
LREC-COLING 2024, pages 15500–15510
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

15500

Tackling Long Code Search with Splitting, Encoding, and
Aggregating

Fan Hu1∗, Yanlin Wang2†‡, Lun Du3,
Hongyu Zhang4, Shi Han3, Dongmei Zhang3, Xirong Li1

1 Renmin University of China
2 School of Software Engineering, Sun Yat-sen University

3 Microsoft
4 Chongqing University

Abstract
Code search with natural language helps us reuse existing code snippets. Thanks to the Transformer-based
pretraining models, the performance of code search has been improved significantly. However, due to the quadratic
complexity of multi-head self-attention, there is a limit on the input token length. For efficient training on standard
GPUs like V100, existing pretrained code models, including GraphCodeBERT, CodeBERT, RoBERTa (code), take
the first 256 tokens by default, which makes them unable to represent the complete information of long code that is
greater than 256 tokens. To tackle the long code problem, we propose a new baseline SEA (Split, Encode and
Aggregate), which splits long code into code blocks, encodes these blocks into embeddings, and aggregates them to
obtain a comprehensive long code representation. With SEA, we could directly use Transformer-based pretraining
models to model long code without changing their internal structure and re-pretraining. We also compare SEA with
sparse Trasnformer methods. With GraphCodeBERT as the encoder, SEA achieves an overall mean reciprocal
ranking score of 0.785, which is 10.1% higher than GraphCodeBERT on the CodeSearchNet benchmark, justifying
SEA as a strong baseline for long code search.

Keywords: code search, long code understanding, code representation

1. Introduction

A good code search technique helps developers
to boost software development by searching for
code snippets using natural language. Recent ad-
vancements have demonstrated the effectiveness
of Transformer-based code pre-training methods,
including CodeBERT (Feng et al., 2020), CoCLR
(Huang et al., 2021), and GraphCodeBERT (Guo
et al., 2021), which have significantly improved
code search performance through self-supervised
pre-training on large-scale code corpus.

However, these approaches face an inherent lim-
itation. The computational and memory complexity
of self-attention in the original Transformer grows
quadratically with the input length, imposing a con-
straint on the input length of approximately 512
tokens. For efficient training on standard GPUs like
V100, GraphCodeBERT and CodeBERT consider
only the first 256 tokens of code snippets and dis-
card any tokens beyond this limit. Nonetheless, this
length restriction can lead to accuracy issues, es-
pecially for long code snippets. For instance, when
examining the challenging cases of GraphCode-
BERT, we found that GraphCodeBERT has low

∗Work done during internship at Microsoft Research
Asia.

† The corresponding author. Contact: Yanlin Wang
(wangylin36@mail.sysu.edu.cn).

‡ Work done at Microsoft Research Asia.

performance for some long code snippets where
crucial information resides towards the end. As
illustrated in Figure 1, the keywords “Tensor” and
“patches” appear after the 256-token cutoff set by
GraphCodeBERT, resulting in their exclusion from
consideration. Consequently, the corresponding
code snippet is ranked at position 21,148.

We further conducted empirical studies on
GraphCodeBERT in publicly used CodeSearch-
Net dataset (Husain et al., 2019), and observed
a gradual decrease in search performance as the
length of the ground-truth code in the query in-
creased (refer to Table 1). This issue is similar
to the long text problem in natural language pro-
cessing, for which various approaches have been
proposed, including hierarchical processing (Zhang
et al., 2019b), sparse attention (Child et al., 2019;
Beltagy et al., 2020), and segment-level recurrence
(Dai et al., 2019). However, directly applying these
methods to long code presents two challenges.
Firstly, these techniques modify the internal struc-
ture of the Transformer model, potentially rendering
the existing pre-training parameters invalid. Sec-
ondly, long code differs from long text in that it is a
highly structured language. Unlike a long text docu-
ment that can be treated as a cohesive whole with
complete semantics, the semantics of code are dis-
continuous, and different functions are distributed
across various locations. The comparison experi-
ments conducted in Section 6.2 provide evidence

15501

Rank 1 (wrong result):

def patch(self, *args, **kwargs):
return super(Deposit, self).patch(*args, **

kwargs)

Rank 21148 (ground truth):

def read_image_file(data_dir, image_ext, n):
def PIL2array(img):

return np.array(
img.getdata(), dtype=np.uint8

).reshape(64, 64)

...

for fpath in list_files:
img = Image.open(fpath)
for y in range(0, 1024, 64):

for x in range(0, 1024, 64):
patch = img.crop(

(x, y, x + 64, y + 64))
patches.append(
PIL2array(patch))

return torch.ByteTensor(
np.array(patches[:n]))

256 tokens

Return a tensor containing the patches.

Figure 1: Example case of GraphCodeBERT.
GraphCodeBERT truncates tokens beyond 256 to-
kens. Key tokens are highlighted in yellow.

supporting these concerns.
Therefore, our goal is to divide long code while

preserving its semantic information. We aim to
achieve this without altering the internal structure of
Transformer-based pretraining models or requiring
re-pretraining. To address this, we propose SEA
(Split, Encode, and Aggregate) to handle long code
and obtain improved code representations.

As depicted in Figure 2, the process involves
splitting the long code into a set of code pieces,
followed by utilizing the sliding window method to
generate a partially overlapping code block set.
Existing code encoders are then used to obtain
embeddings for each code block. Finally, these
embeddings are aggregated to generate represen-
tations for the entire long code. Through extensive
experiments, we have found that the proposed AST-
based splitting method and attention-based aggre-
gation method outperform other techniques for split-
ting and aggregation. Due to the varying numbers
of code blocks obtained from different code snip-
pets, parallel operation becomes challenging. To
address this problem, we have designed a combine-
divide module for acceleration. It is important to
note that SEA is encoder-agnostic, meaning it can
be used with different Transformer-based encoders.
When compared to various Transformer-based en-
coder baselines, SEA achieves a significant im-
provement in mean reciprocal ranking (MRR) per-
formance, ranging from 7% to 10%.

