from the k-th region-
type neighbour nodes of the same level for both
address-type nodes:

ck = Ws · [ cAk ∥ cBk ] (4)

The pair representation in the k-th attribute is
denoted as ck. To determine the importance of
each attribute, we incorporate an attribute atten-
tion mechanism. This mechanism assigns weights
to different attributes, allowing us to learn hierarchy
information dynamically.

γk = softmax(Wk · ck) (5)

Shier =
∑
k

(γk · ck) (6)

The normalized attention score, denoted as γk,
essentially represents the importance of the k-th
attribute in determining whether the candidate ad-
dress pair matches. By calculating the normalized
attention scores for all attributes, we can obtain the
eventual encoding, represented as Shier, for the
address pair in the hierarchy component.

3.4. Geocode Component

In address matching tasks, the spatial distance
between addresses is a crucial factor, which can
reflect geographic proximity. However, limited by
equipment accuracy and manual labour, errors
may occur during the acquisition phase of spatial
coordinates. This may result in two POIs point-
ing to the same location being misclassified as
Non-Match due to the large spatial distance. The
first candidate pair in Table 1 is a typical example.
To solve this issue, we propose incorporating a
geocode component that takes into account the
spatial distance with a fuzzy module to identify
these errors.
For a given address pair (AddrA, AddrB), the spa-
tial distance between them is calculated using the
Haversine formula:

dAB = Haversine(φA, φB , λA, λB , r) (7)

In this formula, dAB is the spatial distance rep-
resentation, where (φA, λA) are the latitude and
longitude coordinates for AddrA. The variable r
represents the Earth’s radius. The computed spa-
tial distance is then normalized to fall within the
[-1, 1] range. By applying linear transformation and
offset, we can reduce the noise and variability in
the data to some degree, thereby enhancing the
expressive capability of the spatial distance:

e(dAB) = αT
d (

2 · dAB

maxdist
− 1) + βd (8)

The equation includes two learnable parameters,
αd and βd. The maximum distance between can-
didate address pairs in the dataset, denoted as
maxdist, may vary in different datasets.
In light of the potential inaccuracies that may arise
from geocoding techniques, it is important to ac-
knowledge that the latitude and longitude coordi-
nates obtained may not be completely precise. As
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a result, this can impact the accuracy of spatial
information. To address this issue, we propose
implementing an Equi-width Bucketing method to
assess the spatial distance between candidate ad-
dress pairs. This approach involves grouping the
spatial distance based on their distribution, which
can help to introduce a level of fuzziness and ac-
count for any potential errors.
We allocate the specified number of buckets ac-
cording to the value of maxdist and map the spatial
distance to the corresponding bucket:

bAB = ⌊ ( 10 · |dAB | ) ⌋ (9)

Sdist = Wd · [ e(bAB) ∥ e(dAB) ] (10)

The given equation involves various mathematical
functions. The notation | · | denotes a function that
calculates the absolute value, while ⌊·⌋ signifies a
rounding-down function. Subsequently, we convert
the bucket variable bAB to an embedded vector
representation denoted as e(bAB) and concatenate
it with e(dAB), which we represent as Sdist as the
consequent output of the geocode component.

3.5. Neighbourhood Component

In some cases, two addresses still cannot be
deemed a Match using only textual and distance
information. Our study aims at correctly classi-
fying address pairs that do not have rich textual
information (including HouseName content), and,
although in spatial proximity, are still classified as
Non-Match by existing solutions. The condition
of the last candidate pair in Table 1 can be an
example of such a case. Thus, we develop a neigh-
bourhood component to aid in addressing this kind
of problem by collecting and comparing surround-
ing information.
We first determine two neighbour tuples for each
candidate address NA = {NA

1 ,NA
2 , ...,NA

m} and
NB = {NB

1 ,NB
2 , ...,NB

n } that are spatially close
to each address in the candidate address pair. Ad-
dresses whose spatial distance to the candidate
address pair is less than maxdist are regarded as
neighbours. Additionally, we remove AddrB from
the neighbour tuple NA, and vice versa to avoid
the candidate addresses paying attention to each
other. We construct a global graph, which amalga-
mates structured node and edge data:

• Consider each candidate address and the sur-
rounding addresses with a distance of less
than the max distance from it as a node;

• Connect each candidate address node to its
surrounding address node (except for another
address in the given address pair);

• Weight of each edge is the inverse of the spa-
tial distance between two addresses.

