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Abstract
In few-shot text classification, self-training is a popular tool in semi-supervised learning (SSL). It relies on
pseudo-labels to expand data, which has demonstrated success. However, these pseudo-labels contain potential
noise and provoke a risk of underfitting the decision boundary. While the pseudo-labeled data can indeed be
noisy, fully acquiring this flawed data can result in the accumulation of further noise and eventually impacting the
model performance. Consequently, self-training presents a challenge: mitigating the accumulation of noise in
the pseudo-labels. Confronting this challenge, we introduce superficial learning, inspired by pedagogy’s focus on
essential knowledge. Superficial learning in pedagogy is a learning scheme that only learns the material ‘at some
extent’, not fully understanding the material. This approach is usually avoided in education but counter-intuitively
in our context, we employ superficial learning to acquire only the necessary context from noisy data, effectively
avoiding the noise. This concept serves as the foundation for SuperST, our self-training framework. SuperST applies
superficial learning to the noisy data and fine-tuning to the less noisy data, creating an efficient learning cycle that
prevents overfitting to the noise and spans the decision boundary effectively. Notably, SuperST improves the classifier
accuracy for few-shot text classification by 18.5% at most and 8.0% in average, compared with the state-of-the-art
SSL baselines. We substantiate our claim through empirical experiments and decision boundary analysis.
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1. Introduction

Self-training, a widely used semi-supervised-
learning (SSL) technique, follows a two-step pro-
cess: it initially trains a classifier using labeled
data, then iteratively pseudo-labels unlabeled data
based on the classifier’s confidence scores and
retrains the classifier with these pseudo-labeled
samples. In the context of few-shot text classifica-
tion, where labeled data is scarce, self-training
has shown remarkable success (Van Engelen
and Hoos, 2020; Chen et al., 2021; Cui et al.,
2022). However, the approach has a fundamental
challenge—it can accumulate errors during train-
ing due to the presence of noisy pseudo-labeled
data (Rizve et al., 2021; Liao et al., 2022). The
noise in pseudo-labeled data has a cascading
effect on the classifier’s performance, potentially
leading the the generation of more noisy pseudo-
labels. Ultimately, this cycle can degrade the over-
all performance of the self-training process.

Delving further into this issue, the primary con-
cern is closely tied to the decision boundary,
which delineates the boundaries between differ-
ent classes (Yang et al., 2023). While it is relatively
straightforward to classify data points well within
the interior of each class’s decision area, data lo-
cated in proximity to the decision boundary poses
a significant challenge for a classifier. The pres-
ence of noise in the pseudo-labels triggers this
challenge, complicating the classifier to predict the
data into the correct decision boundary. Further it-

*The first two authors contributed equally to this work.

erative process of the self-training accumulates the
complication, impacting the model performance.

Simultaneously, we confront the need to incor-
porate these pseudo-labeled data to improve the
model, particularly when only a limited amount of
labeled data is at our disposal. It becomes evident
that the current self-training approach has a funda-
mental flaw, characterized by the use of the same
learning strategy for both the pristine labeled data,
often referred as golden, and the pseudo-labeled
data, which carry the potential noise. We advo-
cate for the adoption of a distinct and appropriate
learning strategy that specifically addresses the
challenges associated with noisy data.

We introduce a specialized learning strategy
termed superficial learning (Frăsineanu, 2013; Mar-
ton and Säljö, 1976), inspired by principles from
pedagogy. Pedagogy typically emphasizes attain-
ing a deep and comprehensive understanding of
the subject matter. In contrast, superficial learning
involves a more cursory approach, prioritizing es-
sential knowledge over exhaustive comprehension.
This approach is often discouraged in educational
contexts, where instructors aim to foster a deeper
understanding of the subject matter.

In our specific context, the data contains noise
and potentially wrong information. Acquiring this
flawed material can lead to the assimilation of er-
roneous knowledge, a scenario to avoid. However,
due to the limited availability of labeled data, we are
compelled to make use of this potentially flawed
information. Instead of attempting to grasp the
full context of this noisy data, we propose a strat-
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Figure 1: Demonstration of the self-training and the SuperST. While the self-training algorithm accumulates
the noise, degrading the classifier in an iterative manner, SuperST confronts this problem by superficial
learning. We illustrate the detailed procedure of superficial learning and fine-tuning in Figure 2.

egy that involves obtaining a partial understanding,
capturing the necessary context ‘to some degree’.
In this way, we utilize superficial learning to train
on the noisy data, avoiding a full comprehension of
the incorrect information and concentrating on the
required knowledge. For the pristine labeled data,
we employ fine-tuning to ensure a comprehensive
understanding of the correct information.

