
LREC-COLING 2024, pages 15469–15479
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

15469

SynPrompt: Syntax-aware Enhanced Prompt Engineering for
Aspect-based Sentiment Analysis

Wen Yin12, Cencen Liu12, YI XU12∗, Ahmad Wahla2, Huang Yiting3, Dezhang Zheng1

1School of Information and Software Engineering,
University of Electronic Science and Technology of China, Chengdu 610054, China

yinwenok,cencenliu,202122090520@std.uestc.edu.cn
2Laboratory Of Intelligent Collaborative Computing, Chengdu 611731, China

xuyi0421@uestc.edu.cn, ahmadrazawahla4@gmail.com
3Bashu Middle School, Chongqing 400013, China

1020864824@hotmail.com
Abstract

Although there have been some studies uses prompt learning for the Aspect-based Sentiment Analysis(ABSA) tasks,
their methods of prompt-tuning are simple and crude. Compared with vanilla fine-tuning methods, prompt learning
intuitively bridges the objective form gap between pre-training and fine-tuning. Concretely, simply constructing
prompt related to aspect words fails to fully exploit the potential of Pre-trained Language Models, and conducting
more robust and professional prompt engineering for downstream tasks is a challenging problem that needs to be
solved urgently. Therefore, in this paper, we propose a novel syntax-aware enhanced prompt method (SynPrompt),
which sufficiently mines the key syntactic information related to aspect words from the syntactic dependency tree.
Additionally, to effectively harness the domain-specific knowledge embedded within PLMs for the ABSA tasks,
we constructed two adaptive prompt frameworks to enhance the perception ability of the above method. After
conducting extensive experiments on three benchmark datasets, we have found that our method consistently
achieves favorable results. These findings not only demonstrate the effectiveness and rationality of our proposed
methods but also provide a powerful alternative to traditional prompt-tuning.
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1. Introduction

Aspect-based Sentiment Analysis (ABSA) is a fine-
grained branch of sentiment analysis that aims to
recognize the sentimental polarity of the specific
aspect in a sentence (Jiang et al., 2011). For ex-
ample, given the sentence ”The food in this restau-
rant is very nice, but the service is terrible.”, the
goal of the ABSA task is to define the emotional
polarity of the ”food” and ”service” aspects as pos-
itive and negative, respectively.

Many previous works (Song et al., 2019; Xu
et al., 2019; Karimi et al., 2021)for the ABSA task
focus on fine-tuning based on Pre-trained Lan-
guage Models(PLMs) such as Bidirectional En-
coder Representation from Transformers(BERT)
(Devlin et al., 2019). It is difficult to determine
whether the knowledge that fine-tuned LMs con-
tain is learned during the pretraining or the fine-
tuning process (Shin et al., 2020), which restricts
PLMs from reaching their full potential. Thus, to
mitigate this problem, there are some works (Li
et al., 2021a; Gao et al., 2022; Yang and Zhao,
2022; Yin et al., 2023) that introduce prompts
learning to the ABSA task. Figure 1 shows how
existing work typically uses prompts for the ABSA
tasks. In this paradigm, instead of relying on tra-
ditional fine-tuning methods, prompt learning in-
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volves reformulating downstream tasks to resem-
ble those encountered during the original LM train-
ing by utilizing a textual prompt (Liu et al., 2023).
However, these studies use rough prompts, which
are difficult to adapt to specific task scenarios.
Therefore, more robust and professional, prompt
engineering to promote comprehensive stimula-
tion of PLMs and effective adaptation of specific
task is needed, which involves designing task-
specific prompt templates and verbalizers.

In light of this, in this work, we propose a Syntax-
aware Enhanced Prompt method (SynPrompt),
which constructs our prompt by looking for words
that are related to aspect words syntactic. Specif-
ically, we consider fully exploiting the syntactic in-
formation of the syntactic dependency tree (i.e.,
Dep.Tree) to address the problem. Typically, the
syntactic dependency tree contains the depen-
dency relations of individual words in a sentence,
which helps to correctly align aspect terms and
their corresponding words expressing sentiments
(Liang et al., 2022). Dep.Tree can discriminate dif-
ferent relations among aspects to infer the senti-
ment relations of different aspects. We present the
Dep.Tree of the example ”The food is great but the
service is dreadful.” in Figure 2.