We apply GAT (Veličković et al., 2017) with a single
attention head to acquire a contextual representa-
tion of the surrounding address. We first perform a
feature transformation on the encoding of AddrA
and its neighbour NA

m :

hA = Wn · e(AddrA)

hm = Wn · e(NA
m)

(11)

To imbue the edge with meaningful relevance and
distance information between nodes, thereby fur-
nishing pivotal information for ensuing attention
calculations, we employ the ensuing approach to
compute the attention weight for AddrA and its
neighbours NA

m :

eAm = LeakyReLU( ([hA∥hm]) · wAm) (12)

wAm = ϕ · 1

dAm
(13)

where ϕ is a learnable parameter, wAm corre-
sponds to the edge weight between node AddrA
and its neighbour node NA

m . To ensure the atten-
tion weight falls within the interval [0, 1], we apply
normalization as follows:

αAm =
exp(eAm)∑

k∈NA
exp(eAk)

(14)

where αAm is normalized attention score. Finally,
we leverage the attention coefficient to weight and
sum the features of neighbour nodes to aggregate
neighbour information:

nA = ReLU(
∑

m∈NA

(αAm · hm)) (15)

We repeat the above operation to gain nB and
indicate Sneigh, concatenated by nA and nB as
the ultimate encoding of the neighbour informa-
tion. Furthermore, we concatenate Sneigh with the
output of the first three components and feed the
sequence to the classifier.

4. Experiments

To evaluate the effectiveness of our proposed ap-
proach, a series of experiments are conducted on
four real-world datasets, aiming to benchmark its
performance against established baseline meth-
ods. To gain deeper insights into the impact of
individual components within StructAM on perfor-
mance enhancement, we have also conducted an
ablation study. This study seeks to isolate and
analyze the specific contributions of each model
component to the observed gains in performance.
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Table 2: Statistics on the datasets used in the experiments. The column Positive(%) represents the
number and percentage of positive pairs in the corresponding dataset. The column Dirty(%) represents
the number and percentage of diry pairs (an address with three missing attributes in the address pair) in
the corresponding dataset.

Country Size # Positive (%) # Dirty (%)

SG 10,414 3,978 (38.20%) 6,810 (65.39%)
GB 10,688 6,944 (64.97%) 3,571 (34.29%)
MY 22,379 10,912 (48.76%) 12,264 (54.80%)
US 101,086 70,653 (69.89%) 5,261 (5.20%)

4.1. Datasets

In our data collection process, we obtained
144,567 annotated address pairs from a publicly
available dataset, provided by Foursquare, with the
spatial distance of each pair not exceeding 1000m.
The collected datasets encompass a range of four
countries, namely Singapore (SG), Great Britain
(GB), the United States (US), and Malaysia (MY).
We include textual and spatial information coupled
with corresponding labels for each candidate ad-
dress pair. The statistics for each dataset are sum-
marized in Table 2.

4.2. Comparison Methods

We compare our work with the best-performing al-
gorithms currently available. Following previous
studies, we use the Precision (P), Recall (R) and
F1 score (F1), which is computed as the harmonic
mean between precision and recall as the perfor-
mance metric. The results are reported in terms of
the Precision, Recall and F1 score on the test set
and the epoch that yields the best performance on
the validation set.

• DeepMatcher (Mudgal et al., 2018) utilizes
FastText (Bojanowski et al., 2017) to convert
text-value attribute pairs into word embed-
dings to represent the textual information in
the records and leverages RNNs with addi-
tional attention mechanisms to process, align
and compare attributes.

• Ditto (Li et al., 2020) capitalizes on the po-
tential of pre-trained language models, fine-
tune and cast entity matching task as a
sequence-pair classification problem. On top
of that, three optimization techniques are de-
veloped to further improve its matching ca-
pability through injecting domain knowledge,
summarizing long strings, and augmenting
training data.

• Geo-ER (Balsebre et al., 2022) is a recent
exploration in the realm of geospatial data in-

tegration, leverages the BERT (Devlin et al.,
2018) as its foundation. Enhanced by a dis-
tance embedding element and a neighbour-
hood attention mechanism.

• ChatGPT released by OpenAI emerging as
a notable AI language model, which is able
to harness the power of zero-shot learning to
tackle address matching tasks.

• LLAMA2-7B is an advanced large language
model developed by Meta AI, which can be
fine-tuned using supervised learning and rein-
forcement learning to improve its performance
across address matching tasks.