Our approach strikes a balance between essen-
tial knowledge acquisition and deep comprehen-
sion, effectively handling the nuances of noisy and
golden data. We adopt superficial learning by ad-
justing the low learning rate and small epoch num-
ber to learn the pseudo-labeled data effectively,
addressing noise and bridging the correct deci-
sion boundary. In summary, we propose a novel
framework named SuperST1, which stands for Su-
perficial Self-Training. SuperST leverages superfi-
cial learning for the noisy data and fine-tuning for
the golden data. It is a straightforward yet highly ef-
fective approach that adjusts the appropriate learn-
ing strategy on the dependence of the noise level
in the data.

SuperST’s performance evaluation encom-
passes four widely used benchmark datasets, en-
abling comparisons with the previous SSL ap-
proaches. We conduct empirical analyses to as-
sess the effectiveness of superficial learning. The
experimental results demonstrate the superior per-
formance of our approach over previous state-of-
the-art methods on each dataset. Our primary
contributions are as follows:

• We demonstrate that superficial learning ef-
fectively helps the model to predict the right
decision boundary of noisy data through ex-
periments and visualization.

• SuperST is a simple and robust self-training
framework that requires no external resources

1https://github.com/HiitLee/SuperST

and improves accuracy to a maximum extent
of 26% from the initially trained classifier.

• We demonstrate that SuperST achieves the
state-of-the-art performance for few-shot text
classification spreading the gap of accuracy by
at most 18.5% and 8% in average compared
with the previous SSL baselines.

2. Related Work

Including self-training, SSL is widely used to im-
prove the performance of models in various NLP
tasks. It is especially effective in few-shot learn-
ing tasks as it utilizes both limited labeled data
and plentiful unlabeled data in training. In this sec-
tion, we present some of the successful SSL ap-
proaches for the few-shot text classification: boot-
strapping learning, adversarial learning and con-
sistency learning.

2.1. Bootstrapping Learning

Bootstrapping is a widely-used method that trains
an initial classifier with labeled data and exploits
the trained classifier to pseudo-label the unlabeled
data and re-train a new classifier. Self-training is a
traditional learning mechanism that uses high con-
fidence prediction of the classifier to bootstrap the
classifier (Yarowsky, 1995). One major drawback
of bootstrapping is that it depends on the perfor-
mance of the initially trained classifier. If the initially
trained classifier has very low performance, then
the new training sets become unreliable, and it
can lead to accumulated classification errors along
the training process. Several attempts have been
made to alleviate the problem (Blum and Mitchell,
1998; Xiaojin, 2008; Søgaard, 2010; Jo and Cinarel,
2019). However, since these methods still depend
on the performance of the initially trained classifier,
it can easily still overfit to the limited labeled data.

https://github.com/HiitLee/SuperST
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Figure 2: Our proposed method is SuperST which employs lexical-based pseudo-labeling and superficial
learning to bootstrap the self-training. We set 1e-6 learning rate and 1 epoch for superficial learning and
1e-5 learning rate and 5 epochs for fine-tuning. We set 0.9 as the threshold to verify the high confidence.

The usage of lexicon and rules also shows im-
provements in few-shot learning. Lee et al. (2021)
propose SALNet that utilizes both a lexicon for
each label and the prediction confidence score of
the classifier to obtain correctly-labeled data in self-
training. Hahn et al. (2021) uses rules of grammar
in the pseudo-label procedure to retrieve more ro-
bust pseudo-labeles. They extend their studies to
data augmentation and propose GDA that lever-
ages slot information for context-aware augmenta-
tion (Hahn et al., 2023). Kim et al. (2022) present
ALP that generates augmented samples with di-
verse syntactic structures with plausible grammar.
They bootstrap the classifier utilizing the classifier’s
confidence score trained with augmented data.
These methods demonstrate their effectiveness
in the few-shot text classification. However, these
methods still are vulnerable to overfitting problems,
since the performance highly relies on limited data.

