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Abstract
Large Language Models (LLMs) have demonstrated impressive performances across various NLP tasks with just
a few prompts via in-context learning. Previous studies have emphasized the pivotal role of well-chosen examples
in in-context learning, as opposed to randomly selected instances that exhibits unstable results. A successful
example selection scheme depends on multiple factors related to the task, while in the context of LLMs-based
machine translation, the common selection algorithms only consider a single factor, which is the similarity between
the example source sentence and the input sentence. In this paper, we introduce a novel approach to use multiple
translational factors for in-context example selection by using monotone submodular function maximization. The
factors include surface/semantic similarity between examples and inputs on either source side or target side, as
well as the diversity within examples. Importantly, our framework mathematically guarantees the coordination
between these factors, which are different and challenging to reconcile, due to the unique properties of submodular
functions. Additionally, our research uncovers a previously unexamined dimension: unlike other NLP tasks, the
translation part of an example is also crucial, a facet disregarded in prior studies. Experiments conducted on two
LLMs, BLOOMZ-7.1B and LLAMA2-13B, demonstrate that our approach significantly outperforms random selection
and robust single-factor baselines across various machine translation tasks.
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1. Introduction

In-context learning represents a novel paradigm
that leverages large language models (LLMs) to
perform NLP tasks, even those on which LLMs
were not explicitly fine-tuned. These capabilities
do not rely on gradient updates but can be read-
ily triggered through task-specific instructions and
demonstration examples. While in-context learn-
ing serves as a training-free learning methodology,
its performance demonstrates inherent instability,
chiefly attributable to several features of the ex-
ample selection such as quantity, sequence order,
and choice criteria(Lu et al., 2021; Kim et al., 2022;
Rubin et al., 2021).

Prior research of the example selection has pre-
dominantly centered around Sentiment Analysis
(Liu et al., 2021; Kim et al., 2022), Natural Lan-
guage Inference (NLI) (Kim et al., 2022), Seman-
tic Parsing(Liu et al., 2021) and other Natural Lan-
guage Understanding tasks (NLU) (Wang et al.,
2022; Lu et al., 2021). There has been a limited
focus on developing methodologies tailored explic-
itly for machine translation, and the prevalent se-
lection criteria for translation examples primarily in-
volves a single factor of similarity between the ex-
ample source sentence and the input sentence, ei-
ther in terms of surface characteristics or semantic
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content(Agrawal et al., 2022; Kumar et al., 2023).
From our perspective, the machine translation

task possesses distinct characteristics, which re-
quire the example selection algorithm to consider
multiple factors. Firstly, the target translation of
an example also carries inherent significance and
establishes a resilient linkage with the source in-
put when employed in retrieving examples in in-
context learning, as opposed to NLU tasks where
the target is a classification label not suitable for
retrieving examples. Secondly, it is crucial to con-
sider both surface similarity and semantic simi-
larity, as prior research frequently treated them
as separate facets. Thirdly, diversity plays a
pivotal role in machine translation owing to the
widespread issue of polysemy, which is a com-
mon challenge in translation. Relying solely on a
single selection method would result in a dearth
of diverse sample inputs, ultimately impeding the
model’s ability to glean more effective information
during the translation process.

In this paper, we propose a submodular-based
framework to consider multiple factors in in-context
example selection, which can effectively address-
ing the aforementioned issues. Submodular func-
tions(Fujishige, 1991) are a type of discrete set
functions that exhibit a concept called ”diminish-
ing returns.” In our framework, we develop a set of
submodular functions specifically tailored for the
machine translation task. These functions take
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into account the multiple factors such as the rela-
tionship between the target sentences in examples
and the test input, as well as the similarities in both
their surface and meaning, while also ensuring di-
versity among the examples. Our framework also
provides mathematical guarantees that treat the
multiple factors in harmony, even when employing
a straightforward greedy search approach.

To conclude, the main contributions of our paper
are three-fold:

1) We propose a novel submodular-based frame-
work for in-context example selection to en-
hance the machine translation capabilities of
LLMs. This framework is interpretable and
amenable for efficient optimization.

2) A class of submodular functions has been
developed to assess the quality of a candi-
date set. These submodular functions take
into consideration multiple factors that influ-
ence translation performance and can be ef-
fectively combined.

3) We conducted comprehensive experiments
across various translation tasks and reaf-
firmed that in-context example selection plays
a pivotal role in enhancing the performance
of LLMs-based machine translation. Further-
more, our approach outperforms strong base-
line models on multiple evaluation datasets,
demonstrating superior results.