Table 1: The code search performance (MRR) of
different ground-truth code token lengths. We set
the code truncation length from 50 to 512. The high-
est results in each column are highlighted. Dataset:
CodeSearchNet python. Model: GraphCodeBERT.

Token length Code truncation length
50 100 256 400 512

[0, 256) 0.6274 0.6856 0.6909 0.6897 0.6906
[256, 512) 0.6239 0.7027 0.7237 0.7258 0.7265
[512, 768) 0.6004 0.6467 0.7168 0.7180 0.7181
[768, 1024) 0.6038 0.6315 0.7111 0.7375 0.7276
[1024, 1943) 0.6202 0.6573 0.6589 0.6835 0.6825

The contributions can be summarized as:

• Empirical finding and verification of the dif-
ficulty for modeling long code in existing
Transformer-based code search models.

• We propose a new baseline SEA and explore
an optimal splitting and aggregation setting.
We also design a combine-divide module for
acceleration.

• Through extensive experiments, we show the
effectiveness of the proposed SEA with dif-
ferent encoder baselines in six programming
languages, resulting in a strong baseline for
code search. Our source code and experimen-
tal data are available at: https://github.
com/fly-dragon211/SEA.

2. Related Work

2.1. Code Search Methods
Early studies (Nie et al., 2016; Yang and Huang,
2017; Rosario, 2000; Hill et al., 2011; Satter and
Sakib, 2016; Lv et al., 2015; Van Nguyen et al.,
2017) in code search mainly applied information re-
trieval (IR) techniques directly, treating code search
as a text matching task. Both queries and code
snippets were considered plain text, and tradi-
tional text matching algorithms such as bag-of-
words (BOW) (Schütze et al., 2008), Jaccard (Jac-
card, 1901), term frequency-inverse document fre-
quency (TF-IDF) (Robertson and Jones, 1976),
BM25 (an improved version of TF-IDF) (Robertson
and Zaragoza, 2009), and the extended boolean
model (Lv et al., 2015) were employed. Since code
length has minimal impact on modeling complex-
ity, these methods could encode long code without
truncation.

Following the introduction of the large-scale pre-
training model BERT (Devlin et al., 2019), Code-
BERT was proposed by Feng et al. (2020). Code-
BERT is a model pre-trained on unlabeled source
code and comments, which achieved impressive

https://github.com/fly-dragon211/SEA
https://github.com/fly-dragon211/SEA

15502

performance in text-based code search through
fine-tuning on text-code paired datasets. Huang
et al. (2021) introduced CoCLR, a contrastive learn-
ing method that enhances query-code matching.
Sun et al. (2022) developed a context-aware code
translation technique that translates code snippets
into natural language descriptions. Gu et al. (2022)
utilized deep hashing and code classification to
accelerate code search, while Chai et al. (2022)
adapted few-shot meta-learning to code search.
Guo et al. (2021) proposed GraphCodeBERT, in-
corporating structure-aware pre-training tasks to
improve code understanding and performance. Re-
cently, Hu et al. (2023) utilized a two-stage fusion
code search framework that combines bi-encoders
and cross-encoders to enhance performance. How-
ever, the computational complexity of Transformers
and limited GPU memory often lead to the trunca-
tion of long code snippets.

2.2. Neural Code Representation with
Code Structure

Recently, there have been notable advancements
in neural code representation methods that lever-
age code structure, particularly Abstract Syntax
Trees (AST), yielding impressive performance (Alon
et al., 2020; Sun et al., 2020; Bui et al., 2021;
Kim et al., 2021; Peng et al., 2021; Hellendoorn
et al., 2019; Allamanis et al., 2021; Georgiev et al.,
2022; Ma et al., 2023; Du and Yu, 2023). MMAN
(Wan et al., 2019) incorporates a multi-modal atten-
tion fusion layer to combine AST and Control Flow
Graph (CFG) representations. ASTNN (Zhang
et al., 2019a) and CAST (Shi et al., 2021) seg-
ment large ASTs into sequences of smaller state-
ment trees, encoding them into vectors by captur-
ing the lexical and syntactical information of each
statement. TBCAA (Chen et al., 2019) employs a
tree-based convolution network over API-enhanced
ASTs. UniXcoder (Guo et al., 2022) leverages both
AST and code comments to enrich code represen-
tation. GraphCodeBERT (Guo et al., 2021) incor-
porates variable relations extracted from ASTs in
its pre-training tasks. In our work, we specifically
aim to capture and model the structural information
present in long code snippets.

2.3. Transformer for Long Text
The application of Transformer models for long text
can be broadly divided into two categories: scal-
ing up attention and enhancing the original Trans-
former model, and aggregation methods. The first
category includes four main approaches: sparse
attention (Child et al., 2019; Correia et al., 2019;
Beltagy et al., 2020; Kitaev et al., 2019; Roy et al.,
2021; Ainslie et al., 2020; Jiang et al., 2020; Gün-
ther et al., 2023), recurrence (Dai et al., 2019), hi-

Table 2: The code token length statistic of Code-
SearchNet evaluation set.

Length Ruby JS Go Py Java Php Overall
[0, 256) 16% 10% 22% 14% 13% 13% 14%
[256, 512) 44% 29% 38% 30% 27% 26% 32%
[512, +∞) 41% 62% 40% 56% 60% 61% 54%

erarchical mechanisms (Zhang et al., 2019b; Gao
and Callan, 2022), and compressed attention (Ye
et al., 2019; Guo et al., 2019). Sparse attention
restricts each token to attend to only a subset of
other tokens. Recurrence integrates recurrent neu-
ral network elements into Transformer models to ex-
tend their attention span. Hierarchical mechanisms
model long input text hierarchically, from sentences
to paragraphs. Compressed attention selectively
compresses specific parts of the input.

The second category, aggregation methods, in-
volves aggregating multiple passage scores or rep-
resentations for a long document. For instance,
Wang et al. (2019) proposed a multi-passage BERT
model to globally normalize answer scores across
all passages in the question answer task. In the
context of document ranking, SMITH (Yang et al.,
2020) learns a document representation through
hierarchical sentence representation aggregation.
PARADE (Li et al., 2020) employs Max, CNN, At-
tention, and Transformer to aggregate the passage
representations. Tsujimura et al. (2023) uses a
sliding window method to manage long input se-
quences in the context of medical Named Entity
Recognition tasks.

