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Abstract

Employing pre-trained generation models for cross-domain aspect-based sentiment classification has recently
led to large improvements. However, they ignore the importance of syntactic structures, which have shown
appealing effectiveness in classification based models. Different from previous studies, efficiently encoding the
syntactic structure in generation model is challenging because such models are pretrained on natural language,
and modeling structured data may lead to catastrophic forgetting of distributional knowledge. In this study, we
propose a novel structure-aware generation model to tackle this challenge. In particular, a prompt-driven strategy is
designed to bridge the gap between different domains, by capturing implicit syntactic information from the input
and output sides. Furthermore, the syntactic structure is explicitly encoded into the structure-aware generation
model, which can effectively learn domain-irrelevant features based on syntactic pivot features. Empirical results
demonstrate the effectiveness of the proposed structure-aware generation model over several strong baselines. The
results also indicate the proposed model is capable of leveraging the input syntactic structure into the generation model.

Keywords: Opinion Mining / Sentiment Analysis, Social Media Processing, Text Analytics

1. Introduction

Aspect-based sentiment classification (Hu and Liu,
2004) aims to determine the sentiment polarity
of the aspects in a sentence. Consequently, it
has aroused much research attention in recent
years (Tang et al., 2016; Tay et al., 2018; Zhang
et al., 2022). However, a large number of review
domains make it intractable to manually annotate
enough data in each domain for training domain-
specific models. Thus developing automatic cross-
domain methods is imperative in this area.

Recent efforts on cross-domain sentiment
classification can be separated into two cat-
egories: features-based approaches and
discriminator-based approaches. Feature-based
approaches (Blitzer et al., 2007; Yu and Jiang,
2016; Ziser and Reichart, 2019) utilize a key
intuition that domain-specific features could be
aligned with the help of domain invariant features.
Discriminator-based approaches (He et al., 2018;
Du et al., 2020; Xue et al., 2020) aim to determine
the diversity between domains and predict the
polarity of instances holistically.

More recently, pre-trained generation models
learn the cross-domain representations with
mixed classification and masked language
model (Karouzos et al., 2021; Li et al., 2022a;
Ben-David et al., 2022). For example, Zhou
et al. (2020) learned domain-invariant sentiment
knowledge in the pre-training phase, and Karouzos
et al. (2021) employed mixed classification and
masked language model to fine-tune the pre-
trained model. However, these models represent
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Figure 1: An example of the proposed structure-
aware generation model with prompt design and
syntax tree.

the sentence as a word sequence and neglect the
syntactic relations between words. These syntactic
relations are especially important for identifying
aspect terms and opinion terms, which are also
domain-invariant within the same language. They
can be used as pivot information to bridge the gap
between different domains.

Therefore, we attempt to adopt syntactic relations
into a generation model to learn the knowledge
from source and target domains. A straightforward
method is to transform the structured input into a
sequence, which can be directly fed into the gener-
ation model. However, the above method suffers
from two salient limitations. First, linearized syn-
tactic structures are different in nature from natural
language. As a result, knowledge among differ-
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ent domains intuitively cannot be fully transferred.
Second, a linearized representation weakens struc-
tural information in the original graphs by diluting
the explicit connectivity information, and the gener-
ation model must infer how edge connections are
specified in the sequence.

In this study, we propose a novel structure-aware
generation model to address the above challenges.
The basic idea is shown in Figure 1, we first employ
a prompt-driven strategy to implicitly integrate the
syntactic structure with domain and category in-
structions. Specifically, domain instruction is used
to learn domain-specific knowledge, while category
instruction is employed to bridge the gap between
different domains. Furthermore, we explicitly en-
code the syntactic structure into the pre-trained
generative model without contaminating its original
distributional knowledge. The main idea is to add
layer-wise modules, which extract information from
the pre-trained layers and make use of it in syntactic
structure encoding. Therefore, deep integration of
textual and syntactic knowledge can be achieved.

Experimental results show that our model out-
performs competitive models, achieving new state-
of-the-art results on several benchmarks. Deep
analysis indicates that the proposed model is capa-
ble of leveraging the input syntactic structure into
the generation model.

2. Related Works

In this study, we introduce two related topics of this
study: aspect-based sentiment classification and
cross-domain sentiment classification.