2. Background

2.1. In-context Learning for Machine
Translation

In-context learning is a powerful paradigm that en-
ables LLMs to effectively learn tasks by demon-
strating limited examples. Formally, considering
a large language model denoted as LLM, accom-
panied by n in-context examples denoted as S =
{(xi, yi)}ni=1, and given a test input xtest, the pre-
diction for xtest is generated through the following
process:

arg maxPLLM (y|x1 ⊕ y1...xn ⊕ yn ⊕ xtest), (1)

where y is the translated sentence via greedy
search in the case of machine translation and ⊕
represents the concatenation operation according
to some predefined templates like Table 1. The ex-
ample set S represents a collection of translation
pairs. Generally, the source part Sx = {xi}ni=1 of
S is preferable to have a high coverage of n-grams
or to be closely aligned with xtest in the semantic
space (Agrawal et al., 2022).

Previous studies have demonstrated that the ef-
fectiveness of in-context learning heavily relies on

various characteristics associated with the exam-
ple demonstrations, including the format of the ex-
amples, the order of demonstrations, and other re-
lated aspects (Zhao et al., 2021; Lu et al., 2021).
In this paper, our primary focus is on the selection
of examples, while we postpone the discussion of
order and format to future investigations.

[language1]: [x1] = [language2]: [y1]
###
...
###
[language1]: [xk]= [language2]: [yk]
###
[language1]: [xtest] = [language2]:

Table 1: Prompt Template for Machine Translation.

2.2. Submodular Functions
Formally, given a set V and its function F : 2V →
R, where 2V denotes the power set of V , F is con-
sidered submodular if it satisfies the diminishing
returns property for any A ⊆ B ⊂ V and v ∈ V \B:

F (A ∪ {v})− F (A) ≥ F (B ∪ {v})− F (B). (2)

This inequality implies a decreasing incremental
gain of inserting element v into the sets of A and
B. Moreover, such a function is termed monotone
if F (A) ≤ F (B). Monotone submodular functions
exhibit a rich set of properties. Among them, we in-
troduce three properties utilized in our approach:

Theorem 1: If ∀i, Fi is a monotone submodular
function and αi ≥ 0, then

∑
αiFi is also a mono-

tone submodular function.
Theorem 2: If F ′ is a monotone submodular

function and g : R → R is a non-decreasing con-
cave function, then F = F ′ ◦ g : 2V → R is also a
monotone submodular function.

Theorem 3: When maximizing a monotone sub-
modular function F under cardinality constraints,
i.e., the result subset S is constrained to have K
elements, where K ≪ |V |, greedy algorithm has
a worst-case guarantee: F (S) ≥ (1 − 1

e )F (Ŝ) ≈
0.63F (Ŝ), where Ŝ represents the optimal set.

Application for In-context Example Selection:
Our objective is to find optimal set of examples
for in-context learning. The set can be built by se-
lectively inserting elements of new examples into
the current set iteratively. Monotone submodular
functions provide a solution for such insertion ac-
cording to the above properties. Firstly, we can
seamlessly integrate multiple translational factors
embedded in different monotone submodular func-
tions by employing a linear combination of them
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(Theorem 1). Secondly, we can design monotone
submodular functions with flexible functions tai-
lored for machine translation (Theorem 2). Thirdly,
this objective can be efficiently optimized through
the greedy algorithm with a stable worst-case guar-
antee (Theorem 3). Despite the situation that
some factors such as similarity and diversity are
hard to reconcile, the scheme of monotone sub-
modular functions can accommodate these factors
with the mathematical guarantee.

3. Proposed Methodology

Given an input source sentence denoted as xtest

and a translation database represented by V , the
objective of in-context learning is to search a sub-
set S ⊂ V (|S| ≪ |V |) that enhances translation
quality. Given the expansive nature of the search
space, it is impractical to exhaustively explore all
conceivable combinations. However, we can em-
ploy monotone submodular functions to evaluate
the quality of the candidate set and apply a greedy
algorithm to progressively insert elements into the
set. In the following section, we will introduce a se-
ries of functions based on distinct criteria for ma-
chine translation.

3.1. Surface Coverage Submodular
Functions

Prior research suggests that selecting contextual
examples based on their semantic similarity to the
test sample in the embedding space is an effec-
tive strategy(Liu et al., 2021). Nonetheless, while
this global sentence representation holds its value,
it falls short in capturing the subtler nuances of
alignment at the lexical or phrase level. For in-
stance, the sentences ”Nominations flooded in for
the prestigious award, but only a few were re-
ceived.” and ”She received multiple nominations
for her outstanding performance in the film.” do not
possess identical meanings. However, the shared
terms ”received/nominations” can still offer align-
ment information, especially when the target of the
extracted example is likely to encompass partial
translations of the source input. We argue such
surface coverages at the lexical or phrase level are
equally crucial for enhancing the performance of
LLMs in translation tasks. Hence, we propose a
pair of monotone submodular functions that take
surface coverage into account.