However, these methods may not be entirely suit-
able for highly structured code. In well-designed
programs, code within the same module, such as
a function, is closely interconnected, while interac-
tions between different modules are loosely cou-
pled, adhering to the principle of high cohesion and
low coupling. Conversely, long text in natural lan-
guage tends to exhibit coherence. In this paper,
we investigate the applicability of long text meth-
ods in the field of code search and propose a new
baseline SEA for long code search.

3. Motivation: Long Code Problem

3.1. Preliminaries
Code search aims to find the most relevant code
snippet C from a given codebase that matches a
query Q. For a current deep-learning model, we
first transform query Q and the code snippets C to
query and code tokens with the tokenizer such as
BPE (Sennrich et al., 2016). Then we transform
the token ids of the query Q and the code snippets
C to vector representations eq and ec by neural
network encoders, and calculate the similarity (or

15503

distance) measures in Euclidean space such as
Cosine similarity or Euclidean distance to obtain
the cross-modal similarity score s. The calculation
can be formalized as follows:

eq = Γ(tokenizer(Q))

ec = Γ′(tokenizer(C)), C ∈ Codebase

s = sim(eq, ec)

(1)

where Γ and Γ′ are two well-trained neural network
encoders learned from labeled paired data.

3.2. The Long Code Problem

To control memory and computation costs in train-
ing stage, it is common practice to truncate long
code. For example, GraphCodeBERT typically
takes the first 256 code tokens by default. To in-
vestigate whether this truncation method results in
information loss, we conducted token length statis-
tics on CodeSearchNet. As shown in Table 2, we
found that snippets with a token length less than
256 accounted for only 14.1%, while 53.5% of code
snippets exceeded the maximum encoding length
of 512 tokens for Transformers. This indicates that
truncation leads to information loss for snippets
with a token length greater than 256.

To examine the search performance difference of
GraphCodeBERT across query subsets with vary-
ing ground truth (GT) code lengths, we divided the
python test subset of CodeSearchNet (CSN) into 5
distinct query sets based on different GT code token
lengths. We calculated the Mean Reciprocal Rank
(MRR) of GraphCodeBERT for various code trunca-
tion lengths, as shown in Table 1. Notably, we ob-
served a downward trend in search performance as
the ground-truth code token length increased (from
top to bottom) for code token lengths surpassing
256 tokens, indicating that long code snippets pose
challenges for GraphCodeBERT. Moreover, as the
code truncation length extended from left to right,
we observed a relatively consistent search perfor-
mance when the truncation length exceeded the
token length. And there emerged an upward trend
in the search performance for code snippets with
the token length surpassing the truncation length.
This suggests that simply truncating long code may
result in the loss of valuable information.

4. SEA

In this section, we present a comprehensive
overview of SEA, encompassing the model archi-
tecture, splitting methods, aggregation techniques,
and the combine-divide method designed to accel-
erate inference.

4.1. Model Architecture
We introduce our SEA in this section. The overall
pipeline is illustrated in Figure 2. Given a code
snippet C, our objective is to derive a code repre-
sentation ec. To achieve this, we employ a multi-
step approach. We first split the code snippet into
a code piece set:

P = Split(C) = {p1, p2, . . . , pn}. (2)

Then we use the sliding window method to obtain
a partially overlapping code block set:

B = SlidingWindow(P) = {b1, b2, . . . , bk}. (3)

Assuming the window size is w and the step is s,
then the code block number is k = ⌊n−w

s + 1⌋,
where ⌊·⌋ refers to round down. Next, we utilize a
code encoder, such as GraphCodeBERT, to obtain
embeddings for each of the k code blocks:

eB = {eb1 , eb2 , . . . , ebk}. (4)

Finally, an aggregation method is applied to com-
bine the k embeddings into the code representation
ec:

ec = Aggregation(eB) (5)

4.2. Splitting Methods
To obtain the code piece set, we explore four
splitting methods, namely space-based splitting,
token-based splitting, line-based splitting, and AST-
based splitting. Space-based splitting is simply
splitting by space, resulting in splitting a string
like “def read_image_file” is divided into {‘def’,
‘read_image_file’}. Similarly, token-based splitting
and line-based splitting entail splitting based on
tokens and lines, respectively.

An Abstract Syntax Tree (AST) is a tree repre-
sentation of the syntactic structure of source code
written in a programming language. Each node in
the AST corresponds to a specific construct in the
code, such as expressions, statements, or decla-
rations. The hierarchical structure of ASTs reflects
the syntax of programming languages, abstracting
away certain syntactic details to focus on the core
structure.

For AST-based splitting, our goal is to devise a
method that is both straightforward and applica-
ble to various programming languages. Inspired
by CAST (Shi et al., 2021), we parse a source
code into an Abstract Syntax Tree with tree_sitter1,
and visit this AST by preorder traversal. In the
case of composite structures (i.e. for, if, def, etc.),
as depicted in Figure 2(a), we define the set of
AST nodes {head_block, body}, where head_block

1https://github.com/tree-sitter/
py-tree-sitter

https://github.com/tree-sitter/py-tree-sitter
https://github.com/tree-sitter/py-tree-sitter

15504

def
…

def
PIL2array

…

return
np.array

…

for
fpath in

…

img =
Image.

…
...

def
…

def
PIL2array

…

return
np.array

…

for
fpath in

…

img =
Image.

…
...

def read_image_file(data_dir, image_ext, n):
def PIL2array(img):

return np.array(
img.getdata(), dtype=np.uint8

).reshape(64, 64)
...

for fpath in list_files:
for y in range(0, 1024, 64):

for x in range(0, 1024, 64):
patch = img.crop(

(x, y, x + 64, y + 64))
patches.append(
PIL2array(patch))

return torch.ByteTensor(
np.array(patches[:n]))

Function
definition

name read_image_file

body

parameters

name

body

Return statement

Function
definition

…

INFor
statement

…

…

…

…

body …

Return statement

GraphCodeBERT

GraphCodeBERT

GraphCodeBERT...