2.1. Aspect-based Sentiment
Classification

Recent advances in aspect-based sentiment classi-
fication focus on developing various types of neural
models, including LSTM (Tang et al., 2016; Ma
et al., 2017), convolutional neural networks (Huang
and Carley, 2018; Xue and Li, 2018) and pre-trained
language models (Sun et al., 2019a; Xu et al., 2019;
Jiang et al., 2020).

Some other efforts try to include syntactic in-
formation using graph neural networks (Tay et al.,
2018; Sun et al., 2019b; Huang and Carley, 2019;
Tang et al., 2020). For example, Zhang and Qian
(2020) and Li et al. (2021) used graph convolutional
networks to learn node representations from a de-
pendency tree and used them together with other
features for sentiment classification. For a similar
purpose, Huang and Carley (2019) and Wang et al.
(2020) used graph attention networks to explicitly
establish the dependency relationships between
words. Besides, Liang et al. (2022) and Zhang
et al. (2022) combined the syntax information of

constituent tree and dependency tree with graph
neural networks to model aspect-based sentiment
classification tasks.

2.2. Cross-Domain Sentiment
Classification

Cross-domain sentiment classification has been a
long standing attractive research topic due to its
real applications where labeled data is only avail-
able in a source domain. Previous studies can be
separated into two categories: features-based ap-
proaches (Blitzer et al., 2007; Yu and Jiang, 2016;
Ziser and Reichart, 2019) and discriminator-based
approaches (He et al., 2018; Qu et al., 2019; Du
et al., 2020; Xue et al., 2020; Li et al., 2022b).

More recently, researchers focused on employ-
ing pre-trained language models in cross-domain
classification scenarios. For example, Zhou et al.
(2020) learned domain-invariant sentiment knowl-
edge in the pre-training phase. Karouzos et al.
(2021) employed mixed classification and masked
language model loss to fine-tune the pre-trained
model, it thus can adapt to the target domain distri-
bution in a robust and sample efficient manner.

Most of the previous studies are for document-
level sentiment classification, and only a few stud-
ies focus on cross-domain aspect-based sentiment
classification. For example, Gong et al. (2020)
proposed an end-to-end framework to jointly per-
form syntactic-based and domain-based adapta-
tion. Zhou et al. (2021) integrated pseudo-label
based semi-supervised learning and adversarial
training into a unified network. More recently, Li
et al. (2022a) and Yu et al. (2021) employed gener-
ative models for data augmentation to accomplish
aspect-based domain adaptation. Ben-David et al.
(2022) used an example-based prompt learning al-
gorithm to alleviate domain discrepancy between
different domains.

Different from previous studies, we propose a
novel paradigm to transform the cross-domain
aspect-based sentiment classification task into a
structure-aware generation model. In particular, we
address the importance of syntactic structure and
propose a structure-aware generation model to im-
plicitly and explicitly encode the syntactic structure
into the pre-trained generation model. To the best
of our knowledge, this is the first attempt to lever-
age the pre-trained generation model and syntactic
structure for cross-domain sentiment classification.

3. Structure-aware Generation Model

As shown in Figure 2, we propose a structure-aware
generation model to generate sentiment polarity
from input review text and syntactic structure. Our
key idea is that the proposed model should be ca-
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Figure 2: Overview of the proposed model.

pable of leveraging the input syntactic structure into
the generation model. For this purpose, the pro-
posed model first employs a prompt-driven strategy
to implicitly integrate the syntactic structure with do-
main and category instructions. Then, it constructs
the syntactic structure from the review text and
consists of a syntactic structure encoding layer to
explicitly capture syntactic structure. Furthermore,
it uses a fusion layer to integrate text representation
and syntactic structure and generates a natural lan-
guage sentence with sentiment polarity based on
the fused representation in the decoding stage. In
the following content of this section, we will discuss
these components in more detail.

3.1. Prompt Design
Given a review text x with its domain d and aspect
word a, we propose a prompt-driven strategy to
implicitly integrate the syntactic structure, and gen-
erate the input prompt TI with domain instruction dI
and category instruction cI as shown in Figure 2(a).
In addition, we utilize a template for output TO with
sentiment polarity y.

Input Prompt

The template of input is defined as “The sentiment
polarity of <aspect> from <domain> about <cate-
gory>: <text>”. The first three slots are aspect term
a, domain instruction dI , and category instruction
cI , and the last slot is the review text x.