Source-specific Coverage

A recall-based n-gram overlap score was intro-
duced by (Agrawal et al., 2022) to quantify the de-
gree of coverage between the example and the
test input xtest. We extends the application of this

scoring function to a monotone submodular func-
tion. Given a set S and its source part Sx, we de-
fine the coverage score of S on the source side
using the following equation:

RSRC(S) =

∑
e∈xtest

min(Ce(Sx), Ce(xtest))∑
e∈xtest

Ce(xtest)
. (3)

Ce(·) represents the frequency of occurrence of
an n-gram e within a given set, evidently function-
ing as a monotone submodular function for each e.
Given that min(x, a) is a non-decreasing concave
function of x and Ce(S) is a monotone submodular
function, we can readily deduce that RSRC(S) is a
monotone submodular function(Theorem 2).

Intuitively, this function encourages selecting ex-
amples covering specific n-gram e in xtest, but the
advantage of such selection diminishes as soon as
its frequency in Sx matches that in xtest. In other
words, when RSRC(S ∪ v)−RSRC(S) equals zero,
it signifies that the value has reached a point where
further inclusion of such sentences does not yield
additional benefit.

Target-specific Coverage

In addition to ensuring good coverage from the
source side, we also let the example set S to en-
compass as many partial translations of the source
input xtest as feasible. Specifically, we construct
the pseudo translation of xtest by looking up the
ground truth dictionary or the artificial dictionary
generated by MUSE(Lample et al., 2017). We
denote the result of translating word-by-word as
T (xtest). The coverage score of S on the target
side can be defined as follows:

RTGT (S) =

∑
e∈T (xtest)

min(Ce(Sy), Ce(T (xtest)))∑
e∈T (xtest)

Ce(T (xtest))
,

(4)
where Sy = {yi}ni=1 denotes the target part of S.
In cases where words have multiple translations,
we select all possible word translations. As the
process of word-by-word translation does not pre-
serve sentence structures and grammatical rules,
the resultant translation T (xtest) is a collection of
words devoid of any specific order. Therefore,
our practical computation is restricted to the occur-
rence of 1-gram exclusively when calculating the
target-specific coverage. Moreover, it is obvious
that RTGT is a monotone submodular function as
RSRC . Figure 1 shows the detailed calculation of
RTGT .

3.2. Diversity Submodular Functions
Diversity constitutes another pivotal factor
in the process of example selection. Ye
et al. (2022); Li and Qiu (2023) proposed a
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Input :  He recently lost against Raonic in the Brisbane Open. xtest

Translation :  Er kürzlich  verloren gegen Raonic bei den Brisbane Open.T(xtest)

:  I recently lost my key when I ran into a tree. 
:  Ich habe kürzlich meinen Schlüssel verloren, als ich 

gegen einen Baum gelaufen bin.

vsrc
vtgt

Count
kürzlich 1
gegen 1

verloren 1

word to word translation

Count
kürzlich 1
gegen 1

verloren 1
Subset  S

Rtgt(S ∪ {v})

Candidate :v

Add  to  v S N-gram in  Stgt N-gram in  T(xtest)

…… ……

Figure 1: The Calculation Procedure for Rtgt. It begins by translating the input sentence xtest word-by-
word. Then the gain of inserting v into to the candidate set S is computed. The calculation for Rsrc is
identical to that of Rtgt, with the exception of the word translation.

P1

P2

P3

Figure 2: The Illustration of Diversity in Submodu-
lar Functions: The candidates should be as closely
related to the input (the star) as possible while also
belonging to different classes to the greatest extent
possible.

maximal-marginal-relevance(MMR)(Carbonell
and Goldstein-Stewart, 1998) method for example
selection. It chooses instances that are relevant to
the query and penalizes the redundant information
in the mean time to foster collaborative outcomes.
The greedy algorithm is employed to select the
subsequent example v /∈ S based on the following
score with the highest value:

fMRR(v) = λsim(x, v)−(1−λ)max
q∈S

sim(v, q), (5)

where x denotes the query, S is the current set and
sim is the sentence-level similarity function. More-
over, we can create a function F (S) that fulfills the
condition F (S ∪ {v}) − F (S) = fMRR(v), and this
function also exhibits submodularity. However, it is
important to note that F (S) is not monotone since
the value of fMRR(v) is not always postive and em-
ploying a greedy search would not ensures worst-
case guarantees.

