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Abstract
Task-oriented dialogue (TOD) systems are introduced to solve specific tasks, which focus on training multiple tasks
such as language understanding, tracking states, and generating appropriate responses to help users achieve
their specific goals. Currently, one of the remaining challenges in this emergent research field is the capability to
produce more robust architectures fine-tuned for end-to-end TOD systems. In this study, we consider this issue
by exploiting the ability of pre-trained models to provide synthesis responses, which are then used as the input
for the fine-tuned process. The main idea is to overcome the gap between the training process and inference
process during fine-tuning end-to-end TOD systems. The experiment on Multiwoz datasets shows the effectiveness
of our model compared with strong baselines in this research field. The source code is available for further exploitation.

Keywords: task oriented dialogue, end-to-end system, synthesis data augmentation, pre-trained language
models

1. Introduction

Different from open domain dialogue (ODD), which
aims to provide smooth conversations with humans
on various topics, task-oriented dialogue (TOD)
systems are developed to assist users in achiev-
ing some specific goals such as hotel booking or
restaurant recommendation (Fu et al., 2022). The
traditional approach follows a modular pipeline ar-
chitecture, which is divided into three separate com-
ponents: natural language understanding (NLU),
dialogue state tracking (DST), and natural language
generation (NLG). Nonetheless, this approach has
two main limitations (Chen et al., 2017): i) it is diffi-
cult to propagate when processing the end user’s
feedback; and ii) it requires significant human ef-
forts to adapt to the new environments (e.g., train-
ing with new data). In this regard, many studies
attempt to construct an end-to-end trainable frame-
work for TOD systems based on large pre-trained
language models (Hosseini-Asl et al., 2020; Yang
et al., 2021, 2022). Accordingly, those models are
typically developed by fine-tuning the pre-trained
model, which utilizes the strength of pre-trained
networks to learn task-agnostic language represen-
tations on specific data. However, the limitation
of this approach is the over-fitting of the final task
and forgetting the useful capabilities from the pre-
training phase (Kulhánek et al., 2021). Therefore,
recent studies try integrating multi-task learning
into fine-tuning end-to-end TOD models by adding
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related auxiliary tasks. For instance, Lee (2021)
defines span selection as an auxiliary task for en-
hancing the encoder of the T5 backbone model.
Kulhánek et al. (2021) demonstrate that the re-
sponse selection tasks are helpful on top of GPT-2
(Radford et al., 2019). Sequentially, Cholakov and
Kolev (2022) combine the two above models by
exploiting response selection tasks based on the
T5 (Raffel et al., 2020) as the backbone model. Fur-
thermore, PPTOD (Su et al., 2022) is introduced as
the first pre-trained multiple tasks with task-specific
prompts and alleviates the error accumulation in a
plug-and-play fashion.

In this paper, inspired by the recent studies in this
research field, we try to exploit deeply the capability
of pre-trained TOD models for robust fine-tuning of
end-to-end models with multi-task learning. The ba-
sic idea is to overcome the gap between the training
and inference process for fine-tuning end-to-end
TOD models. Accordingly, based on our observa-

Inference PhaseTraining Phase

Ut (UBAR)1:t-1

B't A't R't 

Ut (UB'A'R')1:t-1

B't A't R't 

Figure 1: The gap between the training and in-
ference phase for fine-tuning the end-to-end TOD
model. BAR and B’A’R’ denote the belief state, ac-
tion, and response of the ground truth and generate
results, respectively.

tion, for the fine-tuning end-to-end model with the
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sequence of tasks such as DST and NLG tasks, the
training process uses ground truth to calculate the
cross-entropy loss, however, the inference phase
uses generated responses, which is illustrated in
the Figure 1. Specifically, we utilize the well-known
strong baseline models in this research field such
as T5 (Raffel et al., 2020), MT-TOD (Lee, 2021),
and PPTOD (Su et al., 2022) to generate the syn-
thetic data. The results are then utilized to improve
the auxiliary tasks for a robust fine-tuning process.
According to the experiment reports, our proposed
method outperforms the strong baseline model on
two benchmark TOD datasets, which are MultiWOZ
2.1 (Eric et al., 2020) and MultiWOZ 2.2 (Zang et al.,
2020), and achieves new state-of-the-art results on
MultiWOZ 2.1 in the end-to-end paradigm. We re-
lease the source code for further exploitation1.