Domain Instruction is a natural language se-
quence dI describing the domain of the review text,

and it is used to assign the domain-specific knowl-
edge for the input prompt.

Category Instruction is a natural language se-
quence cI describing the pre-defined category from
the review text and syntactic structure. In this study,
there are six pre-defined categories: “Quality”, “Ser-
vice”, “Ambience”, “Price”, “Performance” and “Mis-
cellaneous”. We refer to the definition in SemEval-
14 (Pontiki et al., 2014) to define these categories.
These categories are generalized and can be used
to bridge the gap between different domains. For
example, product quality is frequently discussed
across all domains, and price also appears in most
domains. In particular, we employ an unsupervised
method (Gao et al., 2021) with syntactic structure
to measure the semantic similarity between the re-
view text and categories, and then we assign the
most similar category to the corresponding review
text.

Output Prompt

The template of output is “sentiment polarity of it
is <polarity>”, which contains a slot “<polarity>” to
reflect how polarity is in the review text. Therefore,
the rich label semantics is naturally fused with the
rich knowledge of the pre-trained models in the form
of natural sentences, rather than directly treating
the desired sentiment polarity as the generation
target.
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3.2. Text Encoder
Given an input template X = {x1, ..., xn}, consist-
ing of the review text, the domain, and category
instruction, we employ a multi-layer transformer en-
coder to compute the hidden vector representation
HT = {h1, ..., hn}:

HT = Encoder({x1, ..., xn}) (1)

where each layer of Encoder is a transformer block
with the multi-head attention mechanism.

3.3. Pivot-Aware Syntax Tree
Construction

The syntactic structure has been shown effective for
aspect-based sentiment classification (Liang et al.,
2022; Zhang et al., 2022). In addition, the syntactic
relations between aspect and opinion terms have
common and domain transferable linguistic char-
acteristics (Klein et al., 2022). It suggests that the
syntactic relations can be used as informative pivot
features for cross-domain aspect-based sentiment
classification.

As shown in Figure 2(b), we construct a pivot-
aware syntax tree to capture domain invariant rela-
tions between aspect and opinion terms. we first
capture the most frequent syntactic relations be-
tween aspect and opinion terms on the dependency
tree. We then select the top-k common patterns as
pivot features from these syntactic relations. Sub-
sequently, given a parsed review text, we utilize
the obtained pivot path patterns to construct the
pivot-aware syntax tree.

Path Patterns Extraction

Due to the correspondences between aspect terms
and opinion terms are not annotated in the bench-
mark dataset, we take the ACOS dataset(Cai et al.,
2021) to extract path patterns.

Given parsed review text, we capture the shortest
path between aspect and opinion terms as path
patterns, where the pattern is the ordered list of the
dependency relation labels occurring throughout
the shortest path.

Following a preliminary analysis, we chose 5659
sentences with 1191 path patterns from ACOS
dataset in both laptop and restaurant domains. We
find that 69% sentences are covered by top-10(top
1%) path patters and top 10% path patterns can
cover 76% sentences. Therefore, we select the
top-10 common patterns as pivot path patterns to
extract more common and domain transferable lin-
guistic characteristics.

Pivot-Aware Syntax Tree Construction

We consider the dependency tree as an undirected
graph Gdep as shown in Figure 2(b).1. Let N and R

denote the set of nodes and syntactic relations on G,
respectively. We can extract dependency triplets
from Gdep, where a dependency triplet (xi, r, xj)
denotes that there exists an edge with the syntactic
relation r ∈ R to link the node xi ∈ N to node
xj ∈ N . Particularly, the syntactic dependency
matrix can be defined as follows,

rdep (xi, xj) =

⎧⎨
⎩
Rel (xi, xj) if dep (xi, xj)i �=j

Pos (xi, xj) if i = j
0 else

(2)
where Rel(xi, xj) belongs to the set of cross-
linguistic dependency relations denoted as Rdep,
which is defined based on universal dependencies
as implemented in Spacy. Similarly, Pos(xi, xj)
belongs to the set of part-of-speech tags denoted
as Rpos, defined based on POS tags from Spacy.
Subsequently, given xi and xj belonging to the
set of nodes N , and rdep(xi, xj), we can derive
(xi, rij , xj) belonging to the dependency graph
Gdep.