Furthermore, the fine-grained nature of ABSA
poses difficulties in effectively mining knowledge
from language models for practical application. In
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Figure 1: A general template based on prompt tuning for the ABSA task.

order to improve the robustness and perception
of our method, we construct two adaptive prompt
frameworks for the ABSA task: the Auto prompt—
a discrete prompt framework that can automati-
cally select discrete prompt tokens, and the Soft
Prompt—a continuous prompt framework based
on learnable pseudo tokens. In general, it is more
effective to construct this automatic prompt struc-
ture (Shin et al., 2020; Liu et al., 2021), which can
further inject and stimulate the task-related knowl-
edge in PLMs, thus boosting the model perfor-
mance.

Experimentally, we conduct extensive experi-
ments on three widely used datasets in full-shot
and few-shot settings. As a result, our proposed
SynPrompt method based on two prompt frame-
works outperforms the current methods in low-
resource scenarios and presents a competitive
performance at the same scale in full-data sce-
narios. Sufficient empirical analysis shows that
our proposed methods are a stronger alternative
to vanilla fine-tuning or rough prompt-tuning1.

To sum up, our key contributions are:

• We propose a novel Syntax-aware Enhanced
Prompt method based on prompt engineering
for the ABSA task, we can design which high-
lights that more powerful prompt contents can
be designed through syntactic relations.

• We built two prompt frameworks for the above
methods, which prove the feasibility and ratio-
nality of the SynPrompt described above. Our
SynPrompt serves as a valuable tool within
these frameworks, allowing for enhanced per-
formance and flexibility in ABSA.

2. Related Work

2.1. Aspect-based Sentiment Analysis
Given the large impact that pre-trained LMs
have had on NLP in the pre-train and fine-tune
paradigm, existing work (Song et al., 2019; Karimi
et al., 2021; Li et al., 2021b)for the ABSA task
focuses on fine-tuning based on PLMs such as

1Our source code and datasets involved in this pa-
per are released at https://github.com/yinwen2019/
Prompt-ABSA

BERT (Devlin et al., 2019). Other work (Liang
et al., 2022; Wang et al., 2020; Zhang et al.,
2022)involves modeling sentences and aspects
based on graph neural networks, which extract crit-
ical semantic and syntactic information from con-
stituent trees and dependency trees.

However, existing methods still face challenges
in fully harnessing the effective knowledge con-
tained within PLMs due to the discrepancy be-
tween pre-training and fine-tuning. To address
this limitation, prompt learning has emerged as
a promising approach. (Li et al., 2021a) pro-
poses SentiPrompt to use sentiment knowledge
enhanced prompts to tune the language model
in the unified framework. (Gao et al., 2022) pro-
poses a multi-task framework that can solve mul-
tiple ABSA tasks by controlling the type of task
prompts consisting of multiple element prompts.
(Yin et al., 2023) proposes Prompt-oriented Fine-
tuning Dual BERT model that considers the com-
plex semantic relevance and the scarce data sam-
ples simultaneously. (Yang and Zhao, 2022) pro-
poses a novel end-to-end framework, where nu-
merous sentiment aspects are elicited by a ma-
chine reading comprehension (MRC) model in a
prompt learning way.

2.2. Prompt Learning
There has been some work on tips to learn how to
improve PLM performance. (Petroni et al., 2019)
find that without fine-tuning, BERT contains rela-
tional knowledge competitive with traditional NLP
methods that have some access to Oracle knowl-
edge. (Gao et al., 2021) presented a suite of sim-
ple and complementary techniques for fine-tuning
language models on a small number of annotated
examples. That approach includes prompt-based
fine-tuning together with a novel pipeline for au-
tomating prompt generation. (Lester et al., 2021)
explored ”prompt tuning,” a simple yet effective
mechanism for learning ”soft prompts” to condition
frozen language models to perform specific down-
stream tasks.