2. Methodology

2.1. End-to-end TOD model

In contrast with pipeline-based TOD systems, end-
to-end TOD directly optimizes and trains with a
single model by mapping the input to the output.
A general approach for building end-to-end sys-
tems is to fine-tune pre-trained language models,
for instance, GPT-2 (Hosseini-Asl et al., 2020; Yang
et al., 2021) or T5 (Lee, 2021; Bang et al., 2023)
to task-specific data. In this study, we use T5, the
encoder-decoder architecture as the backbone for
our proposed model, which is illustrated in Figure
2. Specifically, for the current dialogue turn t, the

Dialogue Encoder

User Utterance
(U)

Belief State
(B't)

Action + Response
(A't + R't)

Dialogue History
(H)

Belief Decoder Response
DecoderDB

Ut UBAR1:t-1

Figure 2: The overview architecture of end-to-end
TOD model.

encoder layer encodes the utterance Ut and the di-
alogue history Ht. Technically, Ht obtain the previ-
ous workflow sequence of utterance U , belief state
B, database DB, action A, and response R, which

1https://github.com/nqchieutb01/SynTOD

is formulated as follows:

Ht = [(U1, B1, DB1, A1, R1), ...,

(Ut−1, Bt−1, DBt−1, At−1, Rt−1)]
(1)

The belief decoder generates a belief state Bt,
which includes a sequence of a domain name, slot
names, and slot values. These values are then
used to query a domain-specific database to de-
termine a list of matching entities DBt. The list of
entities is then used as the input for the response
decoder to generate system action At , which con-
sists of (domain, action-type, slot) triples, and natu-
ral language response Rt, which generates tokens
in an auto-regressive manner. This procedure is
repeated until the dialogue is complete. In this re-
gard, the joint loss function can be formulated as
follows:

L = LBelef + LResp (2)

where LBelef and LResp are negative log-likelihood
language modeling losses for the two decoders
layers, which are sequentially calculated as follows:

LBelef = −log(p(Bt|Ht, Ut)) (3)

LResp = −log(p(At, Rt|Ht, Ut, DBt) (4)

2.2. Augmented responses synthesis for
end-to-end TOD models

Recent studies attempt to add training auxiliary
tasks to improve end-to-end TOD systems’ perfor-
mance. For instance, MTTOD (Lee, 2021) utilized
span selection as the auxiliary task for improving
the encoder layer. RSTOD (Cholakov and Kolev,
2022) improves the MTTOD model by exploiting
response selection. PPTOD (Su et al., 2022) is a
new dialogue multi-task pre-training stage with four
TOD-related tasks. TOATOD (Bang et al., 2023)
enhances the performance of the DST and NLG
tasks using the reinforcement learning method.

In this study, we try to exploit the auxiliary task
to develop a robust fine-tuned end-to-end model.
The main idea is to overcome the gap between the
training and inference processes. Observationally,
for the inference process, the multi-task in the end-
to-end model takes the generated results of the
previous turn (B′A′R′)1:t−1 to predict the current
turn, which is different from the training process
using ground truth (BAR)1:t−1. In this regard, we
utilize the generated responses of the pre-trained
TOD model as the additional samples for a robust
end-to-end TOD system. This strategy enables the
fine-tuning of end-to-end TOD models to mitigate
propagation errors during the inference phase, par-
ticularly when some of the generated states are
incorrect. Our proposed method is illustrated in the
Figure 3. Accordingly, with each utterance at turn
t, two dialogue histories H and H ′ denote ground
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Dialogue History + User Utterance

Belief Decoder

Batch size = 2

DB Response Decoder

Dialogue Encoder

 Synthetic Dialogue History + User Utterance

Figure 3: The overview of the proposed model (SynTOD) with batch size = 2. The black and dashed
red lines refer to our model flow when the inputs are original and synthesis dialogues, respectively. CE
denotes cross-entropy loss function. B′ denotes the belief state output of the original dialogue, and B′′ is
the belief state output of the synthesis dialogue. Similar meaning for action (A) and response (R).

truth and synthesis history, respectively. Notably,
the synthesis responses are generated from pre-
trained TOD models. The loss function in Equation
2 can be reformulated as follows:

L = α(LBelef + LResp) + β(L′
Belef + L′

Resp) (5)

whereα and β are hyperparameters, which are both
set to 1 for the experiments. L′

Belef and L′
Resp de-

notes the log-likelihood language modeling loss of
synthesis samples, which are sequentially calcu-
lated as follows:

L′
Belef = −log(p(Bt|H ′

t, Ut)) (6)

L′
Resp = −log(p(A′

t, Rt|H ′
t, Ut, DBt) (7)

where H ′ represents the synthesis dialogue history:

H ′
t = [(U1, B

′
1, DB1, A

′
1, R1), ...,

(Ut−1, B
′
t−1, DBt−1, A

′
t−1, Rt−1)]

(8)

3. Experiment

3.1. Experiment Setup
Dataset: We used MultiWOZ 2.1 and MultiWOZ
2.2 as the two benchmark datasets for our evalua-
tion. Specifically, the first version of the MultiWOZ
dataset was released in Budzianowski et al. (2018)
which consists of 8438, 1000, and 1000 for training,
dev, and test sets, respectively. MultiWOZ 2.1 (Eric

et al., 2020) is released to correct dialogue states
and add explicit system action annotation in the
original version. MultiWOZ 2.2 (Zang et al., 2020)
has fixes for state annotation of turns, a redefined
ontology, canonical forms for slot values, and slot
span annotations.
Baselines and Setup: We re-implement three
strong baseline models of end-to-end TOD models
(in the Figure 2) for the evaluation:

• T5 (Raffel et al., 2020): is a well-known pre-
trained language model with encoder-decoder
architecture.