Given a text and its aspect term, we capture the
shortest paths between the aspect terms and the
other tokens in the dependency graph Gdep to get
a pattern set Ss, where the patterns are the or-
dered list of the dependency relation labels occur-
ring throughout the shortest path. Let the extracted
pivot path patterns as Sp , we can easily get Sp∩Ss

as St. Subsequently, we directly link the aspect
terms with destination tokens guided by the paths
in St as shown in Figure 2(b).2. Specifically, we
add dependency triplets (xa, rat, xt) to Gdep, where
xa is aspect terms, rat is a special edge type mean-
ing pivot, xt is destination token according to the
path in St as shown in Figure 2(b).3.

Ultimately, we construct a pivot aware syntax
tree that combines the syntax dependency tree
and domain invariant linguistic structure of aspect
and opinion terms.

3.4. Syntax Tree Encoder
After we construct the pivot-aware syntax tree G,
we use Graph Attention Network (GAT) (Velickovic
et al., 2018) to model over it.

In a M -layer GAT, the input of j-th layer is a set
of node features NF j = {f1, f2, ..., fN}, together
with an adjacency matrix A. In this study, the node
features are denoted as the words from review text.
In addition, the adjacency matrix A is used to repre-
sent the syntax tree G. If there is a relation between
word i and word j, then Aij will be assigned a value
of 1. The output of j-th layer is a new set of node
features, NF (j+1) = {f ′

1, f
′
2, ..., f

′
N}. A GAT oper-

ation with K independent attention head can be
written as,

f ′
i = ‖Kk=1σ(

∑
j∈Ni

αk
ijW

kfj) (3)
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where ‖ denotes concatenation operation, σ is a
nonlinear activation function, Ni is the neighbour-
hood of node i in the graph, αk

ij are the attention
coefficients.

At the last layer, averaging will be adopted, and
the dimension of final output features is HG =
{ffinal

1 , ..., ffinal
n }.

ffinal
i = σ(

1

K

K∑
k=1

∑
j∈Ni

αk
ijW

kfj) (4)

3.5. Fusion with Text and Syntax
Representation

We employ a fusion layer to incorporate syntax
representation with text representation. In this way,
the syntactic structure substantially impacts the
node representations, better encoding the input
structure without impacting the knowledge learned
during pre-training. This can lead to more efficient
and better generation results.

In particular, the input of the fusion layer is the
text representation HT and the output of syntax tree
encoder HG. The fusion layer is based on the self-
attention (Vaswani et al., 2017) and we compute
the attention weight by the following formula:

H = softmax(
HGH

T
T√

dm
)HT (5)

where dm is the dimension of HT . Based on the
fusion layer, we obtain a matrix H, which is a new
representation integrating the knowledge from both
text and syntax representation.

3.6. Decoding
The decoder predicts the output token-by-token
with the sequential input tokens’ hidden vectors.
At the i-th step of generation, the self-attention de-
coder predicts the i-th token ti in the linearized form
and decoder state h as:

ti, h
d
i = Decoder([H;hd

1, ..., h
d
i−1], ti−1) (6)

where each layer of Decoder is a transformer block
that contains self-attention with decoder state hd

i

and cross-attention with encoder state H.
The conditional probability of the whole output

sequence p(T |X) is progressively combined by the
probability of each step p(ti|t<i, X):

p(T |X) =

m∏
i

p(ti|t<i, X) (7)

where t<i = {t1...ti−1}, and p(ti|t<i, X) is the
probability over target vocabulary V normalized
by softmax.

Domains Reviews Training Testing
Device 2,085 1,394 691
Laptop 2,928 2,297 631

Restaurant 6,536 4,284 2,252
Service 2,726 1,840 886

Table 1: Distribution of reviews across different
domains.

3.7. Objective Functions and Training
In this subsection, we show the objective function
and training process of the proposed model.

The goal is to maximize the objective text T prob-
ability given the review text X. Therefore, we opti-
mize the negative log-likelihood loss function:

L = − 1

|τ |
∑

(X,T )∈τ

log p(T |X; θ) (8)

where θ is the model parameters, and (X,T ) is a
(input,output) pair in training set τ , then

log p(T |X; θ) =

=
m∑
i=1

log p(ti|t1, t2, ...ti−1, X; θ)
(9)

where p(ti|t1, t2, ..., ti−1, X; θ) is calculated by the
decoder.