4.3. Experimental Settings

For each dataset, we randomly partition 70%, 20%,
and 10% of the address pairs as the training set,
validation set, and testing set, and maintain a con-
sistent ratio of positive to negative samples during
the splitting process. We utilize bert-base-uncased
model for pre-training. The hidden size of BERT is
768, thus both textual and hierarchy embeddings
have an embedding size of 768, while the embed-
ding size of geocode embedding is set to 512 and
the embedding size of neighbourhood embedding
is set to 256. During the training phase, the model
is optimized by Adam optimizer, with a learning rate
of 3e-5. Additionally, a linearly decreasing learning
rate schedule and the number of epochs, batch
size and dropout rate are set at 10 or 15 (depend-
ing on the dataset size), 32 and 0.2, respectively,
to enhance generalization. All the experiments in-
volving deep learning frameworks are executed on
a V100-SXM2 GPU.
For DeepMatcher, we utilize both textual attributes
and spatial coordinates as input. For Ditto, we fol-
low the Ditto paper by fine-tuning RoBERTa (Liu
et al., 2019). Additionally, we do not inject any
domain knowledge for a fair comparison, turn off
summarization since there are no descriptive at-
tributes for this task, and use data augmentation

https://www.kaggle.com/competitions/foursquare-location-matching
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Table 3: Experimental results on Precision (%), Recall (%) and F1 score (%). Bold indicates the highest
F1 score. The last row shows the improvement of StructAM with respect to the best baseline.

SG GB MY US

Model P R F1 P R F1 P R F1 P R F1

DeepMatcher 77.3 74.9 76.1 86.7 85.8 86.2 86.9 83.6 85.2 89.1 87.9 88.5

ChatGPT 78.5 76.3 77.4 87.4 86.2 86.8 88.0 85.5 86.7 90.4 89.0 89.7

LLAMA2-7B 79.8 76.7 78.2 88.0 86.8 87.4 88.0 86.0 87.0 89.3 91.1 90.2

Ditto 81.7 78.2 79.9 89.3 86.7 88.0 87.8 85.2 86.5 89.3 92.3 90.8

Geo-ER 85.3 79.7 82.4 91.7 88.8 90.2 89.1 85.0 87.0 91.6 92.8 92.2

StructAM 87.2 82.9 85.0 93.8 91.0 92.4 90.2 87.2 88.7 92.7 94.9 93.8

Improvement +2.6 +2.2 +1.7 +1.6

with all the operators applied uniformly at random.
For Geo-ER, we preprocess the datasets and col-
lect the surrounding information following the for-
mula presented by the GeoER paper based on the
current datasets. For ChatGPT, we employ large-
scale labelled address pairs for training to enrich
ChatGPT’s comprehension of address matching
contexts and design the following prompt template
to generate text to evaluate whether two addresses
Match:

Do the following two addresses point to the
same location or place? Answer with "match" if
they do and "non_match" if they do not.
Address 1: {address_1}
Address 2: {address_2}

For LLAMA2-7B, we also create a prompt template
and finetune the model using a large dataset of
labelled address pairs. The prompt template is set
as follows:

prompt_template = "You are a classification
model. Based on the following two address infor-
mation, you need to predict the relationship label
between the given address pair from {all_labels}.
One address pair has only one label.
### Input address pair: {address_pair}
### Output: "

4.4. Performance and Analysis

Table 3 showcases the experimental results ob-
tained from the test data. The algorithm that
achieved the highest F1 score on each dataset is
emphasized in bold. For clarity, the last row demon-
strates the improvement of StructAM over the com-
parison algorithm with the best performance. The
results indicate the consistent outperformance of
StructAM over the top-performing baseline algo-
rithms by a margin of at least 1.6% and up to 2.6%,
which shows that StructAM excels in solving dirty
address matching. Based on these outcomes, we

0.5974

0.3622
0.4586

0.7685

0.6378

0.4026

1) Match 2) Non-Match 3) Match 4) Non-Match

0.5414

0.2315

0.8300

0.1700

0.7165

0.2835

0.5267

0.6912

0.3088

0.4733

Match Non-Match

Figure 3: The comparison of prediction values be-
tween Geo-ER (left) and StructAM (right).