• MTTOD (Lee, 2021): uses the T5 backbone
and integrates multi-task learning by adopting
span prediction as an auxiliary task.

• PPTOD (Su et al., 2022): we replace the T5
backbone with the pre-trained weight of the
PPTOD model, which is trained on large-scale
dialogue datasets.

All evaluated models use a small version of the
backbone T5 model, which includes 512 dimen-
sions, 8-headed attention, and 6 layers for both the
encoder and decoder. Regarding the hyperparam-
eter, the models are trained for 10 epochs with the
batch size 8, the learning rate is 5e-4, and the pro-
portion of warm-up steps is set to 0.2. We utilize the
AdamW (Loshchilov and Hutter, 2019) optimizer
with the linear learning rate decaying scheme for
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Model MultiWOZ 2.1 MultiWOZ 2.2
Inform Success BLEU Combined Inform Success BLEU Combined

T5 92,1 81,9 19,05 106,05 78,3 70,5 18,57 92,97
MTTOD 92,4 83.0 18,47 106,17 79.0 72,2 18,43 94,03
PPTOD 91.4 82.5 18.88 105.83 80,3 73,8 18,38 95,43
Ours:
+ T5 93.3 83.4 19.82 108.17 84.1 73.0 17.82 96.37
+ MT-TOD 92.1 83.6 18.58 107.43 82.8 73.0 18.48 96.38
+ PPTOD 92.7 84.3 19.30 107.80 85.7 73.0 17.73 97.08

Table 1: Reported results on MultiWOZ 2.1 and MultiWOZ 2.2 with end-to-end evaluation. Bold texts
indicate the best results.

optimization.
Evaluation Metrics In our experiments on the Multi-
WOZ 2.1 dataset, we employ an evaluation script as
in (Lee, 2021). For the MultiWOZ 2.2 dataset, we in-
corporate a newly standard evaluation script, which
is published in Nekvinda and Dušek (2021). More
specially, both evaluation scripts contain automatic
metrics as follows: Inform measures whether a sys-
tem has provided a correct entity. Success mea-
sures whether it has answered all the requested
information. Both are calculated on the level of dia-
logues. BLEU (Papineni et al., 2002) is calculated
by comparing n-grams in human-written references
and machine-generated hypotheses. It measures
the fluency of output responses, where human ut-
terances are used as the reference. Finally, the
Combined score is computed as:

Combined = (Inform+Success)0.5+BLEU (9)

3.2. Experiment Results
Table 1 reports the results of the proposed method,
which executes on three strong baselines. By in-
corporating synthetic dialogue responses, the in-
put size is doubled. As reported results, the per-
formances are consistently improving in the final
scores (combined metrics) across all models, show-
ing that augmented data is effective for boosting
model performance. More specifically, in the Mul-
tiWOZ 2.1 dataset, four metrics of the proposed
method outperform baseline models. In the Multi-
WOZ 2.2 dataset, the Inform score and Success
score are better than the baseline, while the BLEU
score slightly decreases. The results indicate the
impact of our method for adjusting trade-off prob-
lems between BLEU scores and others (i.e., In-
form) since the response from our model is robust
by learning the auxiliary task (i.e., cross-entropy
loss) between generate response (A′′ + R′′) and
the synthesis value of the action with ground truth
response (A′ +R), as shown in Equation 7. In this
regard, the generated response can be learned ro-
bustly with the noise values in previous processes
(e.g., R”). Generally, our method achieves the best
results on the MultiWOZ 2.1 dataset using T5 as the

backbone and MultiWOZ 2.2 using PPTOD, respec-
tively. We assume that with the cleaned version
of the MultiWOZ 2.1 dataset, MultiWOZ 2.2 can
achieve better performance on pre-trained TOD
models.