Fusion
module

Sliding window Code encoder Code representation

(a) AST-based code splitting.

def
…

def
PIL2array

…

return
np.array

…

for
fpath in

…

img =
Image.

…
...

def
…

def
PIL2array

…

return
np.array

…

for
fpath in

…

img =
Image.

…
...

def read_image_file(data_dir, image_ext, n):
def PIL2array(img):

return np.array(
img.getdata(), dtype=np.uint8

).reshape(64, 64)
...

for fpath in list_files:
for y in range(0, 1024, 64):

for x in range(0, 1024, 64):
patch = img.crop(

(x, y, x + 64, y + 64))
patches.append(
PIL2array(patch))

return torch.ByteTensor(
np.array(patches[:n]))

Function
definition

name read_image_file

body

parameters

name

body

Return statement

Function
definition

…

INFor
statement

…

…

…

…

body …

Return statement

GraphCodeBERT

GraphCodeBERT

GraphCodeBERT...

Aggregation
module

Sliding window Code encoder Code representation

(b) Slidding window and aggregation.

Figure 2: The pipeline of our proposed SEA (split, encode and aggregate) architecture.

is responsible for splitting the header and body
of nested statements such as if and While state-
ments, while body corresponds the method dec-
larations. When encountering a composite struc-
ture, we insert a splitting mark before and after the
head_block, effectively dividing a large AST into
a sequence of non-overlapping subtrees. Subse-
quently, based on the AST splitting, we construct
the code piece set P by splitting the original code
accordingly.

4.3. Aggregation Methods

Meanpooling / Maxpooling. A straightforward
approach to aggregate the embeddings of k code
blocks is to calculate the mean or maximum of their
embeddings:

ec = Mean/Max({eb1 , eb2 , . . . , ebk}). (6)

However, a limitation of meanpooling is that each
code block contributes equally to the final represen-
tation, regardless of their individual qualities. Sim-
ilarly, maxpooling gives prominence to the block
with the highest value. To address these limitations
and enhance the aggregation process, we propose
the incorporation of weighted embedding methods.

Attention-based aggregation. Recognizing
that not all code blocks hold equal importance in
representing long code snippets, we introduce self-
adaptive weights α for each block embedding dur-

Encoder

Linear

Softmax

… Encoder
1 × 𝑑 1 × 𝑑

𝑘 × 𝑑

𝑘 × 1

𝑘 × 1

1 × 𝑑

1 × 𝑑

1 × 𝑑

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

Mean/Max

ConCat

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

Linear

Softmax

Mean/Maxtanh

Linear

1 × 𝑑 1 × 𝑑

𝑘 × 𝑑

1 × 𝑑

Mean/Max

1 × 𝑑 1 × 𝑑

𝑘 × 𝑑

𝑘 × 128

𝑘 × 1

1 × 𝑑

1 × 𝑑
𝑘 × 128

𝑘 × 1

Encoder … Encoder

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

ConCat

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

Encoder … Encoder

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

ConCat

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

(a) One layer attention with
mean / max.

Encoder

Linear

Softmax

… Encoder
1 × 𝑑 1 × 𝑑

𝑘 × 𝑑

𝑘 × 1

𝑘 × 1

1 × 𝑑

1 × 𝑑

1 × 𝑑

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

Mean/Max

ConCat

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

Linear

Softmax

Mean/Maxtanh

Linear

1 × 𝑑 1 × 𝑑

𝑘 × 𝑑

1 × 𝑑

Mean/Max

1 × 𝑑 1 × 𝑑

𝑘 × 𝑑

𝑘 × 128

𝑘 × 1

1 × 𝑑

1 × 𝑑
𝑘 × 128

𝑘 × 1

Encoder … Encoder

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

ConCat

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

Encoder … Encoder

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

ConCat

𝐶𝑜𝑑𝑒 𝐵𝑙𝑜𝑐𝑘

(b) Two layer attention with
mean / max.

Figure 3: The attention-based aggregation meth-
ods.

ing aggregation:

ec =

k∑
i

αiebi . (7)

Inspired by attention-based Multi-Instance Learning
(Li et al., 2021) and Lightweight Attentional Feature
Fusion (Hu et al., 2022), we compute the weights
{α1, . . . , αk} as follows:

{a1, . . . , ak} = softmax(Linear({eb1 , . . . , ebk})).
(8)

15505

Table 3: Computation cost analysis. n is the se-
quence length, d is the representation dimension,
k is the code block number, l is the layer number.
Note that we use one layer attention for SEA.
Method Parameters Complexity
GraphCodeBERT 5d2 · l O(n2 · d · l)
SEA 5d2 · l + d O(n

2

k · d · l)

For one layer attention, Linear refers to a fully con-
nected layer that transforms the dimension to 1.
For two layer attention, Linear refers to two fully
connected layers that first transform the dimension
to 128 and then transform the dimension to 1. Fur-
thermore, as illustrated in Figure 3(a) and Figure
3(b), we explore the combination of attention with
meanpooling / maxpooling methods:

ec =

k∑
i

(αiebi) +Mean/Max({eb1 , eb2 , . . . , ebk}).

(9)
For computation cost analysis, SEA employs the

sliding window method to significantly reduce com-
plexity to 1/k. The original complexity of Graph-
CodeBERT is given by O(n2 · d · l), where n, d, l
represent sequence length, representation dimen-
sion, and layer number, respectively. By using the
sliding window method, the complexity for each
window becomes O(w2 · d · l), where w denotes
the window size. Setting the step s = w, the total
number of code blocks becomes k = n

w , leading to
the window size w = n

k . Consequently, the overall
complexity is simplified to:

O(k ·w2 ·d·l) = O(k ·(n
k
)
2
·d·l) = O(

n2

k
·d·l). (10)

This remarkable reduction in complexity to 1
k allows

SEA to encode long code with less memory and
computation costs.

Furthermore, as shown in Table 3, we observe
that compared to GraphCodeBERT, SEA incorpo-
rating one-layer attention Aggregation introduces
only d additional learnable parameters. Despite
this modest increase in parameter count, it plays
a pivotal role in enhancing the effectiveness of the
aggregation stage, as our experiments will provide
the evidence in Section 6.1.