4. Experiments

In this section, we first introduce the datasets used
for evaluation and the baseline methods employed
for comparison. We then report the experimental
results conducted from different perspectives and
analyze the effectiveness of the proposed model
with different factors.

4.1. Data and Setting
There are four domains in the dataset: Restau-
rant (R) is a combination of the restaurant reviews
from SemEval 2014/2015/2016 (Pontiki et al., 2014,
2015, 2016); Laptop (L) is from SemEval 2014 (Pon-
tiki et al., 2014); Device (D) consists of all the digital
device reviews collected by Toprak et al. (2010);
Service (S) contains reviews from web services in-
troduced by Hu and Liu (2004). The distribution of
reviews in these domains can be found in Table 1.

We use T5-base1 as our backbone in the pro-
posed model. We select the best model by early
stopping using the accuracy results on the valida-
tion dataset (the testing data in the source domain
is used as the validation data). We conduct all ex-
periments on a GeForce RTX 3090 GPU with a
batch size of 24. The learning rate of the T5 model

1https://huggingface.co/t5-base
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BERT BART T5 ChatGPT LLaMA ADSPT PADA ACSC Ours
D → L 67.83 69.10 70.68 79.23 70.40 70.05 71.36 68.94 71.32
D → R 80.37 82.33 81.79 86.32 81.86 82.86 83.28 82.19 84.28
D → S 85.21 86.46 87.58 83.63 87.91 87.13 87.23 86.57 89.28
L → D 89.58 89.29 92.19 90.30 91.91 92.04 90.40 91.17 94.21
L → R 81.13 82.73 79.53 86.32 81.04 84.81 84.66 83.57 86.15
L → S 81.94 86.00 85.33 83.63 86.97 83.30 85.20 84.54 87.02
R → D 88.28 90.16 93.92 90.30 92.03 91.17 91.10 89.44 94.65
R → L 77.81 77.50 78.29 79.23 74.81 78.45 78.34 75.75 81.30
R → S 84.54 86.68 87.02 83.63 86.57 83.86 87.79 85.97 88.49
S → D 90.74 91.03 93.49 90.30 92.76 91.46 93.04 91.75 94.79
S → L 69.73 70.84 70.36 79.23 73.18 71.47 69.78 71.16 75.91
S → R 79.75 81.35 81.17 86.32 81.43 82.37 82.93 82.28 83.39

Average 81.41 82.79 83.45 84.87 83.40 83.25 83.76 82.94 85.90

Table 2: Comparison with baselines.The best results are denoted with bold and the second best results
are denoted underline

is 2e-4 and the learning rate of the graph attention
model is 4e-5. The model parameters are opti-
mized by Adam (Kingma and Ba, 2015) optimizer.
The experimental results are obtained by averag-
ing ten runs with random initialization. Accuracy is
used as the evaluation metric.

4.2. Main Results
In this subsection, we compare the proposed model
with several strong baselines:

• BERT is a basic model which simply employs
BERT (Devlin et al., 2019) for cross-domain
aspect-based sentiment classification.

• BART2 & T5 are two popular pre-trained text
generation models (Lewis et al., 2020; Raffel
et al., 2020), we adopt them directly for cross-
domain aspect-based sentiment classification.

• ChatGPT is a sibling model to Instruct-
GPT (Ouyang et al., 2022), which is trained to
follow an instruction in a prompt and provide a
detailed response3. We utilized it to generate
the aspect polarity of the input review using
a zero-shot setting with the instruction "Sen-
tence:{sentence} What is the sentiment polar-
ity of the aspect {aspect} in this sentence.".

• LLaMA (Touvron et al., 2023) is a collection
of foundation language models, these mod-
els are trained on trillions of tokens and have
shown that it is possible to train state-of-the-art
models using publicly available datasets ex-
clusively. We use Alpaca-LoRA4 to fine-tune

2https://huggingface.co/facebook/
bart-base

3https://openai.com/chatgpt
4https://github.com/tloen/alpaca-lora

LLaMA-7B for cross-domain aspect-based
sentiment classification with Alpaca instruction
format.

• ADSPT (Wu and Shi, 2022) adopts soft
prompts to learn different vectors from different
domains, and employs a domain adversarial
training strategy to learn domain-invariant rep-
resentations between different domains.