Our investigation reveals that, given a suite
of appropriate prompts (known as prompt en-
gineering), PLMs can feed back internally spe-
cific language knowledge. Recent work has also
focused on prompt engineering. (Schick and

https://github.com/yinwen2019/Prompt-ABSA
https://github.com/yinwen2019/Prompt-ABSA
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Schütze, 2021) introduced Pattern Exploiting Train-
ing (PET), a semi-supervised training procedure
that reformulates input examples as cloze-style
phrases to help language models understand a
given task. (Li and Liang, 2021) propose prefix-
tuning, a lightweight alternative to fine-tuning for
natural language generation tasks.

However, there has been not enough in-depth
research on prompt engineering for the ABSA task.
Thus, in this work, we rely on this thinking to make
a more adaptive adjustment for the ABSA task.

3. Preliminary

In this section, we first give a problem definition
of the ABSA task (§3.1), followed by an introduc-
tion to conventional vanilla fine-tuning (§3.2)and
prompt-based tuning (§3.3) with PLMs.

3.1. Problem Definition

In this paper, we just focus on Aspect Sentiment
Classification (ASC), which is to judge the emotion
for a given aspect word in a sentence. The inputs
of the ASC task are a sentence and a predefined
aspect set (S,A). We let S = {w1, w2, ...wn} and
A = {a1, a2, ...am} represent a sentence and a pre-
defined aspect set, where n and m are the num-
bers of words in S and the number of aspects inA,
respectively. For each S, As = {ai|ai ∈ A, ai ∈ S}
denotes the aspects contained in S. We treat each
multiple-word aspect as a single word for simplic-
ity, so ai also means the i-th word of S. The
goal of ASC is to predict the sentiment polarity
Y = {Positive,Negative,Neutral} of the given as-
pect ai ∈ As in the input sentence x = {S,As}.

3.2. Vanilla Fine-tuning

In the vanilla fine-tuning paradigm of the ASC
task, the input is structured as a concatenation of
the original sequence and the aspect word ”xft =
[CLS],S, ai, [SEP]”, where ai ∈ As. In other words,
for each aspect word, we construct a sequence as
input of the PLM. Empirically, the embedding of the
[CLS] token produced by PLM, h[CLS], is the clas-
sifier token that is fed into an output layer to pre-
dict the probability distribution over the label space.
The predicted probability distribution is generally
calculated by the following formula:

P (y|x) = Softmax(W× h[CLS] + b) (1)

where W and b are learnable parameters of PLMs.
They are usually fine-tuned by minimizing cross-
entropy loss as the objective function.

3.3. Prompt-based Tuning
In particular, prompt-based tuning uses the
[MASK] token as a predictor instead of the [CLS] to-
ken. It predicts the probability of masked words by
using the [MASK] token, which is generally used
with the prompt template by prompt engineering.
Prompt engineering is the process of creating a
prompting function fprompt (x) that results in the
most effective performance on the downstream
task (Liu et al., 2023). Different from vanilla fine-
tuning, we get the original input sequence through
a prompt engineering xprompt = fprompt (x), which
can transform the original input into the special in-
put using in prompt tuning. In this way, we can use
the words predicted by the [MASK] as the input of
the downstream task. Moreover, we need to build
a verbalizer that maps each label y ∈ Y to a set
of label vocabularies Vy = {w1, ...wk}, which are a
subset of the vocabulary V of PLM. For example,
we could map a set Vy = {good, fantastic, fine...}
into y = Positive. In this case, the class probability
distribution is obtained by marginalizing the set of
label tokens:

P (y|xprompt) =
∑
w∈Vy

p ([MASK] = w|xprompt) (2)

Of course, the template and the verbalizer are
the core of prompt engineering. Therefore, it
is meaningful and important to design a frame-
work with appropriate templates and optimizers for
downstream tasks.

