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Abstract
Knowledge Distillation (KD) serves as an efficient method for transferring language knowledge from open-source large
language models (LLMs) to more computationally efficient models. However, challenges arise when attempting to
apply vanilla KD methods to transfer knowledge from closed-source Multilingual Neural Machine Translation (MNMT)
models based on LLMs. In this scenario, the soft labels and training data are not accessible, making it difficult to
achieve effective knowledge transfer. To address this issue, this paper proposes a Teacher Assistant enhanced
Knowledge Distillation (TAeKD) method to augment the knowledge transfer capacity from closed-source MNMT
models. Specifically, TAeKD designs a fusion model that integrates translation outputs from multiple closed-source
models to generate soft labels and training samples. Furthermore, a quality assessment learning mechanism is
introduced to enhance the generalization of the fusion model and elevate the quality of the fusion data used to train
the student model. To facilitate research on knowledge transfer from MNMT models, we also introduce FuseData, a
benchmark consisting of a blend of translations from multiple closed-source systems. The experimental results show
that TAeKD outperforms the previous state-of-the-art KD methods on both WMT22 and FLORES-101 test sets.

Keywords: Knowledge distillation, Closed-source, Multilingual neural machine translation

1. Introduction

Large language models (LLMs) (Xue et al., 2021;
Brown et al., 2020) have achieved increasingly
impressive results in the field of Multilingual
Neural Machine Translation (MNMT) (Dabre et al.,
2021). This has inspired researchers to focus
on transferring LLM knowledge to smaller and
more computationally efficient models. Knowledge
distillation (KD) (Hinton et al., 2015; Gou et al.,
2021) is widely regarded as an effective method
for transferring knowledge from large models
to smaller networks. The vanilla KD technique
involves training a student model by utilizing
two types of labels: soft labels from the teacher
model (i.e., the probabilities of candidate tokens
with a temperature coefficient) and the correct
training data labels (i.e., hard labels). However,
due to commercial reasons, the state-of-the-art
LLM-based MNMT systems that support hundreds
of language pairs, such as ChatGPT1 (OpenAI,
2022) and Microsoft (MS) Translator2, are typically
closed-source, which means that their soft labels
and training data are not accessible to the public.
This dilemma hinders researchers from employing

* Corresponding author.
1https://chat.openai.com/
2http://www.microsoft.com/translator

the vanilla KD approach for transferring knowledge
from these closed-source MNMT systems.

Source German sentence: Wenn sich die Lage
aber nicht entspannt, schloss Geywitz Gespräche
gerade mit der FDP in der Ampel-Koalition über
weitere Verschärfungen im Mietrecht nicht aus.

ChatGPT: If the situation does not calm itself
down, Geywitz did not exclude talks with the Free
Democratic Party (FDP) in the Ampel-Koalition
about further tightening of the rental law.

MS-Translator: But if the situation does not ease,
Geywitz did not rule out talks with the FDP in the
traffic light coalition about further tightening of
tenancy law.

Fusion model output: If the
situation does not calm itself
down, Geywitz did not rule out
talks with the Free Democratic
Party (FDP) in the traffic light
coalition about further tightening
of the rental law.

Fusion Model 
(Teacher Assistant)

Figure 1: An example of the fusion model as a
teacher assistant to fine-grained fuse the ChatGPT
translation and MS-Translator translation.

Recent studies predominantly employ sequence-
level KD (Kim and Rush, 2016) with multiple
teachers to address this problem. The sequence-
level KD can be considered a form of data
augmentation, similar to back-translation (Sennrich
et al., 2016). In this method, multiple closed-source
MNMT systems are used to generate candidate
translations, utilizing the same monolingual data
as input. Subsequently, a student model is
trained on the translation with the highest score
among the candidate translations. The score

https://chat.openai.com/
http://www.microsoft.com/translator
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can be calculated using a multilingual sentence
embedding model (Feng et al., 2022) that utilizes
the source data as a reference.

However, existing sequence-level KD methods
have two limitations: (1) Due to the differences in
parameters and architectures, MNMT systems ex-
hibit diverse strengths and weaknesses (Guerreiro
et al., 2023), making it difficult to effectively blend
their respective strengths through sentence-level
selection. For example, ChatGPT translations ex-
hibit fewer grammar errors and higher fluency, while
Microsoft translations adhere more closely to the
source text. (2) Previous efforts (Tan et al., 2019)
have demonstrated that soft labels are the primary
reason for the high knowledge transfer efficacy
in vanilla knowledge distillation methods (Hinton
et al., 2015). The soft labels achieve a smoother
distribution and enhance the learning process of
the student model by transmitting similarity infor-
mation between tokens with nonzero probability.
Therefore, the absence of soft labels results in the
inadequate transfer of knowledge from the closed-
source MNMT systems to the student model.