2.2. Adversarial Learning

Adversarial training is a regularization technique
that enhances model robustness against input per-
turbations. Recently, adversarial learning has been
proposed for SSL. Miyato et al. (2016) applies ad-
versarial training to adapt perturbations to the word
embeddings rather than to the original input. The
adversarial training improves not only classifica-
tion performance but also the quality of word em-
beddings. Gururangan et al. (2019) propose a
lightweight pretraining framework that combines
a variational autoencoder to document modeling.
They optimize the initial parameters of the classifier

by pretraining a unigram document model as a vari-
ational autoencoder on unlabeled data. They offer
a competitive lightweight alternative for pretraining
from unlabeled data in the low-resource setting.
However, the performances of these methods are
low when labeled data is extremely limited.

2.3. Consistency Learning

Consistency learning adds noise to unlabeled data
and utilizes the distribution of classifier prediction
as labels to train the classifier. Data augmenta-
tion is a technique that increases the amount of
labeled data without resorting to additional labeling
costs. Easy Data Augmentation (EDA) (2019) is
the simplest method that utilizes synonym replace-
ment, random insertion, swap and deletions for
text data augmentation. Recent SSL approaches
utilize consistency training on a large number of
unlabeled data and augmented data to constrain
model predictions to be invariant to noise. Unsu-
pervised Data Augmentation (UDA) (2020a) em-
ploys data augmentation to generate diverse and
realistic noise and enforces the model to be con-
sistent with respect to these noises. Chen et al.
(2020) propose Mixtext that creates a large num-
ber of augmented training samples by interpolating
text in hidden space. They exploit several SSL
techniques to further utilize unlabeled data includ-
ing self target-prediction entropy minimization and
consistency regularization after back translations.
However, these methods rely on the performance
of data augmentation methods.
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u ... i ... how god awful ... crappy ... a weapon is hilarious ... this movie ... crappiness.
k in u positive:{hilarious} negative:{awful crappy crappiness}
l occurrence positive: 1 negative: 3
class c of u negative

Figure 3: An illustration of the pseudo-labeling process of unlabeled data based on keywords.

3. Proposed Methods

SuperST is a self-training framework that combines
both superficial learning and fine-tuning strategies
based on the level of noise in the pseudo-labeled
data. on the dependence of noise that the pseudo-
labeled data contains. We judge the noise of
pseudo-labels by the classifier’s confidence score.
Using a pre-defined threshold score, we divide
the pseudo-labeled data into two groups: those
with low confidence scores below the threshold
and those with high confidence scores above the
threshold. We define noisy data as pseudo-labeled
data with a low confidence score and golden data
as labeled data and pseudo-labeled data with a
high confidence score. The framework and learn-
ing processes of SuperST are represented in Fig-
ure 2 and Algorithm 1, respectively.

3.1. Initialization of SuperST

We produce the initial pseudo-labels using the key-
word extraction algorithm. The amount of initial
labeled data is very limited and if we use a classi-
fier trained with this initial few-shot data for pseudo-
labeling, pseudo-labels are likely to overfit the initial
data. In order to mitigate this dependency on the
classifier, we use the following keyword extraction
algorithm.

The framework first produces pseudo-labeled
data based on keywords extracted using rule- and
model-based algorithms. From the unlabeled data,
we extract the words that are representatives of
the unlabeled data. The rule-based algorithm com-
putes the distribution of the words and utilizes
words that frequently occur as the keywords. The
model-based algorithm computes a cosine similar-
ity between the word embeddings and the docu-
ment embeddings of the model, and extracts words
with the highest similarity as keywords.

We find which class these keywords are located
in and label the keywords with their corresponding
classes. The labeled keywords are treated as lexi-
cons and we pseudo-label the unlabeled data with
such lexicons by counting the number of matched
keywords for each label. We assign the label with
the largest number of matched keywords. The fol-
lowing illustrates how this scheme works in more
detail.

In our experiments, we have N unlabeled
data U = {u1, u2, . . . , uN}, M labeled data

D = {d1, d2, . . . , dM} and a set of classes C =
{c1, c2, . . . , cL} where L denotes the number of
class labels. From U , we collect a set K of key-
words utilizing the rule- and model-based algo-
rithms. We present the full details of these algo-
rithms in Appendix A.

For each keyword k ∈ K, if k is in a labeled data
d ∈ D, then we assign the class of d to k. Let Ck

be the set of classes for k:

Ck = {l : the label of d that contains k}2.

After assigning classes to all the keywords in K,
we then pseudo-label the unlabeled data in U . For
each u ∈ U , we check which keyword k is located
in u and as multple keywords can occur in u, we
assign a class that occurs the most to u. Figure 3
shows an example of a pseudo-labeled sentence.