4. Methodology

In this section, we will introduce how to engi-
neer ABSA tasks using our proposed SynPrompt
method (§4.1), then elaborate two novel prompt
framework (§4.2) that adapt the above method. Fi-
nally, we introduce the verbalizers we used and
the training of the model (§4.3)

4.1. Syntax-aware Enhanced Prompt
The overview of the Syntax-aware Enhanced
Prompt is shown in Figure 2. We first obtain the
corresponding syntactic dependency tree based
on the original sentence. Later Syntactic Dis-
tance Matrix(§4.1.1) and Syntactic Relation Ma-
trix(§4.1.2) are calculated based on the Dep.Tree
and the final prompt decision(§4.1.3) is made
based on them. Finally, the selected Prompt word
is injected into the Prompt content.

4.1.1. Syntactic Distance Matrix

We treat the syntactic Dep.Tree as a directed
graph, and each token as a node. Firstly, we
define the distance between node wi and wj as
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Figure 2: The construction process of Syntactic Distance Matrix and Syntactic Relation Matrix targets
the example sentence.
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Figure 3: The construction process of Syntactic
Distance Matrix and Syntactic Relation Matrix tar-
gets the example sentence.

d(wi, wj) that is not positive or negative. We de-
fine the original distance matrix as D∗:

D∗(i, j) = d(wi, wj) (3)

Subsequently, determine the positive and negative
of these distances according to the order of the
words in the original sentence, that is, the distance
from the preceding word to thWe following word in
the sentence is plus, and the reverse direction is
minus. We define the final distance matrix as D:

D(i, j) =

{
D∗(i, j), i < j
−D∗(i, j), i ≥ j

(4)

Notably, when the aspect word has more than one
token, the self-distance is 0, and the positive and
negative distances are calculated according to the
beginning and end of the aspect word. As shown
in the top half of Figure 3, is a construction process
of the final distance matrix D targets the sentence
”The hot dog is great”.

4.1.2. Syntactic Relation Matrix

There are many kinds of syntactic dependency re-
lations from Dep.Tree. As a matter of fact, there
are some typical relations that determine the po-
larity of aspect words (e.g., nsubj between ”food”
and ”delicious”). Therefore, we define the relation-
ship coefficient r based on the importance of the
syntactic relation for our calculation. Note that a
smaller coefficient indicates a more important rela-
tion. We obtain the final relation matrix R by map-
ping each relation to predefined coefficients:

R(i, j) = MAP(Relation(i, j)) (5)

where Relation(i, j) represents the syntactic rela-
tion of node wi and node wj , and MAP stands for
the mapping in the appendix. As shown in the bot-
tom half of Figure 3, is a construction process of
the relation coefficients matrix D targets the sen-
tence ”The hot dog is great”.

4.1.3. Prompt Decision Algorithm

The details of the prompt decision algorithm are
shown in Algorithm 1. Firstly, we compute the re-
sult of the dot multiplication of matrix D and R.
Note that the result is again the adjacency matrix,
which represents the distance of each node on
the tree. Immediately following, we compute the
shortest distance from each node with respect to
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Algorithm 1: Prompt Decision
Data: Syntactic distance Matrix D and

syntactic relation matrix R . The
index of aspect words a in the
sentence x . Decision threshold k.

Result: Decided prompt word list P of the
given matrixes.

Initialize P = {xa} , C = {} , t = 0
Get adjacent matrix M ← D ⊙R
Get List of shortest paths about aspect:
C ← Dijkstra(M,a)

while t ≤ k do
i← getIndexOfMin(C)
if i < a then P.insert(xi)
if i ≥ a then P.append(xi)
Update Ci ← DBLMAX
t← t+ 1

return P;

the aspect nodes using Dijkstra’s algorithm. The
word closest to the aspect, which is calculated
with threshold k from the obtained distance list C,
is determined as the prompt word. These words
are added to before and after the aspect words in
the prompt word list P in the order they were in
the original sentence. Finally, prompt word list P
is injected into the prompt framework for prompt-
tuning.

4.2. Adaptive Prompt Frameworks
In what follows, we present the implementation of
two adaptive prompt frameworks for our task: Auto
Prompt and Soft Prompt.