• PADA (Ben-David et al., 2022) employs
prompting mechanism and the encoders of
T5 (Raffel et al., 2020) for aspect-based senti-
ment classification.

• ACSC (Liu et al., 2021) employs the pre-
trained generation model for aspect-based
sentiment classification directly.

As shown in Table 2, these baselines can
be roughly separated into three categories:
classification-based models (i.e., BERT, ADSPT,
PADA), encoder-decoder generation models (i.e.,
BART, T5, ACSC) and decoder-only large lan-
guage models (i.e., ChatGPT, LLaMA). Among
these baselines, the generation models and large
language models cannot outperform classification-
based models significantly, it may be due to that
they simply employ the text generation model for
cross-domain aspect-based sentiment classifica-
tion directly, and do not use any suitable domain
adaptation strategy (e.g., prompt, graph-based
model) to integrate syntactic structure.

In contrast, our proposed model outperforms all
the baselines significantly (p < 0.05). It even out-
performs ChatGPT and LLaMA, whose parameters
are much larger. This indicates that the genera-
tion model using syntactic information can achieve
better performance. The result also shows the ef-
fectiveness of the syntactic structure and proposed
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Method Accuracy
Ours 85.90

-Prompt 85.21
-Tree 84.40
-Prompt -Tree 83.45

Table 3: Impact of different factors.

Method Accuracy
Ours 85.90

-Input Prompt 85.23
-Domain Instruction 85.52
-Category Instruction 85.68

-Output Prompt 85.78

Table 4: Effect of prompt design.

structure-aware generation model, which allows the
generation model to better encode the input syn-
tactic structure without impacting the knowledge
learned during pre-training.

4.3. Impact of Different Factors
We then employ ablation experiments to analyze
the impact of different factors of the proposed model
in Table 3.

If we remove the prompt design strategy (-
Prompt) of the proposed model, the performance
drops to 85.21%. It indicates that the prompt text
with domain and category instructions is very impor-
tant for integrating syntactic structure and captur-
ing domain-specific and cross-domain knowledge.
In addition, without the enhancement of the pivot-
aware syntax tree (-Tree), the performance drops
to 84.40%. This evidence shows that the proposed
structure-aware generation model is very helpful
for explicitly encoding the syntactic structure and
bridging the gap between different domains.

Furthermore, if we remove both the prompt-
driven strategy and syntax tree (-Prompt-Tree), the
performance is much lower than the proposed
model. These observations suggest that both
prompt-driven strategy and structure-aware gen-
eration model are very important for integrating
syntactic structure.

5. Analysis and Discussion

In this section, we give some analysis and discus-
sion to show the importance of different factors in
the proposed model.

5.1. Effect of Prompt Design
Since prompt design strategies are employed to im-
plicitly learn the syntactic structure, we first analyze

Method Accuracy
T5 83.45
Ours (Original) 85.49
Ours (Pivot-Aware) 85.90
Linearization (Original) 83.81
Linearization (Pivot-Aware) 83.86

Table 5: Influence of syntax tree.

their effects.
From the results in Table 4, we find that all the

prompt design strategies are beneficial to capture
the cross-domain knowledge in both the input and
output sides. If we remove one of them, the per-
formance will be lower than our proposed model.
Furthermore, these results also highlight the im-
portance of both domain and category instructions.
These instructions can capture implicit syntactic
information and enhance the input prompt to better
generalize to unknown target domains with their
domain specific and cross-domain knowledge.

5.2. Influence of Syntax Tree
We then analyze the influence of the syntax tree
in Table 5. In particular, Linearization uses BFS-
based traversal algorithm (Xu et al., 2020) to lin-
earize the syntax tree, and then employs T5 to
integrate the linearized string and review text for
cross-domain aspect-based sentiment classifica-
tion. Original and Pivot-Aware integrate either the
original syntax tree or the proposed pivot-aware
syntax tree for the proposed structure-aware gen-
eration model (Ours) and linearization model.

The first observation is that all the models with
syntax tree perform better than T5, it shows that the
syntax tree is very helpful for generation models to
capture the syntactic and cross-domain knowledge.
In addition, the pivot-aware syntax tree always out-
performs the original syntax tree, it indicates that
the pivot-aware syntax tree is more effective for cap-
turing aspect-based domain irrelevant knowledge.
Furthermore, our proposed structure-aware gen-
eration model achieves better performance than
the linearization model. It demonstrates that the
proposed structure-aware generation model with
graph attention mechanism is more helpful to cap-
ture the structure of the syntax tree.