The number of pseudo-labeled data can vary
for each class and to prevent the imbalance in the
number of data for each class, we select the same
number of pseudo-labeled data for each class. Let
this initial set of pseudo-labeled data be P . Our
initialization also involves initializing the set of noisy
and golden data. The initial set N of noisy data is
P and G of golden data is D.

3.2. Superficial Learning

Illustrated in Section 1, superficial learning is a
strategy to effectively train the noisy data, identify-
ing the required knowledge instead of deeply learn-
ing the context of data that is potentially wrong. We
implement the strategy by training the classifier T
with N by 1 epoch with a low learning rate instead
of employing the same hyperparameters used in T .
We denote the trained T with superficial learning
as Tsf .

3.3. Fine-Tuning

Fine-tuning is a strategy to train the golden data.
We implement the strategy by training the classifier
Tsf with G using the same hyperparameters from
T .

We denote the fine-tuned classifier as Tft and
use Tft for pseudo-labeling; for each data u ∈ U ,
we compute a confidence score su(c) of Tft for u’s

2A keyword can be located in more than one data,
resulting in multiple classes
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Algorithm 1 A procedure of SuperST,
SuperST(U,D). The inputs U,D and T are
the unlabeled data set, labeled data set and the
baseline classifier, respectively.

function KEY-EXTRACTION(U,D)
return a set K of keywords from U where K is ex-

tracted by rule- and model-based extraction algorithm
end function
function KEY-LABEL(U,D)

K ← KEY-EXTRACTION(U,D)
for keyword k in K do

Ck ← ∅
for labeled data d in D do

Find d that contains k
Ck ← add the label of d

end for
end for
return a labeled keyword set KL

end function
procedure SUPERST(U,D)

N ← ∅ ▷ initialize noisy data set
G← D ▷ initialize golden data set
KL ← KEY-LABEL(U,D)
for unlabeled data u in U do

ul: pseudo-labeled u by KL

N ← add ul ▷ initial pseudo-label
end for
for i in iterationNum do

train T with N by superficial learning
train T with G by fine-tuning
for unlabeled data u in U do

for class c in C do
su(c): T ’s confidence score of u for c

end for
tu ← argmaxc∈C(su(c))
if su(tu) ≥ θ then

ul: pseudo-labeled u by the label tu
G← add ul

else
ul: pseudo-labeled u by the label tu
N ← add ul

end if
end for

end for
end procedure

prediction of each class c ∈ C. Let tu ∈ C denote
the target class of u, where

tu = argmax
c∈C

(su(c)).

We pseudo-label u with tu and depending on the
su score, we add the data to N or G. We use a
pre-defined threshold θ and generate the following
sets, Phigh and Plow:

Phigh = {u | u ∈ U such that su(c) ≥ θ}, (1)
Plow = {u | u ∈ U such that su(c) < θ}. (2)

3.4. Self Training

SuperST repeats the iterations of superficial learn-
ing and fine-tuning illustrated in Section 3.2 and
3.3. More specifically, the classifier trains N by su-
perficial learning and trains G by fine-tuning. The
trained classifier produces pseudo-labels which we
partition into Phigh and Plow. We add Plow to N , a
set of noisy data and Phigh to G, a set of golden
data. We then repeat this iteration in a self-training
manner.

Iteration : T
superficial−−−−−−−→

N
Tsf

fine−tune−−−−−−−→
G

Tft, (3)

Update N : N + Plow, (4)
Update G : G+ Phigh. (5)

Depending on circumstances, for each class,
the number of pseudo-labeled data differs, and
without balancing, the imparity potentially induces
a label bias. We balance U and G respectively, by
choosing the same number of pseudo-labeled data
for each class.

3.5. Details on Implementation

We use BERT (Devlin et al., 2018) as our base-
line classifier T (Chen et al., 2020). Then, we
distinguish superficial learning and fine-tuning by
differentiating the epoch number and the learning
rate; For superficial learning and fine-turning, the
epoch number is 1 and 5, and the learning rate is
1e-6 and 1e-5, respectively. Finally, our threshold θ
for the confidence score is 0.9.

4. Experimental Setup

We run our experiments on NVIDIA DGX A100. In
all experiments, we set the max sentence length
to 256. Following Sections 4.1 and 4.2 explain the
details on datasets and baselines, respectively.