Furthermore, Table 2 reports the results of our
model compared with other recent studies on Mul-
tiWOZ 2.1 datasets, which is widely used as the
benchmark dataset in this research field. Specif-
ically, we compare our models with other strong
baselines including SimpleTOD (Hosseini-Asl et al.,
2020), UBAR (Yang et al., 2021), MTTOD (Lee,
2021), RSTOD (Cholakov and Kolev, 2022), PP-
TOD (Su et al., 2022), GALAXY (He et al., 2022),
and TOATOD (Bang et al., 2023). Accordingly, our

Model Backbone(size) Combined
SimpleTOD DistilGPT2(82 M) 92.98
UBAR DistilGPT2(82 M) 105.70

MTTOD∗ T5small(102.2 M) 103.99
T5base(360.9M) 107.50

RSTOD∗ T5small(105.5 M) 108.34

PPTOD† T5small(60 M) 101.52
T5base(220 M) 102.26

GALAXY UniLM(340 M) 105.92
GALAXY† UniLM(340 M) 110.76

TOATOD T5small(60 M) 104.54
T5base(220 M) 109.32

SynTOD T5small(60 M) 108.17
T5base(220 M) 108.75

Table 2: Reported results on MultiWOZ 2.1 Com-
pared with state-of-the-art end-to-end models. The
values with ∗ are from (Cholakov and Kolev, 2022).
Other results are from the respective papers. † de-
notes pre-trained TOD models.

model outperforms similar trainable params models
and is competitive with large models in this research
field. It demonstrates that our model, by augment-
ing the synthesis responses as the auxiliary task
can improve the performance of the end-to-end
TOD model. Furthermore, different from other mod-
els in this research field, the performance between
the large version (e.g., the base model) and the
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Our Model Size Inform Success BLEU Combined

+ T5 small - 60 M 93,3 83,4 19,82 108.17
base - 220 M 93,7 84,8 19,5 108.75

+ MT-TOD small - 102 M 92,1 83,6 18,58 107,43
base - 360.9 M 92,4 83,1 19,65 107,40

+ PPTOD small - 60 M 92,7 84,3 19,30 107,80
base - 220 M 93,7 84,1 19,54 108,44

Table 3: Reported results on MultiWOZ 2.1 of the proposed approach with different backbone versions
(i.e., small and base). Bold texts indicate the best results of each version, respectively.

small version of the proposed model is not signif-
icant. More details of this issue are reported in
the Table 3. In this regard, we make a hypothesis
that using generated results for the training pro-
cess of TOD tasks can reduce the gap between the
small and larger versions of the backbone models.
Specifically, this issue is taken into account as the
future work of this study.

3.3. Case Study

Figure 4 shows a case in which the proposed syn-
thetic approach can overcome the complex query.
Specifically, by using generated results for the train-

User: I am looking for a train that departs Cambridge after
21:00 on Thursday

w/o SynTOD Response: Where will you be traveling to ?

SynTOD Response: Where will you be traveling to ?

User: I am heading to stansted airport, i need to book for 2
people and can i please get a reference number

w/o SynTOD Response: [value_id] leaves at [value_leave]
and arrives at [value_arrive] . would you like me to book
that for you ?
 [value_reference] 

w SynTOD Response: booking was successful, the total
fee is [value_price] payable at the station . reference
number [value_reference] . is there anything else i can help
you with ? [value_reference] 

Turn 1

Turn 2

Figure 4: The example of two consecutive dialog
turns in dialog session SNG0446 from the Multi-
WOZ2.1 dataset. The green boxes and red boxes
indicate the response of with and without generated
results, respectively. The task-related entities are
highlighted in yellow.

ing process, SynTOD can provide both request
booking and give the reference number that other
methods might fail to mention the important entity
of the complex query, which leads the model to be
more stable.

4. Related Work

In the era of pre-trained language models, the end-
to-end trainable framework has been an emergent
research for TOD systems. A general approach
for building end-to-end systems is to fine-tune pre-
trained language models. SimpleTOD (Hosseini-
Asl et al., 2020) and UBAR (Yang et al., 2021)
are two well-known end-to-end models of this ap-
proach. Furthermore, pre-training language mod-
els for dialogue tasks, such as GALAXY (He et al.,
2022) and PPTOD (Su et al., 2022) have provided
promising results. MTTOD (Lee, 2021) and RSTOD
(Cholakov and Kolev, 2022) apply auxiliary tasks
to improve the performance of TOD systems. Re-
cently, with the rapid growth of large pre-trained
language models (billions of parameters), synthetic
data generation become a promising approach for
developing TOD systems (Lin et al., 2022; Bao et al.,
2023). However, most previous studies used the
synthetic approach to augment grounded dialogue
data. To the best of our knowledge, this paper
is the first study to generate synthetic results for
improving the training process of TOD systems.

5. Conclusion

In this paper, we propose a new strategy to incor-
porate synthesis data for the training process to
enable the TOD models to be more robust. Specifi-
cally, we utilize the synthesis responses from back-
bone models as the augmented data and training
together with the fine-tuned end-to-end TOD model
to make the model more robust. Experiments show
the effectiveness of the proposed method in various
strong baseline models. Regarding the future work
of this study, We plan to extend our new version
with large backbones (e.g., a large language model
with billions of parameters) to generate synthetic
responses for improving the performance.
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