4.2.1. Auto Prompt for ABSA

Auto prompt implements an automatic real discrete
prompt template design process. Here, as shown
in Figure 4 - (a), we propose a method for auto-
matic prompt construction based on (Shin et al.,

2020). We begin by adding a number of original
[Prompt] tokens to the template between the as-
pect word and the [MASK] token, which will be
replaced over time during training. Note that this
token is independent of MLM’s vocabulary, which
means we need to add the first token. Next, we
will introduce a gradient-based prompt automatic
selection method.

Gradient-Based Prompt Selection We send
the initialized Prompt templates into MLM, which
contain the special tokens [Prompt] and [MASK].
Our goal is to find real discrete prompt words that
can minimize model losses through gradient cal-
culation. Formally, at each epoch, We calculate
the first-order approximate logarithmic likelihood,
which is obtained by multiplying the gradient of
the embedding layer by the backpropagation of
the loss with the word embedding in the vocabu-
lary {ew|w ∈ V}. Then we identify a candidate set
Vcand of the top-k tokens estimated to cause the
greatest increase:

Vcand = top-k
w∈V

[
e⊤w∇ log p (y|xprompt)

]
(6)

where ew is the input embedding of w, and the gra-
dient is calculated from log-likelihood estimation.
In other words, this set of candidates results in the
maximum logarithmic likelihood, that is the mini-
mum loss of the model. Subsequently, for each
candidate in this set, we re-evaluate Equation (8)
based on our framework by replacing the [Prompt]
token with the candidate word one by one and re-
taining the prompt word with the highest probability
in the next epoch.

4.2.2. Soft Prompt for ABSA

In contrast to the previously mentioned prompt
templates, soft prompts adopt a unique approach
by directly prompting the model within its embed-
ding space. Instead of using actual prompt words,
soft prompts utilize pseudo-prompt words that ex-
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ist within the embedded space. These pseudo-
prompt words can be adjusted through template
parameters, allowing for flexibility and customiza-
tion. Figure 4 - (b) illustrates the process, where
a prompt encoder is employed to automatically
learn improved word embedding representations
for the prompt words, following the methodology
described in (Liu et al., 2021). This technique
enables enhanced control and optimization of the
prompt information within the embedding space.

Prompt Encoder The Prompt Encoder, a
lightweight neural network, plays a crucial role in
minimizing the discreteness among prompt words.
To achieve this, we initially initialized the [Prompt]
tokens randomly and subsequently constructed
an encoder comprising a bidirectional Long Short-
Term Memory (LSTM) network and a two-layer Mul-
tilayer Perceptron (MLP). Formally, we regard the
calculation process as:

ei = MLP(LSTM
[→
ei :

←
ei

]
) (7)

where ei represents the initial embedding of the
i-th pseudo prompt word. In LSTM, we only need
the output embedding e. For the two-layer percep-
tron, we select the ReLU activation function to op-
timize the encoder.

4.3. Training
As shown in Figure 1, we take the original sen-
tence as input to the forward sentence. For the
backward sentences, we choose aspect words,
prompt contents and the [MASK] token as the fi-
nal prompt sentence. It is important to note that
the content of the prompt is optional and con-
figurable for different prompt templates. Subse-
quently, we select the hidden layer representation
of the [MASK] token from the MLM output h[MASK],
which represents the word probability distribution
of the masked word.

Verbalizers Unlike normal Verbalizers, we don’t
design label vocabulary directly for label classes.
We use a multilayer perceptron (MLP) to map the
hidden layer representation of the [MASK] token
to a low-dimensional vector space. In other words,
we map the word probability distribution directly to
the class label distribution without having to set a
fixed mapping relationship for the label class:

ŷ = Softmax(MLP([h[MASK]])) (8)

where MLP are learnable parameters and the hid-
den layer size of input h[MASK] is equal to the vo-
cabulary size.

Finally, whether it’s an auto prompt or a soft
prompt, we apply the cross-entropy loss function
for the MLM’s parameters training:

L = −
∑

(s,a)∈D

∑
c∈C

log p (y|xprompt) + ∥θ∥22 (9)

Dataset
#positive #negative #neutral
Train Test Train Test Train Test

Restaurant 2164 727 807 196 637 196
Laptop 976 337 851 128 455 167
Twitter 1507 172 1528 169 3016 336

Table 1: Statistics for the three experimental
datasets.