Inspired by (Lin and Bilmes, 2011), we use the
diversity reward instead of a redundancy penalty.
We cluster the source sentences within the set V
and divide them into M distinct clusters, denoted

Algorithm 1 In-context Example Selection for Ma-
chine Translation based on Monotone Submodular
Functions
Input: source sentence xtest, candidate set
V = {xi, yi}Ni=1, number of in-context examples
K.
Output: selected set S = {xi, yi}K1

1: Let S ← empty list.
2: while |S| < K do
3: for v ∈ V \ S do
4: Score[v]← F(S

∪
{v})

5: end for
6: S.append(argmaxv(Score))

7: end while
8: return S

as {Pi}Mi=1. Subsequently, we calculate the diver-
sity score using the following equation:

DSRC(S) =

M∑
i=1

log(1+
∑

v∈Sx∩Pi

sim(v, xtest)). (6)

DSRC(S) promotes diversity by offering greater val-
ues when opting for a sentence from a cluster that
has not had any of its sentence selected. For ex-
ample, the reward score is larger if two selected
sentences are from two different clusters, since
log(1 + a) + log(1 + b) > log(1 + a+ b), where a, b
represent the non-negative similarity score respec-
tively. Within every non-decreasing concave log-
arithmic function, there exists a modular function
defined by non-negative weights to ensure mono-
tonicity. Applying the logarithmic function to such a
monotone submodular function results in another
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submodular function and summing up these trans-
formed functions maintains their submodularity for
DSRC . Figure 2 illustrates our main idea.
In addition to the source diversity, we also consider
the diversity of the target side:

DTGT (S) =

M∑
i=1

log(1 +
∑

v∈Sy∩Pi

sim(v, T (xtest)).

(7)

3.3. Methodology Overview
To summarize, we can formulate the quality of the
chosen set S as follows:

F(S) = λ1(RSRC(S) + RTGT (S))+

λ2(DSRC(S) + DTGT (S)),
(8)

where λ1, λ2 > 0 are trade-off coefficients. Then
we use the standard greedy search as shown in
Algorithm 1, which offers performance guarantees
since F(S) is still monotone submodular(Theorem
1 and 3). Note that the training corpora for
machine translation are usually quite large. To
streamline the process, we initially retrieve the top
50 sentences using BM25, followed by selecting
sentences from the top 50 sentences to insert into
S using our proposed approach. The appendix
contains an analysis of the impact of different val-
ues of N on the results.

Direction Datastore #Pairs

Low-
resource

bn↔en Samanantar 8.6
gu↔en Samanantar 3.1
hi↔en Samanantar 10.1

High-
resource

fr↔en Europarl 1.9
es↔en Europarl 1.9

Domain-
adaptation

de→en IT 0.2
de→en Medical 0.2
de→en Law 0.4

Table 2: The datasets employed for retrieving in-
context examples, along with the respective num-
ber of sentence pairs per language (in millions).

4. EXPERIMENTS

4.1. Settings
Dataset. We evaluate the performance of our
proposed framework in three scenarios: 1) Low-
resource translation, where the model faces the
challenge of translating text to/from a language
with a restricted amount of training data. 2) High-
resource translation, where the model has exhib-
ited strong translation capabilities due to exten-
sive training on these languages. 3) Domain

adaptation, where the model translates domain-
specific sentences by utilizing in-domain examples.
For the low-resource and high-resource translation
tasks, we present the results on the devtest set
of FLORES-101 (Goyal et al., 2022). For the do-
main adaptation task, we utilize the multi-domain
dataset(Koehn and Knowles, 2017) and evaluate
on the test sets of IT, Medical, and Law domains
in our experiments. Table 2 presents detailed infor-
mation regarding the specific datastore for retriev-
ing in-context examples.

Models and Metrics. We mainly evaluate
the renowned LLMs BLOOMZ-7.1B(Muennighoff
et al., 2023) and LLAMA2-13B(Touvron et al.,
2023). Following previous work(Kumar et al.,
2023; Agrawal et al., 2022), the primary evaluation
metric employed in our experiments is COMET(Rei
et al., 2020), which is calculated using the wmt20-
comet-da model, due to its better consistency with
human evaluations. For the low-resource transla-
tion task, we conduct experiment with BLOOMZ-
7.1B due to its better generalization ability across
low-resource languages and its broader coverage
of languages. For the high-resource translation
task, we experiment with both BLOOMZ-7.1B and
LLAMA2-13B. For the domain adaptation task, we
observe that BLOOMZ-7.1B fails to translate Ger-
man, so we experiment with LLAMA2-13B. We
have published our code1.