4.4. Batch Processing
To enhance inference efficiency on large datasets,
it is necessary to devise a batch processing method
capable of encoding multiple long code snippets
simultaneously. As outlined in Section 4.1, we
obtain multiple code blocks from each long code
snippet. However, due to the varying number of

Code Encoder

Fusion

Code
batch

Fusion

Fusion

Block
batch

Block embeddings

②

②

②

①

Code
blocks

20221014 修改

89%

11%

token length <= 128

token length > 128

9%

91% token length <= 256

token length > 256

Figure 4: The batch processing combine-divide
method. ① and ② refer to combination and division
methods.

corresponding code blocks for different long code
snippets, devising a general batch processing ap-
proach poses a challenge.

To address this issue, we introduce the combine-
divide method. As illustrated in Figure 4, assuming
a batch size of 3 (comprising three code snippets),
the corresponding number of code blocks for each
snippet is 2, 3, and 1, respectively. We begin by
combining these six code blocks into a block batch
and establish a mapping M that links the code
index to the block index. Subsequently, we input
this block batch into the code encoder in parallel
to obtain block embeddings. Finally, leveraging
the information from mapping M , we segregate
the embeddings into three groups and input them
into the aggregation module to obtain distinct code
representations.

5. Experimental Design

5.1. Datasets
We conduct experiments on the widely used Code-
SearchNet (Husain et al., 2019) dataset, com-
prising six programming languages, i.e. , Ruby,
JavaScript, Go, Python, Java, and PHP. Following
the approach in (Guo et al., 2021), we apply filter-
ing to eliminate low-quality queries and expand the
retrieval set to encompass the entire code corpus.

5.2. Evaluation Metrics
In our evaluation, we use two popular automatic cri-
teria: MRR (Mean Reciprocal Ranking) and R@k
(top-k accuracy, k=1, 5, 10, 100). They are com-
monly used for in previous code search studies (Lv
et al., 2015; Gu et al., 2018; Sachdev et al., 2018;
Husain et al., 2019; Feng et al., 2020; Huang et al.,
2021; Guo et al., 2021). In addition, we report the
number of parameter and inference time as the
efficiency measure.

5.3. Experimental Settings
Our baseline is GraphCodeBERT. The parame-
ters of code and natural language encoders are

15506

Table 4: The search performance of different SEA variants. Dataset: CodeSearchNet Ruby.
Window Step Splitting Aggregation MRR R@1 R@5 R@10 R@100

GraphCodeBERT – – – – 0.6948 59.3 82.1 87.3 96.5

SEA-SpaceSplitting

256 128 Space Maxpooling 0.6919 58.5 82.0 87.2 95.2
256 128 Space Meanpooling 0.6929 58.3 83.0 87.4 95.6
256 128 Space Attention (two layers) 0.6940 58.7 83.4 87.1 94.8
256 128 Space Attention (two layers) + Mean 0.7490 66.3 85.2 88.9 94.4
256 128 Space Attention (one layer) 0.6989 59.6 82.2 86.8 95.0
256 128 Space Attention (one layer) + Mean 0.7495 66.1 86.3 89.0 94.3
128 64 Space Attention (one layer) + Mean 0.7545 66.2 87.5 90.2 95.2
64 32 Space Attention (one layer) + Mean 0.7431 65.1 85.6 88.7 94.0

SEA-TokenSplitting
256 128 Token Attention (one layer) + Mean 0.7752 68.4 89.1 91.9 96.0
128 64 Token Attention (one layer) + Mean 0.7606 67.2 87.5 91.3 95.6
64 32 Token Attention (one layer) + Mean 0.7352 62.8 87.2 90.6 95.0

SEA-LineSplitting
64 32 Line Attention (one layer) + Mean 0.7635 67.3 88.2 91.3 95.6
32 16 Line Attention (one layer) + Mean 0.7537 66.1 87.2 90.3 95.2
16 8 Line Attention (one layer) + Mean 0.7498 65.5 86.9 90.3 95.0

SEA-ASTSplitting
64 32 AST Attention (one layer) + Mean 0.7539 65.7 91.4 95.0 97.6
32 16 AST Attention (one layer) + Mean 0.7762 68.8 89.1 92.0 96.4
16 8 AST Attention (one layer) + Mean 0.7744 68.8 88.7 91.4 96.3

initialized by GraphCodeBERT. For training, we ran-
domly select 6 code blocks from the divided code
blocks of one long code. The training batch size is
32. For evaluation, we use all divided code blocks
of one long code. The evaluated batch size is 256.
All experiments are conducted on a machine with
Intel Xeon E5-2698v4 2.2Ghz 20-Core CPU and
two Tesla V100 32GB GPUs.

6. Experimental Results

6.1. The Optimal SEA Configuration
To identify the optimal configuration for SEA, we
conducted experiments by varying our architec-
ture using different code splitting methods and ag-
gregation methods, while measuring the resulting
changes in search performance. Given that the
CodeSearchNet Ruby dataset is relatively small,
we focused on conducting experiments on the ruby
subset, and we present the results in Table 4.

In Table 4 rows SpaceSplitting, we experimented
with various aggregation methods as described in
Section 4.3. Our findings showed that using any
single aggregation method in isolation did not yield
significant performance improvements compared
to the GraphCodeBERT Baseline. However, upon
fusing the attention method with meanpooling, we
observed substantial performance enhancement.
Specifically, the Attention (one layer) + Mean aggre-
gation method improved MRR and R@1 by 7.9%
and 11.5%, respectively. Consequently, for subse-
quent experiments, we opted to use the Attention
(one layer) + Mean aggregation method.

In Table 4 rows SpaceSplitting, TokenSplitting,
LineSplitting, ASTSplitting, we explored different
code split methods, as detailed in Section 4.2. For
space and token-based splitting methods, we set

the window size from 64 to 256 due to the finer
granularity of division. Conversely, for line and AST-
based split methods, we set the window size from
16 to 64. Notably, we observed that the AST-based
split method displayed outstanding performance,
achieving the highest MRR and R@1 with a window
size of 32. As a result, in subsequent experiments,
SEA refers to SEA-ASTSplitting with a window size
of 32, step size of 16 and the Attention (one layer)
+ Mean aggregation method.