Dataset #shot-type #1 #2 #4 #8
Restaurant 36 36 72 144 288

Laptop 22 22 44 88 176
Twitter 60 60 120 240 480

Table 2: Statistics on the number of few-hot learn-
ing for the three experimental datasets.

where D contains all the sentence-aspect pairs
and a represents the aspect appearing in sentence
s. θ represents all the trainable parameters and C
is the collection of sentiment polarities. θ repre-
sents all trainable model parameters.

5. Experiments

In order to comprehensively evaluate the effec-
tiveness and rationality of our method, we com-
pleted sufficient experimental verification. In the
following, we use SynPrompt to denote the syntax-
aware enhanced prompt method in §4.1 and use
AutoP to denote the Auto Prompt framework in
§4.2.1. SoftP denotes the Soft Prompt framework
in §4.2.2.

5.1. Datasets
The experiments were conducted on three bench-
mark ABSA datasets: SemEval 2014 Task 4
Restaurant and Laptop reviews (Pontiki et al.,
2014), and Twitter posts (Dong et al., 2014). Each
data item was labeled with one of the three sen-
timent polarities: positive, negative, or neutral.
Moreover, we strictly adhere to the dataset con-
figurations of previous studies, utilizing the pro-
vided train and test sets without any modifications
or additional divisions. The statistical information
of three datasets is shown in Table 1.

5.2. Implementation Details
For our experiments, we initialize word embed-
dings with the official BERT models provided by
(Devlin et al., 2019). Note that our prompts in the
SoftP method select the prompt encoder trained
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Method Restarant Laptop Twitter
Accuracy F1-score Accuracy F1-score Accuracy F1-score

FT BERT-SPC 84.46 76.98 78.99 75.03 74.13 72.73
SCAPT 83.39 74.53 77.17 73.23 74.64 73.91

PT SentiPrompt* 84.39 75.53 79.17 76.23 75.64 74.88
MRCOOL 85.49 79.14 78.12 75.78 - -

Our
SynPrompt 84.17 76.45 78.28 75.36 74.88 73.73
SynPrompt+AutoP 85.67 78.37 80.79 76.09 75.84 74.37
SynPrompt+SoftP 85.96 78.45 81.28 77.19 76.23 74.30

Table 3: Experimental results (%) comparison on three publicly available datasets. We underline the
second best performed baseline. The results of our rerunning version are marked with *.

Shot Method Restarant Laptop Twitter

1%

BERT-SPC 49.48 51.26 42.04
SentiPrompt* 54.93 (+5.45) 54.06 (+2.80) 42.98 (+0.94)
SynPrompt+AutoP 55.82 (+6.34) 55.12 (+3.86) 47.56 (+5.52)
SynPrompt+SoftP 55.94 (+6.46) 54.53 (+3.27) 48.10 (+6.06)

2%

BERT-SPC 58.05 43.72 49.67
SentiPrompt* 60.94 (+2.49) 49.93 (+6.21) 49.72 (+0.05)
SynPrompt+AutoP 61.15 (+3.10) 53.06 (+9.34) 50.93 (+1.30)
SynPrompt+SoftP 61.09 (+3.04) 53.96 (+10.24) 51.34 (+1.67)

4%

BERT-SPC 57.31 59.01 59.57
SentiPrompt* 62.11 (+4.80) 61.65 (+2.64) 63.02 (+3.45)
SynPrompt+AutoP 63.82 (+6.51) 62.65 (+3.64) 62.06 (+2.49)
SynPrompt+SoftP 64.07 (+6.76) 60.64 (+1.63) 62.48 (+2.91)

8%

BERT-SPC 74.02 62.58 63.90
SentiPrompt* 74.20 (+0.18) 66.67 (+4.09) 64.40 (+0.50)
SynPrompt+AutoP 75.02 (+1.00) 66.92 (+4.34) 65.77 (+1.87)
SynPrompt+SoftP 75.96 (+1.94) 67.03 (+4.45) 66.76 (+2.86)