4.1. Datasets

The following Table 1 illustrates the details of
datasets used for experiments in Section 5.

Dataset Classes Val Un Test

IMDB 2 2,000 12,500 12,500
AGNews 4 2,000 30,000 1,900
Yahoo 10 5,000 20,000 6,000
DBpedia 14 2,000 10,000 5,000

Table 1: Data distribution of four benchmark
datasets. The table presents the number of data
per class (Un: Unlabeled data).
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Dataset Labeled Data Models Ours

#train #val V E B T U M S A SuperST(B)

IMDB

5 5 51.2 53.6 53.3 60.2 58.7 54.1 66.5 67.1 79.5 (18.5%↑)

(IM)

10 10 58.4 59.3 60.2 61.0 62.6 58.5 67.4 71.3 81.7 (14.6%↑)
200 2000 82.2 82.4 86.9 87.4 89.1 89.4 88.2 79.6 89.6 (12.6%↑)

2500 2000 85.8 91.2 89.8 90.3 90.8 91.3 90.4 83.6 91.4 (9.3%↑)

AGNews

5 5 64.5 66.6 71.1 66.0 54.2 82.0 82.5 82.3 84.6 (2.6%↑)

(AG)

10 10 72.4 72.6 75.2 75.7 76.3 85.6 86.1 85.2 86.9 (2.0%↑)
200 2000 83.9 84.5 87.5 88.1 88.3 89.2 89.3 89.3 89.7 (0.4%↑)

2500 2000 86.2 91.3 90.8 91.0 91.2 91.5 91.8 91.4 92.1 (0.8%↑)

Yahoo!
5 5 31.5 32.4 43.8 51.2 50.5 60.1 56.2 55.2 64.3 (16.5%↑)

Answer
10 10 41.2 42.7 45.4 56.0 52.4 65.7 62.4 64.2 66.1 (3.0%↑)

(Ya)
200 2000 59.9 68.3 69.3 69.8 70.2 71.3 70.2 67.8 71.8 (5.9%↑)

2500 2000 70.2 73.4 73.2 73.5 73.6 74.1 73.1 71.2 74.4 (4.5%↑)

DBpedia

5 5 71.2 68.0 72.8 94.0 92.2 96.1 93.4 94.9 97.5 (2.5%↑)

(DB)

10 10 82.9 84.5 82.8 95.3 95.5 97.4 97.4 96.7 98.5 (1.9%↑)
200 2000 87.5 98.4 98.5 98.7 98.8 98.9 98.9 98.9 99.0 (0.1%↑)

2500 2000 90.1 99.0 99.0 99.0 99.1 99.2 99.1 99.1 99.2 (0.1%↑)

Table 2: Results (test accuracy(%)) comparison of SSL models. All results report the average scores
over five random samplings. Models are as follows: VAMPIRE, ELECTRA, BERT, TMix, UDA, MixText ,
SALNet, ALP, SuperST(BERT).

We use four text classification benchmark
datasets to evaluate the performance; IMDB re-
view (Maas et al., 2011), AG News (Zhang et al.,
2015), Yahoo! Answers (Chang et al., 2008), DB-
pedia (Mendes et al., 2012). We use the original
test set and randomly sample 5−2500 sentences
per class of the original set as the labeled set and
5−2000 sentences per class as a validation set.
We use the validation set to determine the best
model at each epoch. We also randomly sample
5000−30000 sentences per class and remove the
labels to use as an unlabeled dataset. All data
have a balanced class distribution.

4.2. Baseline Models

In order to evaluate the effectiveness of SuperST,
we compare our approach with state-of-the-art
SSL methods: BERT (Devlin et al., 2018), VAM-
PIRE (Gururangan et al., 2019), ELECTRA (Clark
et al., 2020), TMix (Chen et al., 2020), UDA (Xie
et al., 2020a), SALNet (Lee et al., 2021) and
ALP (Kim et al., 2022). For fair comparisons, we
adopt the same hyperparameters used in their re-
spective papers and randomly sample the data for
our experiments.

5. Results and Analysis

Table 2 demonstrates that SuperST achieves state-
of-the-art performance in few-shot text classifica-
tion. The effectiveness of applying superficial learn-
ing to the self-training mechanism is evident from
the table; however, further examination of the re-

sults is essential. We have conducted experiments
on widely recognized benchmark datasets to en-
sure the generalizability of our proposal. Further-
more, we present extensive experiments and anal-
yses in the validity of superficial learning and Su-
perST, providing comprehensive insights into Su-
perST.