6.2. Comparison with Three Sparse
Transformers

In this section, we conduct a comparison between
SEA and three sparse Transformers, BIGBIRD (Za-
heer et al., 2020), Longformer (Beltagy et al., 2020),
and LongCoder (Guo et al., 2023). BIGBIRD and
Longformer are two well-known long document-
oriented Transformers. LongCoder employs a slid-
ing window mechanism to handle long code input
for code completion. Specifically, we leverage the
bigbird-roberta-base2, longformer-base-40963 and
longcoder-base4 models, with a token length of
1024. Due to BIGBIRD and Longformer not being
pretrained on the code dataset, we also conducted
experiments to initialize BIGBIRD and Longformer
with the parameters of GraphCodeBERT. The re-
sults are presented in Table 5. Comparing the
results before and after initializing BIGBIRD and
Longformer with the parameters of GraphCode-
BERT, we found that MRR results improved from
0.2952 and 0.5016 to 0.6121 and 0.6595, respec-

2https://huggingface.co/google/bigbird-roberta-base
3https://huggingface.co/allenai/longformer-base-

4096
4https://huggingface.co/microsoft/longcoder-base

15507

Table 5: Comparison with sparse Transformers. The notation (G) indicates that the model is initialized
with GraphCodeBERT parameters. The code inference time is determined by randomly selecting 1000
codes and calculating the average inference time. We repeat each time calculating experiment three
times and report the mean and standard deviation. Dataset: CodeSearchNet Ruby. SEA outperforms
other models significantly (p < 0.01).

Model #Param. Token Length Inference Time MRR R@1 R@5 R@10
GraphCodeBERT 124.6M 256 6.3 ± 0.3ms 0.6948 59.3 82.1 87.3
BIGBIRD 127.5M 1024 20.1 ± 0.2ms 0.2952 19.2 39.8 51.1
BIGBIRD (G) 127.5M 1024 19.8 ± 0.0ms 0.6121 50.8 74.2 80.7
Longformer 148.7M 1024 33.7 ± 0.2ms 0.5128 39.9 65.3 72.4
Longformer (G) 148.7M 1024 33.7 ± 0.1ms 0.6595 55.1 79.4 84.0
LongCoder 149.6M 1024 68.6 ± 0.2ms 0.4718 35.8 61.1 67.8
SEA 124.6M - 7.2 ± 0.5ms 0.7762 68.8 89.1 92.0
- w/o combine-divide 124.6M - 24.3 ± 2.4ms 0.7762 68.8 89.1 92.0

tively. We attribute this performance gap to the
need for re-pretraining models that were originally
pretrained on natural language datasets. We ob-
served that LongCoder’s MRR was 0.4718, which
represents a significant decrease compared to
GraphCodeBERT, suggesting that LongCoder may
be primarily suited for Code Completion tasks. We
also conducted t-tests between our SEA and other
baselines, and the results demonstrate that SEA
significantly outperforms all sparse Transformer
baselines (p < 0.01), highlighting its superior per-
formance in the domain of code search.

In terms of model parameters and search effi-
ciency, SEA stands out as it boasts a lower pa-
rameter count and shorter inference time com-
pared to BIGBIRD, Longformer and LongCoder. It’s
worth noting that SEA’s parameter count is closely
aligned with that of GraphCodeBERT, differing only
by the addition of a single attention layer. However,
this minor change results in a significant boost in
search performance. We also present experimen-
tal results without employing the combine-divide
method in Table 5. We observed that while the
search performance stays stable, the inference
time increases by more than threefold. It high-
lights the considerable improvement in inference
time brought about by the combine-divide method,
thereby confirming its effectiveness in accelerating
the model’s inference process.

6.3. SEA Performance on Varied Code
Lengths

To explore the improvement of the proposed SEA
for code snippets with varying lengths, we present
the search performance comparison between the
baseline method GraphCodeBERT and SEA un-
der different ground-truth code token lengths. The
results are depicted in Figure 5.

Notably, the retrieval performance of each query
subset exhibits noticeable enhancements, particu-
larly for long code retrieval results. We attribute this

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

[0, 256) [256, 512) [512, 768) [768, 1024) [1024, 1943)

M
R

R

Code token length

GraphCodeBERT SEA

Figure 5: The performance comparison between
GraphCodeBERT and SEA in different ground-truth
code token lengths. Compare to GraphCodeBERT,
SEA achieves significantly (p < 0.01) better perfor-
mance for different code token lengths.

improvement to two crucial factors. Firstly, the ag-
gregation module of SEA adaptively captures and
incorporates information from diverse segments of
the long code, leading to a more comprehensive
and informative code representation. Secondly,
the code splitting method employed by SEA can be
viewed as a form of data augmentation, providing
additional context and variation that aids in strength-
ening the code representation. In summary, SEA
yields a more robust code representation, signifi-
cantly enhancing the overall retrieval performance.

6.4. Baseline Comparison Across
Multiple Programming Languages

To ensure a fair and reproducible comparison, we
carefully selected pretraining-based baselines that
meet the following three criteria: 1) The source
code is publicly available; 2) The overall model is
adaptable to all the six programming languages
on the CodeSearchNet dataset; 3) The paper is
peer-reviewed if it is published as a research pa-