To alleviate the limitations mentioned above,
in this work, we introduce a Teacher Assistant
enhanced Knowledge Distillation (TAeKD) method
that transfers more knowledge from closed-source
MNMT systems to the student. Specifically, TAeKD
consists of two parts: (a) the fusion model, and
(b) knowledge distillation using the fusion model
as a teacher assistant. In the first part, TAeKD
designs a fusion model that can fine-grained in-
tegrate the candidate translations from different
MNMT systems. Since the parameters of the fu-
sion model are accessible, it can provide soft labels
that convey similarity information between tokens
of different candidate translations. In addition, to
enhance the fusion model’s capacity to assess the
quality of candidate translations, we introduce a
Quality Assessment Learning mechanism (QAL).
This mechanism empowers the fusion model to
generate higher-quality fusion data. As shown in
Figure 1, the fusion model takes the source sen-
tence, along with the candidate translations gen-
erated by ChatGPT and MS-translator as inputs,
and then produces a finely-fused translation. In the
second part, TAeKD utilizes the fusion model as a
teacher assistant (Mirzadeh et al., 2020) to gener-
ate high-quality fine-grained fusion data and corre-
sponding soft labels for training student model. By
this way, TAeKD can efficiently transfer knowledge
to the student model at both the sequence-level
and word-level.

To assess the effectiveness of the knowledge
distillation approach for closed-source models, we
introduce a dataset named FuseData. This dataset
comprises six different translation directions, with
each direction containing 100k samples for training

the fusion model and over 150k samples for training
the student model. Each source text undergoes
translation using the ChatGPT and MS-Translator
MNMT systems, and the training data for the fusion
model also includes ground-truth labels.

We evaluate the proposed TAeKD method on
WMT22 (Kocmi et al., 2022) and FLORES-101
(Goyal et al., 2022) test sets at six different trans-
lation directions. Experimental results show that
TAeKD significantly outperforms previous KD meth-
ods in both BLEU and COMET-22 metrics. In sum-
mary, the contributions of the paper are as follows:

• This paper delves into the knowledge transfer
process from closed-source MNMT systems.
We introduce a Teacher Assistant enhanced
Knowledge Distillation method (TAeKD), which
can finely fuse candidate translations and sup-
ply soft labels to enhance distillation efficacy.

• This paper proposes a Quality Assessment
Learning (QAL) mechanism to enhance the
fusion model’s generalization and improve the
quality of fusion data for training the student
model.

• This paper introduces the FuseData dataset,
comprising six translation directions with over 2
million samples. Experiments on both WMT22
and FLORES-101 test sets demonstrate a
stronger generalization ability of the proposed
TAeKD method. The code and dataset are
publicly available for research purposes3.

2. Preliminaries

2.1. Multilingual Neural Machine
Translation

MNMT models are capable of translating be-
tween multiple language pairs (Dabre et al., 2021).
Given a source sentence with N tokens s =
{x1, x2, . . . xN} and the corresponding target sen-
tence with M tokens t = {y1, y2, . . . yM}, the train-
ing objective for MNMT models is maximize the
probability of each target token conditioning on the
source sentence by the cross-entropy (CE) loss:

Lce = −
M∑
j=1

log p(yj |y<j , x; θ) (1)

where yj denotes the ground-truth target, y<j de-
notes the target-side previous context at time step
j, and θ denotes the model parameters.

2.2. Word-Level Knowledge Distillation
In vanilla knowledge distillation (Hinton et al., 2015),
also known as word-level distillation (Kim and Rush,

3https://github.com/lvbotenbest/TAeKD

https://github.com/lvbotenbest/TAeKD
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2016), the student model matches both the outputs
of the ground-truth one-hot label and the soft labels
provided by the teacher model. The cross entropy
between two distributions serves as the distillation
loss:

Lword−kd =

M∑
j

|ν|∑
k=1

q
{
y∗j = k|y<j , x, θT

}
×

log p(y∗j = k|y<j , x, θS)

(2)

where the θT and θS denote the model parame-
ters of the teacher and the student, respectively.
The |ν| denotes the vocabulary size of the target
language. The q

{
y∗j = k|y<j , x, θT

}
is the soft la-

bel of the teacher model for token k at j-th step,
and is calculated by softening the model’s output
distribution with temperature τ as follow:

q
{
y∗j = k|y<j , x, θT

}
=

exp(zk/τ)∑
iexp(zi/τ)

(3)

where the zk and zi are the probabilities predicted
by the teacher model for candidate tokens, which
correspond to the k-th and i-th tokens in the vocab-
ulary, respectively.