5.1. Comparison with SSL Baselines

SSL baselines, MixText, UDA and ALP (Chen et al.,
2020; Xie et al., 2020b; Kim et al., 2022) utilize ad-
ditional resources such as back translations (Sen-
nrich et al., 2015) and WordNet (Miller, 1995). SAL-
Net (Lee et al., 2021) provides a new approach by
bootstrapping the classifier with lexicons extracted
from the labeled data. These approaches focus
on providing novel pseudo-labeling policies for the
enhancement. On the other hand, SuperST pro-
vides a simple yet effective strategy solving the
fundamental problem of noise in pseudo-labels.

We conducted experiments for 1) extreme few-
shots (5, 10) and 2) relatively limited shots (200,
2500). SuperST outperforms all the baselines
in all settings, illustrated in Table 2. The perfor-
mance improvements vary within each setting, on
the amount of labeled data used for training and
validation data. SuperST aims to maximize the
use of noisy data, and our approach demonstrates
particular effectiveness in extremely few-shot set-
tings, where noise more prone to occur. We can
observe this claim in Table 2. The performance
of SuperST for the 5- and 10-shots achieves at
most 18.5% and 14.6% increase from the state-of-
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(a) IMDB

(b) AGNews

(c) Yahoo

(d) DBpedia

Figure 4: A t-SNE visualization of 1) SuperST, 2) SuperST without self-training, and 3) SuperST without
superficial learning for all datasets.

the-art models, respectively. On the other hand,
improvements of 200- and 2500-shot experiments
are relatively small compared with the extreme
few-shot settings. Such results empirically prove
that SuperST, resolving the fundamental problem
of noisy pseudo-labels, is the most effective for
extreme few-shot setting experiments.

An intriguing issue is that, compared with other

baselines, SuperST shows a relatively small perfor-
mance gap regarding the number of initial labeled
data. We demonstrate the SSL baseline perfor-
mance of 5-, 10-, 200- and 2500-shot learning and
while performances of baselines vary on a large
scale, SuperST varies within roughly 10% com-
paring the scores of 5-shot and 2500-shot settings.
For instance, on the IMDB, ALP performs 67.1% for
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5-shot and 83.6% for 2500-shot learning, showing
a 24.6% performance gap. The baselines highly
depend on the size of initial data and the perfor-
mance of extreme few-shot (5, 10) learning does
not achieve satisfactory performance compared
with relatively limited shot (200, 2500) learning. On
the other hand, the gap between the 5-shot and
2500-shot performance of SuperST for the IMDB
is 15.0%. Considering all the datasets, the per-
formance gap of SuperST is 10.3% in average.
Throughout observations on the results, SuperST
effectively addresses the challenges associated
with the dependence on initial data size and the
deficiency of extreme few-shot learning.

5.2. Effectiveness of Superficial Learning

It is straightforward that the fundamental element
of SuperST is superficial learning. From the intro-
duction, we claim that current self-training faces
a challenge: pseudo-labels often contain noise
and potentially incorrect information that rapidly
accumulate in iterations of self-training, eventually
degrading the performance. Our claim continues
on declaring that a specialized learning strategy
is mandatory to effectively learn the noisy data.
Based on this claim, in this section, we empirically
prove that superficial learning is a simple yet ef-
fective solution for solving the challenge. In order
to demonstrate the strength of superficial learn-
ing, we investigate further on whether superficial
learning is indeed useful for catching the required
information and mitigating the noise. We first con-
duct experiments examining the performance of 1)
SuperST, 2) SuperST without self-training and 3)
SuperST without superficial learning.

Model IM AG Ya DB

SuperST 79.5 84.6 64.3 97.5
w/o self-training 77.2 79.1 54.7 96.1
w/o superficial 63.5 80.6 45.2 96.4

Table 3: A 5-shot performance table of 1) SuperST,
2) SuperST without self-training, and 3) SuperST
without superficial learning.

From Table 3, we can see that both self-training
and superficial learning are the core components
of SuperST. The importance of superficial learn-
ing is especially emphasized for the IMDB and
Yahoo datasets. The performance of SuperST with
and without superficial learning for each dataset
varies by 25.2% and 42.3%, respectively. We also
present the t-SNE visualization of all datasets in
Figure 4. The figure illustrates the decision bound-
ary prediction of 1) SuperST, 2) SuperST without
self-training and 3) SuperST without superficial
learning. The SuperST without self-training and Su-

perST without superficial learning both do not pro-
vide any clear decision boundary between classes,
positive and negative. The decision boundary
is clear in the visualization of SuperST’s predic-
tion and this result strengthens our claim on the
effectiveness of superficial learning.