15508

Table 6: The MRR on six languages of the CodeSearchNet dataset. SEA here refers to SEA-ASTSplitting
with window size 32 and step 16. SEA +RoBERTa refers to SEA with RoBERTa as the code encoder.
SEA outperforms baselines significantly (p < 0.01).
Model / Method Ruby Javascript Go Python Java Php Overall
RoBERTa 0.587 0.517 0.850 0.587 0.599 0.560 0.617
UniXcoder 0.586 0.603 0.881 0.695 0.687 0.644 0.683
CodeBERT 0.679 0.620 0.882 0.672 0.676 0.628 0.693
GraphCodeBERT 0.703 0.644 0.897 0.692 0.691 0.649 0.713
SEA +RoBERTa 0.651 (10.9%↑) 0.593 (14.6%↑) 0.879 (3.5%↑) 0.633 (7.9%↑) 0.666 (11.1%↑) 0.647 (15.6%↑) 0.678 (10.0%↑)
SEA +UniXcoder 0.648 (10.7%↑) 0.692 (14.8%↑) 0.896 (1.8%↑) 0.707 (1.7%↑) 0.739 (7.5%↑) 0.712 (10.5%↑) 0.732 (7.3%↑)
SEA +CodeBERT 0.742 (9.3%↑) 0.696 (12.3%↑) 0.905 (2.6%↑) 0.714 (6.2%↑) 0.732 (8.3%↑) 0.711 (13.2%↑) 0.750 (8.3%↑)
SEA +GraphCodeBERT 0.776 (10.4%↑) 0.742 (15.2%↑) 0.921 (2.7%↑) 0.754 (8.9%↑) 0.768 (11.1%↑) 0.748 (15.3%↑) 0.785 (10.1%↑)

per. Consequently, we select four deep end-to-end
approaches: RoBERTa (Liu et al., 2019), UniX-
coder (Guo et al., 2022), CodeBERT (Feng et al.,
2020), and GraphCodeBERT (Guo et al., 2021).

In Table 6, we present the MRR results, demon-
strating that SEA outperforms all methods across
all six programming languages. Notably, this con-
clusion remains consistent for the recall metric and
another variant of SEA, the results of which can
be found in our replication package. These find-
ings reinforce the superiority of SEA as compared
to the pretraining-based baselines across diverse
programming languages.

7. Conclusion

In this paper, we address the challenge of effec-
tively modeling long code for code search. We
introduce SEA, an effective approach that yields
improved code representations for long code snip-
pets. Despite its simplicity, our experimental results
show the remarkable effectiveness and efficiency
of SEA. We believe this work opens up new possi-
bilities for code search.

8. Ethical Statement

Future extensions and applications arising from our
work should be mindful of the environmental im-
pact of training large-scale models. They should
actively avoid its potential misuse by searching ma-
licious intent. However, it is unlikely that the model
in its current form would lead to such an impact
in the near future. Our model also has the poten-
tial for making a positive impact in areas such as
code search, long code understanding and code
representation.

9. Acknowledgments

The work described in this paper is partially sup-
ported by CCF-Huawei Populus Grove Fund CCF-
HuaweiSE202301.

10. Bibliographical References

Joshua Ainslie, Santiago Ontañón, Chris Alberti,
Vaclav Cvicek, Zachary Fisher, Philip Pham,
Anirudh Ravula, Sumit Sanghai, Qifan Wang,
and Li Yang. 2020. ETC: encoding long and
structured inputs in transformers. In EMNLP.

Miltiadis Allamanis, Henry Jackson-Flux, and Marc
Brockschmidt. 2021. Self-supervised bug detec-
tion and repair. In NeurIPS.

Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav.
2020. Structural language models of code. In
ICML.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document trans-
former. arXiv.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021.
Treecaps: Tree-based capsule networks for
source code processing. In AAAI.

Yitian Chai, Hongyu Zhang, Beijun Shen, and Xi-
aodong Gu. 2022. Cross-domain deep code
search with few-shot meta learning. arXiv.

Long Chen, Wei Ye, and Shikun Zhang. 2019. Cap-
turing source code semantics via tree-based con-
volution over api-enhanced ast. In CF.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences
with sparse transformers. arXiv.

Gonçalo M Correia, Vlad Niculae, and André FT
Martins. 2019. Adaptively sparse transformers.
In EMNLP-IJCNLP.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G
Carbonell, Quoc Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models
beyond a fixed-length context. In ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training

15509

of deep bidirectional transformers for language
understanding. In NAACL-HLT.

Yali Du and Zhongxing Yu. 2023. Pre-training code
representation with semantic flow graph for ef-
fective bug localization. In FSE/ESEC.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
Codebert: A pre-trained model for programming
and natural languages. In EMNLP.

Luyu Gao and Jamie Callan. 2022. Long document
re-ranking with modular re-ranker. In SIGIR.

Dobrik Georgiev, Marc Brockschmidt, and Miltiadis
Allamanis. 2022. Heat: Hyperedge attention net-
works. arXiv.

Wenchao Gu, Yanlin Wang, Lun Du, Hongyu
Zhang, Shi Han, Dongmei Zhang, and Michael
Lyu. 2022. Accelerating code search with deep
hashing and code classification. In ACL.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim.
2018. Deep code search. In ICSE.

Michael Günther, Jackmin Ong, Isabelle Mohr,
Alaeddine Abdessalem, Tanguy Abel, Moham-
mad Kalim Akram, Susana Guzman, Georgios
Mastrapas, Saba Sturua, Bo Wang, et al. 2023.
Jina embeddings 2: 8192-token general-purpose
text embeddings for long documents. arXiv.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified
cross-modal pre-training for code representation.
In ACL.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tu-
fano, Shao Kun Deng, Colin B. Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. Graphcodebert: Pre-
training code representations with data flow. In
ICLR.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju-
lian J. McAuley. 2023. Longcoder: A long-range
pre-trained language model for code completion.
In ICML, Proceedings of Machine Learning Re-
search. PMLR.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao,
Xiangyang Xue, and Zheng Zhang. 2019. Star-
transformer. In NAACL-HLT. Association for Com-
putational Linguistics.

Vincent J Hellendoorn, Charles Sutton, Rishabh
Singh, Petros Maniatis, and David Bieber. 2019.
Global relational models of source code. In ICLR.

Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011.
Improving source code search with natural lan-
guage phrasal representations of method signa-
tures. In ASE. IEEE.

Fan Hu, Aozhu Chen, Ziyue Wang, Fangming Zhou,
Jianfeng Dong, and Xirong Li. 2022. Lightweight
attentional feature fusion: A new baseline for
text-to-video retrieval. In ECCV. Springer.