Gerneration Configs. In in-context example
selection, we select four sentence pairs from the
datastore as examples, and arrange them in de-
scending order. The generated outputs from the
LLMs are truncated to twice the length of the
source text, and the maximum output length is lim-
ited to 250 tokens. To calculate semantic simi-
larity and perform clustering, we utilize the stsb-
xlm-r-multilingual2 model to obtain sentence em-
beddings. We employ the K-means algorithm for
clustering and set the number of clusters to be 10.
During the decoding process, we employ a greedy
search with a batch size of 5. In all of our exper-
iments, we fix both λ1 and λ2 in Equation 8 to be
one.

Bilingual Dictionary. We primarily employ the
bilingual dictionary generated by MUSE to trans-
late the source sentence word by word. For lan-
guage pairs not found in MUSE, we derive the
top-n dictionary from the parallel corpora using the
fastalign3 tool.

1https://github.com/cocaer/submodular-llm-mt
2https://huggingface.co/sentence-transformers/stsb-

xlm-r-multilingual
3https://github.com/clab/fast_align
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en→bn bn→en en→gu gu→en en→hi hi→en average

w/o ICL 44.99 21.02 61.84 29.39 46.18 28.46 38.64

Random 62.22 36.41 43.53 46.20 59.20 47.23 49.11

BM25 64.40 39.16 43.01 47.18 61.23 51.06 51.01
TopK 68.02 42.13 50.56 50.23 62.24 51.76 54.15
MRR 64.53 44.67 51.48 48.22 64.70 54.69 54.71
CTQ - 42.99 - 41.77 - 50.03 -

OurMethods

Rsrc(S) 66.81 41.77 55.48 45.74 60.46 47.13 52.89
Rtgt(S) 72.26 43.80 57.14 49.50 67.30 48.87 56.47
Dsrc(S) 69.57 46.95 56.88 51.16 65.80 52.46 57.13
Dtgt(S) 66.21 48.26 53.22 51.88 64.82 53.26 56.27

F(S) 73.31 48.64 58.43 53.07 67.30 53.77 59.08

Table 3: COMET scores on the low-resource translation task based on using BLOOMZ-7.1B.

BLOOMZ-7.1B LLAMA2-13B

en→fr fr→en en→es es→en avg. en→fr fr→en en→es es→en avg.

w/o ICL 74.44 57.87 67.93 47.05 64.32 56.23 78.31 50.07 69.54 63.53

Random 81.87 76.19 69.21 66.57 73.46 72.16 78.83 66.82 71.10 72.22

BM25 82.69 75.80 67.84 66.49 73.20 73.91 79.47 67.77 71.25 73.10
TopK 82.95 76.14 66.64 70.50 74.05 74.22 78.86 67.61 71.55 73.06
MRR 80.38 75.69 68.01 67.46 72.88 74.05 78.87 67.13 71.61 72.91

F(S) 83.00 78.63 68.97 69.38 75.00 75.25 79.42 68.01 71.66 73.60

Table 4: COMET scores on the high-resource translation task based on using BLOOMZ-7.1B and
LLAMA2-13B.

IT Law Medical avg.

w/o ICL 31.18 44.38 43.29 39.62

Random 21.63 46.89 40.25 41.01

BM25 40.46 56.97 47.56 48.33
TopK 38.67 58.34 50.04 49.02
MRR 40.64 58.26 50.49 49.80

F(S) 41.54 58.38 51.65 50.52

Table 5: COMET scores on the domain adaptation
task based on using LLAMA2-13B.

4.2. Baseline Methods
We compare our methods with baselines as fol-
lows:

• Random Selection. We randomly select ex-
amples from the datastore and report the av-
erage scores(number of trials = 3).

• BM25(Agrawal et al., 2022). This method

retrieves K examples that have source sen-
tences most similar to the input source sen-
tence. They employ the BM25 retriever, which
emphasizes the overlap of n-grams.

• TopK(Liu et al., 2021). This method aims to
retrieve examples that are semantically sim-
ilar to the input source sentence. We use
the stsb-xlm-r-multilingual model to obtain the
sentence embedding and measure the simi-
larity using cosine distance.

• MMR.Ye et al. (2022) proposed a maximal-
marginal relevance(MMR) based selection
strategy to choose diverse examples. Al-
though this method was not originally in-
tended for machine translation, we have found
that it still can generate competitive results.