For the AGNews and DBpedia datasets on the
other hand, the performance gap is more pro-
nounced when considering self-training, as evident
in Table 3. We examine the baseline scores of AG-
News and DBpedia to investigate this phenomenon.
As Table 2 illustrates, the baseline performance
for AGNews and DBpedia is significantly higher
compared to that of IMDB and Yahoo. This indi-
cates that the initial classifier performs relatively
well, and as a result, self-training even without
superficial learning leads to some performance en-
hancements. The performance gaps of SuperST
and SuperST without self-training for AGNews and
DBpedia are 7.0% and 1.5%, respectively. These
gaps are relatively smaller compared with IMDB
and Yahoo, and the differences in decision bound-
ary predictions, as seen in Figure 4(b) and (d),
are not substantially large. However, it is apparent
that SuperST, applying superficial learning to the
self-training mechanism, achieves a meaningful
enhancement. We can empirically conclude that
superficial learning is a promising learning strategy
for self-training.

5.3. Ablation Study

Superficial learning targets obtaining a partial un-
derstanding of noisy labels ‘to some extent’ and
we utilize the learning rate and the epoch number
to implement superficial learning. We have con-
ducted extensive experiments varying the param-
eters and empirically concluded the appropriate
parameters of superficial learning; 1 epoch with a
1e-6 learning rate is enough for superficial learning.
Table 4 shows the performance of SuperST with
varying epoch numbers on the initial superficial
learning and Table 5 represents the performance
with a varying learning rate of superficial learning.

Epochs IM AG Ya DB

<1 53.8 85.3 32.2 95.0
1 79.5 84.6 64.3 97.5
2 79.7 83.7 63.5 97.2
5 76.2 74.5 58.3 96.8

10 77.8 64.7 53.9 95.8
20 67.0 55.9 40.4 94.8

Table 4: 5-shot performance (accuracy(%)) with
different epoch numbers for superficial learning.

We observe that when we set relatively large
epoch numbers and learning rates, the classifier
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Learning Rate IM AG Ya DB

1e-8 53.4 70.3 45.7 96.9
1e-7 52.4 85.2 63.5 97.3
1e-6 79.5 84.6 64.3 97.5
1e-5 68.7 54.5 41.5 92.8
1e-4 50.0 53.0 10.2 90.4

Table 5: 5-shot performance (accuracy(%)) with
different learning rate for superficial learning.

does not perform well. On the other hand, Su-
perST does not also perform well with 1e-7 and
1e-8 learning rates which are too low. The classi-
fier learns little knowledge from the pseudo-labeled
data in these cases. We empirically confirm that
the classifier achieves the best performance when
trained with 1e-6 learning rate for 1 epoch.

While the two parameters are the core of super-
ficial learning, we further investigate the parame-
ter, confidence score of the classifier for pseudo-
labeling. Illustrated in Algorithm 1, the threshold
value θ represents a borderline of golden data for
pseudo-labels. It is important to adjust the right
value for the threshold as the bigger confidence
value assigns more accurate pseudo-labels but in
a small amount and the smaller confidence value
assigns many pseudo-labels but with relatively low
accuracy. Table 6 shows the performance varying
the confidence threshold. We can see that the
value 0.9 is the optimal value.

Confidence IM AG Ya DB

0.9 79.5 84.6 64.3 97.5
0.8 79.2 83.5 65.1 97.0
0.7 74.1 82.3 65.1 97.5
0.6 74.3 81.3 62.3 96.9

Table 6: 5-shot performance (accuracy(%)) of mod-
els with different confidence score threshold.

We have analyzed on the performance of Su-
perST and the validity of each component, demon-
strating their effectiveness in enabling the classifier
to learn the necessary information.

5.4. Keyword Extraction Analysis

We examine several strategies for extracting es-
sential information based on keyword lexicons.
We have proven that the pseudo-label by lexi-
cal knowledge is effective and we are now curi-
ous whether our suggested method of utilizing TF-
IDF is valid. We employ TF-IDF as our baseline
method for constructing lexicons as it is a widely
used traditional method for extracting lexical knowl-
edge (Guo and Roth, 2021; Xiong et al., 2021).