Table 4: Experimental results (%) comparison of accuracy on three publicly available datasets through
four levels of shot. The results of our rerunning version are marked with *.

by ourselves. Bert-base-uncased2 was chosen
as the main architecture for our model (nlayers=12,
nheads=12, nhidden=768). The training batch size
used is 16 for all models. The Adam optimizer is
used for training, and the model is evaluated using
two widely used metrics(accuracy and F1-score).
The model is run three times with different seeds,
and the average performance is reported. As for
the number of the Prompt token, we set it to 3 by
default for the following experiment.

5.3. Few-shot Setting
We tailored the dataset to a certain extent for few-
shot learning experiments. We strictly define the
size of the shot sample, which takes the same
number of samples from each of the three cate-
gories. Experimentally, we randomly sample [1, 2,

2https://github.com/huggingface/transformers

4, 8] shots from each dataset for training, which
were [1%,2%,4%,8%] of the complete training set.
The statistical information of three datasets are
shown in Table 2. Specifically, for each shot that
has been set, we divide it into three equal parts
corresponding to three label classes, which are
grouped as the final train set. We don’t do any-
thing to the test set.

5.4. Baseline
We compare our proposed method based on two
adaptive prompt frameworks with the following
models on the ABSC subtask:

• Prompt-free baselines: BERT-SPC (Song
et al., 2019), SCAPT (Li et al., 2021b).

• Prompt-based baselines: SentiPrompt (Li
et al., 2021a), MRCOOL (Yang and Zhao,
2022).

https://github.com/huggingface/transformers
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”Prompt-free” means that only fine-tuning opera-
tions are performed in the model without using
prompt learning. ”Prompt-based” means that the
idea of prompt learning is used in the model.

5.5. Full-shot Learning Results
The results of full-shot learning on all three
datasets across different models are reported in
Table 3. Intuitively, our SynPrompt based on
our proposed prompt frameworks achieves per-
formance comparable to the best results before
in terms of accuracy and f1-score, which demon-
strates the effectiveness of our method in captur-
ing more important prompt knowledge from syntac-
tic relations. Notably, SynPrompt+SoftP achieves
a significant improvement over the baseline mod-
els on the three datasets. We exceed the prior
SOTA model on accuracy by +1.98%, +2.07%,
and +1.43% on Res, Lap, and Twitter respectively.
This improvement is attributed to SoftP’s capabil-
ity to automatically learn prompt word embeddings.
Above results highlight the superiority of our pro-
posed prompt-tuning methods for the ABSA tasks.

5.6. Few-shot Learning Results
By setting up few-shot learning above (§5.3),
we experiment with our method on three public
datasets, and results are reported in Table 4. Our
methods consistently outperform the baselines es-
pecially when only 1-2% of training instances are
available. Meanwhile, it is obvious that our ap-
proach outperforms the baseline approach on the
Laptop dataset. After investigation, it is found that
this dataset has fewer samples than the other two
datasets, which further indicates that our method
is stronger in the low-resource scenario. The
findings strongly affirm the notion that a meticu-
lously crafted prompt possesses immense poten-
tial in extracting the acquired knowledge within pre-
trained models, thereby resulting in enhanced per-
formance in few-shot scenarios. In addition to that,
it proved again that the prompt-based method out-
performs fine-tuning, to a large extent.

5.7. Analysis of Key Variables

5.7.1. Size of Distance Threshold

The key to determining the prompt word based
on syntactic distance is to determine the size of
the distance threshold k. We test different sizes
of thresholds with full data training on the Laptop
dataset and present the results in Figure 5. It can
be seen that ”k = 4” has the best accuracy, while
” k = 5” has the highest F1 score. Therefore, it is
reasonable to assume that the size of the distance
threshold k in SynPrompt should not be too long,
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Figure 5: Effect of threshold k in SynPrompt. The
results are produced under the full-shot setting on
the Laptop dataset by vanilla SynPrompt.