can draw several key comparisons and summarize
them as follows.
First, it is important to note that algorithms that
incorporate geospatial information (StructAM and
Geo-ER) consistently yield superior performance.
In contrast, DeepMatcher relies on the deep
learning framework to compare attributes, which
struggles to effectively capture nonlinear relation-
ships in cases involving inter-attribute connections.
While fine-tuned LLAMA2-7B outperforms zero-
shot learning ChatGPT, StructurAM still surpasses
fine-tuned LLAMA2-7B. This is primarily due to the
inherent design differences between BERT and
autoregressive language models like LLAMA2 and
ChatGPT. BERT’s architecture facilitates straight-
forward application in text classification tasks, as
its [CLS] token output can be directly linked to
a classification head. Conversely, LLAMA2 and
ChatGPT lack this clear mechanism for classifi-
cation. While it’s possible to utilize these models
for classification by prompting them to classify in-
put text, this approach introduces reliability con-
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cerns, as the models may simply provide an inter-
polated answer instead of genuinely understand-
ing the text. Furthermore, BERT’s bidirectional
architecture enables it to consider both the pre-
ceding and succeeding context at each position,
offering a more comprehensive comprehension of
the input text. This bidirectionality proves particu-
larly advantageous for classification tasks, provid-
ing a richer contextual understanding compared
to LLAMA2 and ChatGPT’s unidirectional Trans-
former architecture. Additionally, it can be chal-
lenging for such large language models to capture
spatial information. Despite the fact that Ditto inte-
grates pre-trained language models, it falls short
of effectively capturing the semantic correlations
between geospatial data and textual information.
This result highlights the pivotal role of geospatial
features in the address matching task and demon-
strates the effectiveness of our geocode and neigh-
bourhood component.
Secondly, we observe that StructAM consistently
outperforms Geo-ER, the best baseline. This un-
derscores the challenge of comprehensively cap-
turing hierarchy information in addresses solely
through reliance on language models. Additionally,
it highlights the limitations of language models in
rectifying errors stemming from spelling mistakes
and subtle variations. Hence, it is necessary to
design a hierarchy component that can capture
the inclusive relationship between administrative
regions and the significance of different adminis-
trative regions. This will significantly enhance the
accuracy of address matching tasks. In Figure 3,
we showcase StructAM’s capability to incorporate
structured information. The figure illustrates the
probability values of four specific address pairs,
which correspond to the examples in Table 1, cal-
culated by Geo-ER and StructAM respectively, with
the ground truth label marked below the bar chart.
In the last example, the prediction result differs
from the ground truth label, probably due to the
absence of fine-grained address attributes.

4.5. Ablation Study

We conduct an ablation study to evaluate the im-
pact of individual components within StructAM by
systematically comparing our original framework
with variants in which each component is removed
one at a time. The comprehensive results of this
ablation study are presented in Table 4. Our obser-
vations indicate that the model has substantial en-
hancements owing to the incorporation of our pro-
posed three components. To delve into specifics,
the individual impact of each component is promi-
nently pronounced. Specifically, the geocode com-
ponent demonstrates improvements ranging from
0.7% to 1.2%, boasting an average advancement
of 1.0%. This suggests that incorporating spatial

information into the model helps in enhancing its
performance. Similarly, the neighbourhood compo-
nent yields significant performance gains, exhibit-
ing an average increase of 0.7%, with a minimum
surge of 0.6% and a maximum boost of 0.8%. This
indicates that this component is valuable, although
the variations in improvement are relatively small,
which may be due to the limitations of the address
collection range, and the sparse distribution re-
sulting in many addresses not having neighbours
that meet the requirements. This highlights a po-
tential area for future work, where improving the
address collection range and incorporating other
data sources might lead to even more substantial
gains from this component. Notably, the hierarchy
component stands out as the most impactful, driv-
ing an average surge of 1.6%, accompanied by a
minimum rise of 1.2% and an impressive maximum
leap of 2.0%.
Drawing insights from the ablation study, it be-
comes evident that each component containing
structured information plays a vital role and sig-
nificantly contributes to the overall outcomes. Ad-
ditionally, their collective impact is greater than
the sum of their individual contributions. This sug-
gests that the components work synergistically to
improve the model’s performance.

Table 4: Ablation study on each dataset, one com-
ponent is removed, and F1 scores (%) are re-
ported.

SG GB MY US Avg

StructAM 85.0 92.4 88.7 93.8 -
No Hier -2.0 -1.8 -1.2 -1.4 -1.6
No Dist -0.7 -1.2 -0.9 -1.0 -1.0
No Neigh -0.8 -0.6 -0.7 -0.8 -0.7

5. Conclusion and Future Work

We introduce StructAM, an algorithm designed to
elevate the precision of address matching tasks.
The experimental results distinctly establish its
supremacy over pre-existing methodologies. The
effectiveness of our approach can be attributed to
its proficient handling of structured information in-
herent to addresses, including address hierarchy,
fuzzy geocoding, and neighbourhood context. This
efficacy is further validated through ablation stud-
ies, which meticulously delineate the effectiveness
of each individual component. Future work direc-
tions involve incorporating a wider array of data
sources, such as street-view imagery, and develop-
ing novel algorithms to utilize visual information for
enhancing the decision process and offering more
precise predictions.
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