• CTQ(Kumar et al., 2023). It learns a regres-
sion function that selects examples based on
multiple features to maximize the translation
quality.
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4.3. Results on Low-resource
Translation

The evaluation results of different methods on
the low-resource translation task are presented
in Table 3. Based on the results, we can con-
clude that: Firstly, the quality of in-context exam-
ples plays a pivotal role in the context of trans-
lation performance. Randomly selecting exam-
ples significantly lags behind those sophisticated
mechanisms. Notably, we observe that employing
semantic-based selection methods(TopK), yields
competitive results. The results are further im-
proved by using MRR which takes into account the
diversity among examples. Secondly, by employ-
ing various monotone submodular functions, we
can achieve further enhancements in translation
quality. While both Rsrc(S) and BM25 highlight the
importance of the overlapping n-grams, Rsrc yields
superior results due to its consideration of n-gram
saturation within the candidate set S. The perfor-
mance of Rtgt surpasses that of Rsrc, suggesting
that the target coverage may hold greater signifi-
cance than the source coverage in machine trans-
lation. Both Dsrc and Dtgt consistently yield highly
competitive results, underscoring once more the
paramount significance of diversity. Dsrc performs
superior to MRR, indicating that our diversity sub-
modular functions are more efficient than the di-
versity score used in MRR. Finally, combining all
monotone submodular functions can further en-
hances the translation quality, outperforming the
strong baseline TopK and MRR by 4.93 and 4.37
COMET scores.

4.4. Results on High-resource
Translation

Table 4 displays the results of the two LLMs on the
high-resource translation task. The results reveal
that despite LLAMA2-13B having a larger number
of model parameters, its translation performance
is not superior to that of BLOOMZ-7.1B when trans-
lating from English into other languages. We con-
tend that the translation ability of LLMs are in-
fluenced not only by their model size but also
by the distribution of languages in their training
data. It is noteworthy that a substantial major-
ity of the training data for LLAMA2-13B consists
of English content, accounting for nearly 89.70%
of the dataset. This bias towards English data
explains its proficiency in generating English sen-
tences. We also notice that randomly selected ex-
amples produce translation performance compara-
ble to that achieved by BM25 and TopK methods.
Our argument is that LLMs have excelled in trans-
lation for these high-resource languages. Provid-
ing informative examples for the translation task
becomes more challenging. Even in such chal-

lenging situation, our approach exhibits significant
improvements over the robust baselines, achiev-
ing 1.52 COMET score improvement on BLOOMZ-
7.1B and 0.74 COMET score improvement on
LLAMA2-13B.

4.5. Results on Domain Adaptation Task
Table 5 shows the results of the domain adapta-
tion task based on using LLAMA2-13B. We notice
that using randomly selected examples leads to no-
ticeably lower results in comparison to BM25 and
TopK. This indicates that LLMs require domain-
specific knowledge to excel in this task. When
prompts are consistent with the domain, LLMs can
adapt more effectively on-the-fly. An effective in-
domain demonstration can offer valuable informa-
tion and instruct the model to translate domain-
specific terms or expressions well. Our method
consistently outperforms the strong baseline MRR
by an average of 0.7 in COMET scores. We
believe that this fact holds practical value since
only the specific examples from the in-domain are
needed for deploying the cross-domain translation
service.

5. Analysis

5.1. Distribution of Selected Examples
When doing in-context learning for machine trans-
lation, the selection process consists of two stages.
First, we retrieve a small set of examples(about 50-
100) from the large datastore using the BM25 al-
gorithm. Then we re-rank this set using methods
such as TopK, MRR, or our approach. So it is valu-
able to understand the distribution of the selected
examples across these different methods.

In Figure 3(a), TopK algorithm tends to favor the
selection of examples with higher BM25 scores.
This phenomenon is expected, as examples with
the highest number of overlapping n-grams tend
to have similar meanings. Due to the inclusion of
diversity in MRR and our approach, we observe
a smoother selection of samples. Even those
ranked beyond 15 still have the potential to be se-
lected.

Although the diversity of samples needs to be
taken into consideration, the similarities between
examples and the source input should not be ex-
cessively compromised. Figure 3(b) illustrates that
the examples chosen by MRR exhibit the lowest
similarities between examples and the source in-
put. This suggests that MRR encounters difficulty
in maintaining a harmonious equilibrium between
diversity and relevance, despite the introduction
of a balancing factor. Our approach achieves
average similarity scores that fall between those
of TopK and MMR, with a notably high lower
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Figure 3: The x-axis in the figure represents the sample ranking sorted by BM25 score. The y-axis in
figure (a) indicates the frequency with which the sample in that BM25 ranking was selected. In figure (b),
the y-axis represents the average similarity score between the source input and the selected samples at
their respective BM25 rankings.

bound (>0.65). This indicates the superiority of our
method, supported by the worst-case performance
guarantee.

Informativeness

Random 6.713

BM25 7.186
TopK 7.173
MRR 7.191

Ours 7.222

Table 6: The example informativeness on multi-
domain datatsets.