Then, the overall loss function of word-level KD
is as follows:

Lkd = (1− α)Lce + αLword−kd (4)

where α is the weight coefficient.

2.3. Sequence-level Knowledge
Distillation

Sequence-level KD (Kim and Rush, 2016) encour-
ages the student model to imitate the sequence
probabilities of the translations from the teacher
model. To this end, it optimizes the student model
through the following CE loss:

Lseq−kd = −
m∑
j=1

log p(ŷj |ŷ<j , x; θ) (5)

where m is the sequence length of the translation
generated by the teacher, and ŷj denotes the gen-
erated target by the teacher at time step j.

2.4. Quality-Aware Sequence-level
Knowledge Distillation

The training data generated by the translation sys-
tem are not error-free, and such errors may have a
significant impact on the training effectiveness of
the student model. To this end, the Quality-Aware
Sequence-level KD (team et al., 2022) utilizes N
translation systems to translate the same monolin-
gual text, denoted as src. Subsequently, a multi-
lingual encoding model E(·), such as Labse (Feng

et al., 2022), is utilized to calculate the similarity
between the translations and the src, taking the
highest-scoring translation as training data. The
similarity score is defined as:

scorei = cos(E(src), E(yi)) (6)

where yi is the translation of src translated by the
i th MNMT system. E(src) and E(yi) are the
sentence embedding of src and yi. For N =
2, the highest-scoring translation is selected by
argmax(score1, score2).

3. Methodology

In this section, we elaborate on our proposed
Teacher Assistant enhanced Knowledge Distilla-
tion method (TAeKD). First, we introduce the fusion
model and the Quality Assessment Learning (QAL)
mechanism for enhancing the performance of the
fusion model. Then, we explain the process of uti-
lizing the fusion model as a teacher assistant to
train a student model. The overall framework of
TAeKD is illustrated in Figure 2.

3.1. Fusion Model

The objective is to devise an open-source gener-
ative model as a teaching assistant that takes the
source sentence src along with its different transla-
tions {t1, t2} as input, and produces an enhanced
output t̂ and the soft labels. To accomplish this,
we present the fusion model, an encoder-decoder
approach designed to combine candidate trans-
lations generated by ChatGPT and MS translator
systems at a fine-grained level. Specifically, we
concatenate the source sentence and the candi-
dates translations using separator tokens, such as
<source sentence is:>,<system A translation is:>.
We fine-tune two mt0-large model (Muennighoff
et al., 2023) for English−→German/Russian/Czech
and German/Russian/Czech−→English. We add
different prompts for different translation direc-
tions. For instance, considering the fusing from
English−→German, the input template is:

Translate next English sentence to German :

source sentence is : {source sentence} ;
system A translation is : {translation A} ;
system B translation is : {translation B}

We tried various different prompts and found that
as long as the description of the language direction
is added, other variations in the template have little
impact on the model’s performance.
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Word-level Loss

Student Top k 
Soft Labels

Student Top 1       
Logits Score

One-hot Label

Sequence-level Loss

ChatGPT
Translation

Source
Sentence

Teacher Top k 
Soft Labels

Concat Total Loss

Candidate Translation A

Candidate Translation B

Source Sentence

Sim (source, translation A) Sim (source, translation B)

Fusion Model
Output

QA Loss CE Loss

>
Quality Assessment Learning

(a) Fusion Model Training (b)  Knowledge Distillation

MS-Translator
Translation

Target
Sentence

Input Sentence

Figure 2: The overview of the proposed TAeKD method, which includes: (a) training the fusion model,
and (b) conducting knowledge distillation using the trained fusion model as the teacher assistant. During
the process of knowledge distillation, the source language is initially inputted into ChatGPT and MS
Translator to generate translations. These translations are then combined and fed into the fusion model.
Finally, the outputs of the fusion model are utilized to train the student model at both the word-level and
sequence-level.

3.2. Quality Assessment Learning
Mechanism

The main goal of the fusion model is to integrate the
advantages of candidate translations. To achieve
this goal, it is crucial for the fusion model to possess
a strong ability to discriminate translation quality,
enabling it to focus its attention on each candidate
translation fragment with the highest quality during
the decoding stage, thereby generating high-quality
training data. Nonetheless, the highest quality can-
didate translation fragment may not necessarily
appear in the training labels. Optimizing the model
solely based on cross-entropy loss to fit the train-
ing labels can result in the model failing to learn
to distinguish which candidate translation is bet-
ter. To address this issue, we introduce the Quality
Assessment learning during the training process,
explicitly teaching the model to rank the translation
quality of the input systems.