We inspect three methods for constructing lexi-
cons: 1) random, 2) TF-IDF, 3) KeyBERT3 and 4)
KeyBERT+TF-IDF (KBTI). It is not surprising that
random labeling performs the worst. Interestingly,
Table 7 indicates that TF-IDF is a sufficiently com-
petitive technique for lexicon constructions. While
TF-IDF achieves the best performance, the rela-
tively low performance of KBTI is odd since the
lexicons should contain more knowledge than the
lexicons constructed applying each method respec-
tively. Through this analysis, we conclude that
KBTI produces lexicons containing more noises
that deteriorate the performance.

Model IM AG Ya DB

Random 55.1 81.8 41.2 94.3
TF-IDF 79.5 84.6 64.3 97.5

KeyBERT 77.4 83.9 61.9 97.9
KBTI 73.7 81.3 60.2 97.0

Table 7: 5-shot performance (accuracy(%)) of dif-
ferent keyword matching methods.

6. Conclusion

SuperST shows the effectiveness of superficial
learning utilized in self-training for few-shot text
classification. We empirically proved our claim that
superficial learning effectively resolves the problem
of noisy pseudo-labels. While it is surprisingly sim-
ple, it achieves an outstanding performance. Our
extensive analyses of each component in SuperST
and visualization of decision boundary predictions
verify that it is enough for the classifier to train
noisy data by superficial learning; 1 epoch with a
1e-6 learning rate. We have maximized the utiliza-
tion of noisy data by SuperST which is particularly
effective in extreme few-shot settings. For future
work, we plan to apply SuperST on more various
classification tasks. Also, we plan to design a more
sophisticated algorithm for extracting lexical knowl-
edge and explore the effectiveness of superficial
learning in other NLP tasks.
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A. Statistical-based Keyword
Extractions

We employ statistical- and model-based ap-
proaches for keyword extractions. We simply use
language models as a model-based approach for
keyword extractions. We illustrate one of the base-
line statistical-based keyword extraction, the algo-
rithm for extracting keywords from the unlabeled
dataset XU based on the statistical approach.

We calculate the term frequency tf(w,XU ) of
the data in XU that contains a word w with the
following equation:

tf(w,XU ) =

∑
xu∈XU

|xu|w∑
xu∈XU

|xu|
,

where we denote the number of words in xu as
|xu|, the number of w in xu as |xu|w. We calculate
the inverse document frequency idf(w,XU ) of w
in XU with the following equation:

idf(w,XU ) = log (
|XU |

|XU |w + 1
),

where we denote the number of data in XU as
|XU |, the number of data that have w as |XU |w.

Using tf and idf , we compute a score TF -
IDF (w) of w to determine whether w is a keyword:

TF -IDF (w,XU ) = tf(w,XU )× idf(w,XU ).

We choose the top 3 words with a high TF -IDF
score and construct a set K∅ of keywords.

B. Baseline Models

We illustrate the details of all the baselines we
employed for our work.

• VAMPIRE: Gururangan et al. (2019) propose
a lightweight pretraining framework. They uti-
lize a variational autoencoder to pretrain a
unigram document model.

• ELECTRA: ELECTRA (Clark et al., 2020) is
a pretrained language model that trains the
generator and the discriminator. We used the
pretrained electra-base-discriminator model
for text classification.

• BERT: BERT (Devlin et al., 2018) is a pre-
trained language model that trains the model
using a masking language modeling (MLM) ob-
jective. We used the pretrained BERT-based-
uncased model for text classification.

• TMix: TMix (Chen et al., 2020) is an
interpolation-based augmentation method that
creates a large number of augmented training
samples by interpolating text in hidden space.

• UDA: Xie et al. (2020a) present a new data
augmentation method that generates diverse
and realistic noise. The method enforces the
model to be consistent with respect to these
noises.

• MixText: MixText (Chen et al., 2020) is a
method that introduces a new data augmenta-
tion method to solve the overfitting problem.

• SALNet: SALNet (Lee et al., 2021) is a boot-
strap learning framework for few-shot text clas-
sification. They bootstrap the classifier using
a combination of the trained classifier and the
constructed lexicons.

• ALP: Kim et al. (2022) present the ALP for few-
shot text classification, which generates aug-
mented samples with diverse syntactic struc-
tures with plausible grammar.
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