5.2. Informativeness from Selected
Examples

A good example should be informative for LLMs
to predict. Li and Qiu (2023) proposed InfoS-
core to measure the individual informativeness of
one example. We adapt this metric for machine
translation to assess the effectiveness of utilizing
a prompt consisting of multiple examples in gener-
ating accurate translations. The example informa-
tiveness metric is calculated as follows:

I(Prompt, xtest) = log(P(ŷ|Prompt⊕ xtest))

− log(P(ŷ|xtest)),

where ŷ denotes the correct translation. Table
6 presents the results on the domain adaptation
task. It shows that the example informativeness
score exhibits a strong correlation with translation
performance, as presented in Table 5. Specifi-
cally, when the prompt provides a greater amount
of information, there is a notable increase in the
COMET score. Furthermore, our approach outper-
forms other methods in terms of informativeness,

implying that the selected examples hold higher
value.

6. Related Work

6.1. Submodular Functions for NLP
Submodular functions have extensive applications
in various natural language processing (NLP)
tasks. Lin and Bilmes (2011) leveraged the cov-
erage function and diversity reward function in the
context of statistical extractive document summa-
rization. In a different vein, Kirchhoff and Bilmes
(2014) framed the challenge of data selection
for statistical machine translation as a submod-
ular programming problem, introducing a class
of feature-based functions. To address the bal-
anced clustering problem, Kawahara et al. (2011)
sought to regularize cluster sizes using submod-
ular functions. Notably, the objective function for
balanced clustering is characterized as a fractional
submodular function. In contrast, our method is
the first work that utilizes the submodular functions
for LLMs-based applications.

6.2. In-context Learning for Machine
Translation

The utilization of LLMs for machine translation has
garnered increasing interest in recent times, as
it effectively addresses the issue of limited paral-
lel data availability. Lin et al. (2021) conducted
an evaluation of GPT-3 and XGLM-7.5B across
182 translation directions, while Bang et al. (2023)
assessed ChatGPT in 12 distinct translation di-
rections. One of the most recent studies, con-
ducted by Zhu et al. (2023), presents comprehen-
sive experiments involving several widely-used
LLMs, including XGLM, BLOOMZ, OPT, and Chat-
GPT, across 202 different directions and 102 lan-
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guages. All of these studies have demonstrated
the significant potential of LLMs in the field of ma-
chine translation. Zhu et al. (2023) claimed that
in comparison to semantically-selected examples,
randomly-chosen examples yield similar transla-
tion performance. However, they arrived at this
conclusion under the assumption that they utilized
a high-quality development set as their candidate
pool. Both Agrawal et al. (2022) and Kumar et al.
(2023) discovered that randomly selecting exam-
ples yields unsatisfactory results when working
with larger datasets. This discovery aligns with
our own findings, highlighting the importance of de-
signing an improved in-context learning recipe for
machine translation.

7. Conclusion

In this paper, we propose a novel example se-
lection approach for LLMs-based machine transla-
tion. The approach leverages monotone submod-
ular function maximization to simultaneously con-
sider multiple translational factors for selecting ex-
amples. The factors include similarity between ex-
amples and inputs on either source side or target
side, as well as the diversity within examples. Ex-
periments on various translation tasks show that
our submodular-based approach treats the multi-
ple factors in harmony, achieving significant perfor-
mance improvements over the random selection
and robust single-factor baselines. Future work
may explore our approach to other NLP tasks and
further refine the selection criteria to optimize the
performance of LLMs across diverse applications.
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Appendix

A. Regarding the size of examples
selected from BM25

We experimented with various values of top N,
specifically N = {10, 20, 30, 40, 50, 100, 200}, using
the BM25 model in Table A1. Our observations
indicate that as N increases, the results exhibit a
gradual improvement, saturating when N is bigger
than 50. So we choose top 50 to balance the effi-
ciency and performance in the experiments.

Figure A1: Results with different size of examples
selected from BM25
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B. Computational Costs

The selection speeds for TopK, MRR, and our
method are 10.45, 8.84, and 7.52 sentences per
second, respectively on a single A100 GPU. By
exploiting parallelism in implementation, we can
enhance the overall acceleration, as these factors
operate independently. When our method exclu-
sively focuses on surface coverage, the speed in-
creases to 17.26 sentences per second. Consid-
ering that TopK and MRR have been seamlessly
incorporated into Langchain as standard selection
methods, we assert that our method is already
practical for real-world applications.