Fan Hu, Yanlin Wang, Lun Du, Xirong Li, Hongyu
Zhang, Shi Han, and Dongmei Zhang. 2023. Re-
visiting code search in a two-stage paradigm. In
WSDM.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. Cosqa: 20,000+ web queries for code
search and question answering. In ACL.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Mil-
tiadis Allamanis, and Marc Brockschmidt. 2019.
Codesearchnet challenge: Evaluating the state
of semantic code search. arXiv.

Paul Jaccard. 1901. Étude comparative de la distri-
bution florale dans une portion des alpes et des
jura. Bull Soc Vaudoise Sci Nat, pages 547–579.

Jyun-Yu Jiang, Chenyan Xiong, Chia-Jung Lee, and
Wei Wang. 2020. Long document ranking with
query-directed sparse transformer. In EMNLP
Findings.

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish
Chandra. 2021. Code prediction by feeding trees
to transformers. In ICSE.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2019. Reformer: The efficient transformer. In
ICLR.

Canjia Li, Andrew Yates, Sean MacAvaney, Ben He,
and Yingfei Sun. 2020. Parade: Passage rep-
resentation aggregation for document reranking.
ACM Transactions on Information Systems.

Xirong Li, Yang Zhou, Jie Wang, Hailan Lin,
Jianchun Zhao, Dayong Ding, Weihong Yu, and
Youxin Chen. 2021. Multi-modal multi-instance
learning for retinal disease recognition. In
ACMMM.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pre-
training approach. arXiv.

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei
Wang, Dongmei Zhang, and Jianjun Zhao. 2015.
Codehow: Effective code search based on api
understanding and extended boolean model (e).
In ASE.

15510

Y Ma, Yali Du, and Ming Li. 2023. Capturing the
long-distance dependency in the control flow
graph via structural-guided attention for bug lo-
calization. In IJCAI.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and
Xiaochen Li. 2016. Query expansion based
on crowd knowledge for code search. IEEE
Transactions on Services Computing, pages
771–783.

Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, and
Zhi Jin. 2021. Integrating tree path in transformer
for code representation. In NeurIPS.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and
beyond. Now Publishers Inc.

Stephen E Robertson and K Sparck Jones. 1976.
Relevance weighting of search terms. Journal
of the American Society for Information science,
pages 129–146.

Barbara Rosario. 2000. Latent semantic indexing:
An overview. Techn. rep. INFOSYS, pages 1–16.

Aurko Roy, Mohammad Saffar, Ashish Vaswani,
and David Grangier. 2021. Efficient content-
based sparse attention with routing trans-
formers. Transactions of the Association for
Computational Linguistics, 9:53–68.

Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun
Kim, Koushik Sen, and Satish Chandra. 2018.
Retrieval on source code: a neural code search.
In MAPL.

Abdus Satter and Kazi Sakib. 2016. A search log
mining based query expansion technique to im-
prove effectiveness in code search. In ICCIT,
pages 586–591. IEEE.

Hinrich Schütze, Christopher D Manning, and
Prabhakar Raghavan. 2008. Introduction to
information retrieval, volume 39. Cambridge Uni-
versity Press Cambridge.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In ACL.

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang,
Shi Han, Dongmei Zhang, and Hongbin Sun.
2021. Cast: Enhancing code summarization
with hierarchical splitting and reconstruction of
abstract syntax trees. In EMNLP.

Weisong Sun, Chunrong Fang, Yuchen Chen,
Guanhong Tao, Tingxu Han, and Quanjun Zhang.
2022. Code search based on context-aware code
translation. arXiv.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun,
Lili Mou, and Lu Zhang. 2020. Treegen: A tree-
based transformer architecture for code genera-
tion. In AAAI.

Tomoki Tsujimura, Koshi Yamada, Ryuki Ida,
Makoto Miwa, and Yutaka Sasaki. 2023. Contex-
tualized medication event extraction with strid-
ing ner and multi-turn qa. Journal of Biomedical
Informatics, page 104416.

Thanh Van Nguyen, Anh Tuan Nguyen, Hung Dang
Phan, Trong Duc Nguyen, and Tien N Nguyen.
2017. Combining word2vec with revised vector
space model for better code retrieval. In ICSE-C.
IEEE.

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu,
Zhou Zhao, Jian Wu, and Philip S. Yu. 2019.
Multi-modal attention network learning for seman-
tic source code retrieval. In ASE.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh
Nallapati, and Bing Xiang. 2019. Multi-passage
bert: A globally normalized bert model for open-
domain question answering. In EMNLP.

Liu Yang, Mingyang Zhang, Cheng Li, Michael
Bendersky, and Marc Najork. 2020. Beyond
512 tokens: Siamese multi-depth transformer-
based hierarchical encoder for long-form docu-
ment matching. In CIKM.

Yangrui Yang and Qing Huang. 2017. Iecs: Intent-
enforced code search via extended boolean
model. Journal of Intelligent & Fuzzy Systems,
pages 2565–2576.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and
Zheng Zhang. 2019. Bp-transformer: Modelling
long-range context via binary partitioning. arXiv.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan
Wang, Li Yang, and Amr Ahmed. 2020. Big bird:
Transformers for longer sequences. In NeurIPS.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong
Sun, Kaixuan Wang, and Xudong Liu. 2019a. A
novel neural source code representation based
on abstract syntax tree. In ICSE.

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019b.
Hibert: Document level pre-training of hierarchi-
cal bidirectional transformers for document sum-
marization. In ACL.

	Introduction
	Related Work
	Code Search Methods
	Neural Code Representation with Code Structure
	Transformer for Long Text

	Motivation: Long Code Problem
	Preliminaries
	The Long Code Problem

	SEA
	Model Architecture
	Splitting Methods
	Aggregation Methods
	Batch Processing

	Experimental Design
	Datasets
	Evaluation Metrics
	Experimental Settings

	Experimental Results
	The Optimal SEA Configuration
	Comparison with Three Sparse Transformers
	SEA Performance on Varied Code Lengths
	Baseline Comparison Across Multiple Programming Languages

	Conclusion
	Ethical Statement
	Acknowledgments
	Bibliographical References