Method Template Accuracy F1-Score

AutoP

N=1 77.69 72.94
N=2 77.82 73.05
N=3 78.14 73.29
N=4 77.95 72.91
N=5 77.82 72.98

SoftP

N=1 77.98 72.98
N=2 78.19 73.10
N=3 78.38 73.19
N=4 78.14 73.29
N=5 78.17 73.07

Table 5: Effect of the number of prompt tokensN in
the template. The results are produced under the
full-shot setting on the Laptop dataset by vanilla
AutoP and SoftP.

probably because this would lead to the introduc-
tion of knowledge unrelated to aspect words.

5.7.2. Number of Prompt Tokens

Given that the number of prompt tokens in AutoP
and SoftP also plays a significant role in the perfor-
mance of prompt engineering. Therefore we con-
ducted experiments on the Laptop dataset under
the full-shot setting and that result is shown in Fig-
ure 5. Specifically, we employed five hard prompt
templates and five soft templates, varying the num-
ber of prompt tokens (denoted as N ) for AutoP and
SoftP, respectively. In the case of AutoP, we dis-
covered that utilizing three prompt tokens was the
optimal choice for this methodology. For SoftP,
the model based on the prompt encoder showed
the highest accuracy when using three prompt to-
kens, whereas four prompt tokens exhibited the
best F1 score. These results underscore the sig-
nificance of determining the most suitable length
of the prompt tokens.
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6. Conclusions

In this paper, we propose the SynPrompt to con-
duct specifically tailored prompts by fully exploiting
the syntax information of the syntactic Dep.Tree.
Additionally, we propose two prompt frameworks,
which are adapted to our proposed SynPrompt and
leverage pre-trained language models to improve
the robustness and perception of SynPrompt. Our
experimental results demonstrate that our ap-
proach is a more effective alternative to the tradi-
tional prompt-tuning method, especially few-shot
scenarios, which also proves the rationality and
explainability of our proposed method. Moreover,
this work demonstrates that task-specific prompt
engineering is critical.

This research work was supported by the
National Natural Science Foundation of China
(NSFC) (U19A2059) and the Sichuan Science and
Technology Program(2022ZHCG0008). We ap-
preciate all the authors for their fruitful discussions.
In addition, our thanks to anonymous reviewers for
their insightful comments and suggestions on im-
proving the quality of this paper.

7. Limitations and Future Works

Despite the significant findings of this study, it is im-
portant to acknowledge several limitations. Firstly,
the sample size is relatively small compared to
other tasks, which may limit the generalizability
of the results. Additionally, data collection is lim-
ited to a specific region, so further investigation is
needed to determine the applicability of this ap-
proach to other tasks. Moreover, this study did
not conduct case data analysis, which may re-
strict a comprehensive understanding of the im-
pact of the method on the model. To address
these limitations, future research could consider
expanding the sample size and conducting seman-
tic deep structure case analyses. Doing so, not
only enhances the interpretability of this method
but also facilitates the generalization of the method
to broader directions.

We hope that our research will make a valu-
able contribution to the field of ABSA by offering
fresh perspectives. Moving forward, we intend
to extend our investigations into prompt engineer-
ing and verbalizers, while delving into prompt tun-
ing that builds upon these concepts. Addition-
ally, we aim to explore the untapped potential of
pre-trained language models (PLMs) and evalu-
ate their adaptability to specific tasks. By pursu-
ing these avenues, we hope to advance the under-
standing and application of ABSA techniques.

8. Ethics Statement

Participant protection is of utmost importance in
this study. All collected data will be anonymized
to ensure participant confidentiality. Informed con-
sent will be obtained from participants, who will
have the freedom to withdraw from the study at
any time. The research follows ethical guidelines,
including integrity, respect, and fairness. Data se-
curity measures are in place to safeguard partici-
pant information, and data will be used solely for re-
search purposes. Any concerns or complaints can
be addressed through the established grievance
mechanism. The study has undergone feasibility
and ethical review, and participants’ rights and pri-
vacy will be respected throughout the research pro-
cess.
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