C. Case Study

Table C1 displays selected examples for the trans-
lation direction en → fr. It is evident that while
there are a few identical sentences, the majority
exhibit distinctions. This variance indicates that dif-
ferent methods consider a range of factors, yield-
ing diverse results.
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Source
Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair
of the clinical and scientific division of the Canadian Diabetes Association cautioned that
the research is still in its early days.

BM25

1: We also join Mr Andrews in sending our condolences to those who are bereaved and suffering as a
consequence of the appalling and tragic Swissair disaster just 10 days ago off the coast of Nova Scotia.
2: I salute the President of the Champalimaud Foundation, Dr Leonor Beleza, who has established
stringent criteria for marrying excellence in scientific research with clinical practice.
3: Let me tell you that a few days ago, Professor Huber of Vienna University presented his most
recent research achievements and findings.
4: Strengthening the role of clinical and scientific research is vital in the fight against tuberculosis.

TopK

1: Because of both its importance and its interest, research into diabetes is set to continue as the
subject of sustained attention in the fifth framework programme of research and technological
development which we are currently in the process of getting under way.
2: Through its framework research programmes the Commission has supported diabetes research
in the past.
3: I should add that I must declare an interest, as my husband is the Chairman of the UK arm of
the Juvenile Diabetes Research Foundation, which supports research on type 1 diabetes.
4: I am a lecturer at Granada University and I know that for more than ten years the Granada
Faculty of Medicine has had an excellent research team working on these topics and on certain
products that are not mentioned in the resolution, products that are
to be used in orthodontic treatments.

MRR

1: Because of both its importance and its interest, research into diabetes is set to continue as the
subject of sustained attention in the fifth framework programme of research and technological
development which we are currently in the process of getting under way.
2: The moratorium introduced in the North Atlantic twelve years ago has not, I regret to say, had the
expected effect. The cessation of fishing has had no effect upon the state of cod stocks off
Newfoundland and Nova Scotia and in the Gulf of Saint Lawrence.
3: One was conducted under the leadership of Professor van Ark of Groningen University.
4: Despite evidence, based on research by Aberdeen University, that nandrolene could be produced
by a combination of dietary supplements and vigorous training, Mark Richardson is still waiting,
eight days before the Olympics, in the Olympic village not knowing whether
he is going to compete or not.

Our Method

1: I am a lecturer at Granada University and I know that for more than ten years the Granada Faculty of
Medicine has had an excellent research team working on these topics and on certain products that
are not mentioned in the resolution, products that are to be used in orthodontic treatments.
2: Because of both its importance and its interest, research into diabetes is set to continue as
the subject of sustained attention in the fifth framework programme of research and technological
development which we are currently in the process of getting under way.
3: I have invited Professor Weissmann to chair an advisory group of scientific experts, whose
members are specialists in BSE and Creutzfeldt-Jacob disease.
4: Despite evidence, based on research by Aberdeen University, that nandrolene could be
produced by a combination of dietary supplements and vigorous training, Mark Richardson is
still waiting, eight days before the Olympics, in the Olympic village not knowing whether
he is going to compete or not.

Source Fourteen schools in Hawaii located on or near coastlines were closed all of Wednesday
despite the warnings being lifted.

BM25

1: I am hopeful that with a little goodwill on all sides the ban can be lifted in the very
near future.
2: Schools are being closed, teachers are losing their jobs, researchers are finding themselves out on
the street and public investments are being cut or left to stagnate.
3: Those articles were drawn up and adopted with culpable negligence despite the warnings I
gave in my counter-report on the Treaty of Nice.
4: Only in the particular circumstances of the early 19th century were all restrictions on
fishing lifted.�

TopK

1: Fourteen human lives were extinguished and other persons were injured on their way to their holidays.
2: The tunnel was closed last Wednesday.
3: In the space of one and a half years, four schools, with a total of 45 classes, were closed,
and a further 107 classes are threatened with closure.
4: Mari language schools are being closed down, and education in the Mari language is only
allowed in the primary levels of elementary education.

MRR

1: Fourteen human lives were extinguished and other persons were injured on their way to their holidays.
2: Only in the particular circumstances of the early 19th century were all restrictions on fishing lifted.
3: The tunnel was closed last Wednesday.
4: Despite repeated warnings from the international community, Iran continues its efforts in the
area of uranium enrichment.�COMET:92.43�

Our Method

1: Mari language schools are being closed down, and education in the Mari language
is only allowed in the primary levels of elementary education.
2: Fourteen human lives were extinguished and other persons were injured on their way to their holidays.
3: Under the pretext of ’optimisation of the school network’, national minority schools,
including Polish schools, are to be closed in small towns, and only Lithuanian schools are to remain there.
4: Mrs Schreyer, this transfer took place despite explicit warnings from this House.

Table C1: Case study
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