5.3. Analysis of Similarity between
Domains

The performance of cross-domain models is always
influenced by the similarity between the source and
target domain. Therefore, we analyze the improve-
ment of the Jaccard similarity score (Ioffe, 2010)
on different domain pairs with the enhancement of
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(nsubj, acomp, conj)

(nsubj, acomp)

the food is so good and popular but waiting can be a nightmare.

Input Prompt                                                               Review Text and Syntax Tree  

E1: Restaurant → Laptop (Aspect: Keyboard, Polarity: Negative)   BERT: Positive   T5: Neutral   Ours: Negative

E2: Laptop → Restaurant (Aspect: Food, Polarity: Positive)   BERT: Neutral   T5: Negative   Ours: Positive

Input Prompt                                                               Review Text and Syntax Tree  

t he key board fee l s cheap and not ve ry sens i t i ve .

Figure 3: Examples of case study.

Pairs Text Prompt Tree All
D ↔ L 0.275 0.365 0.406 0.459
D ↔ R 0.154 0.232 0.348 0.371
D ↔ S 0.193 0.282 0.351 0.400
L ↔ R 0.151 0.235 0.342 0.377
L ↔ S 0.208 0.295 0.377 0.422
R ↔ S 0.166 0.256 0.351 0.389

Average 0.191 0.278 0.363 0.403

Table 6: Results of similarity between source and
target domain.

the proposed model. The Jaccard similarity score
reflects the similarity between domain pairs.

As shown in Table 6, Text only employs origi-
nal review text to calculate the similarity between
the source and target domain; Prompt and Tree
employ the prompt text and linearized pivot-aware
syntax tree to calculate the similarity, respectively;
All integrates both prompt text and linearized tree
to calculate the similarity. From the results, we find
that the similarity of prompt text and pivot-aware
syntax tree are both higher than the original review
text. In addition, the similarity achieves the highest
when we integrate both prompt text and syntax tree
to calculate the similarity. The results show that our
proposed model with prompt design and syntax tree
is truly useful for bridging the gap between different
domains. Additionally, the results also indicate that
the proposed model with syntactic structure can
effectively alleviate domain discrepancy and have
a powerful ability in cross-domain aspect-based
sentiment classification.

5.4. Case Study

To further investigate the meaningfulness of our
proposed model, we choose two examples from the
testing data in Figure 3. In particular, we choose
BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020) as the baseline methods.

The first example is very easy for the baselines
to give a wrong answer, since “cheap” is near the
aspect term “keyboard”, and it always expresses
positive sentiment polarity in the source domain.
However, the true meaning of the review is about
the quality of the keyboard rather than price, while
the category “quality” can be detected by the pro-
posed model through the syntax tree. Therefore,
with the guidance of the prompt text with category
instruction and syntax tree, the proposed model can
find “cheap” and “not sensitive” express the neg-
ative opinion to the aspect term “keyboard”, and
then give the correct answer.

Since the overall sentiment of the second review
is ambiguous, it also would let the baselines give
wrong answers. For example, the sentiment po-
larity of the aspect term is misclassified by T5 as
negative due to the unrelated opinion word “night-
mare”. In addition, BERT may concentrate more on
the sentiment polarity of the whole sentence rather
than the aspect term. Meanwhile, based on the
prompt text and the syntax tree, it is easy for the
proposed structure-aware generation model to find
that the review expresses a positive opinion toward
the aspect “food”.

The results indicate that the proposed model can
capture cross-domain knowledge and implicit struc-
tures in different domains, and is very effective for
cross-domain aspect-based sentiment classifica-
tion.
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6. Conclusion

In this study, we propose a novel paradigm to trans-
form the cross-domain aspect-based sentiment
classification task into a natural language gener-
ation task, using natural language sentences to
represent the output. In addition, we address the
importance of syntactic structure and propose a
novel structure-aware generation model to explic-
itly and implicitly encode the syntactic structure into
the pre-trained generation model. Empirical stud-
ies show the effectiveness of our proposed model
over several strong baselines. The results also indi-
cate that the proposed structure-aware generation
model can effectively capture syntactic structure.
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