Before training, QAL uses Comet-Compare (Rei
et al., 2022a) to rank the candidate translations and
we obtain their ranking order. Comet-Compare is
a translation quality evaluation tool that assesses
the quality of translation results by evaluating the
alignment between the translation result with the
source text and reference translation at both the
word and sentence levels. We add rank loss (Wang
et al., 2019) to the encoder component of the fu-
sion model, optimizing the embedding by consid-
ering the alignment degree between the candidate
translations and the source text. By utilizing this
training mechanism, the integrated model can pro-
duce high-quality training data during the decoding
process by placing more attention on candidate
translation fragments that display higher similarity
with the source text embedding.

Formally, given a sequence pair (x, y) with

two candidate translations C1, C2, where x =
(x1, . . . , xN ) is the source sentence of length N ,
y = (y1, . . . , yL) is the label sentence of length L
and C1 = (C1

1 , . . . , C
1
M ) of length M , we convert

the source sentence and candidate translations
into the template in Section 3.1, and obtain the
input X .Then, we feed X into the fusion model
fT = (fenc

T , fdec
T ). The encoder embeddings of

x and C1, C2 are Hx = {hx1
, . . . , hxS}, HC1 =

{hC1
1
, . . . , hC1

M
} and HC2 = {hC2

1
, . . . , hC2

N
}. We

take the average of all the word vectors in the
source text and candidate translations, and use
cosine to calculate the similarity between them:

sim(x,Ci) = cos(
Hx

S
,
HCi

Q
) (7)

where S and Q are the token length of Hx and
HCi . To assign higher similarity scores to better
candidate translations and smaller scores to worse
ones, we employ the rank loss for optimization:

Lqa =

{
max(0, sim(x,C1)− sim(x,C2)) r1 < r2
max(0, sim(x,C2)− sim(x,C1)) r2 < r1

(8)
Then, we add this loss to the original cross-entropy
loss :

Lce = −
L∑

j=1

log p(yj |y<j ,X ; θT ) (9)

where θT is the parameter of the fusion model. The
total loss becomes:

Lall = Lce + βLqa (10)

where β is the weight coefficient.
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3.3. Fusion Model as a Teacher Assistant
for Knowledge Distillation

Before training the student model, we utilize the al-
ready trained fusion model to generate high-quality
training samples based on the candidate transla-
tions generated by multiple close-source systems.
In order to save GPU memory during the training of
the student model, we save the top-K probabilities
of each step in the fusion model generation process
and normalize them, making their sum equal to 1
for distillation. This can reduce the memory cost
from the scale of |ν| to K.

Let x denote the source text, X denote the input
of fusion model obtained by inputting x and candi-
date translations into the template of Section 3.1, Ŷ
denote the target sentence generated by the fusion
model (Ŷ = fT (X )). Let q denote the top-K soft
labels, which can be obtained as follows:

q
{
Y ∗
j = n|Ŷ<j , x, θT

}
=

exp(zn/τ)∑
Kexp(zi/τ)

(11)

where the zn and zi are the probabilities for the n-th
and i-th token in the vocabulary, respectively. τ is
a hyperparameter for softening the model’s output
top-K probabilities z. The word-level KD loss can
be expressed as:

Lword−kd =

M∑
j

k∑
i=1

q
{
Y ∗
j = i|Ŷ<j , x, θT

}
×

log p(Y ∗
j = i|Ŷ<j , x, θS)

(12)

where M is the length of Ŷ . p is derived by utiliz-
ing the same softening approach on the student
model’s output probabilities as is used in q. Then,
the overall loss function of KD is the linear interpo-
lation between the sequence-level KD loss and the
word-level KD loss:

Lseq−kd = −
m∑
j=1

log p(Ŷj |Ŷ<j , x; θ)

Lkd = (1− λ)Lseq−kd + λLword−kd

(13)

where λ is the coefficient to trade off the two loss
terms.

4. Experiments

4.1. Experimental Settings
Datasets. To facilitate research on knowl-
edge transfer from closed-source systems, this
paper releases a new dataset, namely FuseData,
which consists of a blend of translations from two
closed-source systems, ChatGPT and MS transla-
tor. FuseData includes six language pairs: English

Part en->de en->cs en->ru sum
fusion 100k 100k 100k 300k
student 253.0k 231.3k 237.2k 721.5k
Part de->en cs->en ru->en sum
fusion 100k 100k 100k 300k
student 213.1k 126.3k 162.1k 501.5k

Table 1: The statistics of the FuseData dataset.

(en)->German (de), English->Russian (ru), English
->Czech (cs), and their reverses. As shown in Ta-
ble 1, the FuseData package comprises two parts
of the training set: one part is used for training
the fusion model, while the other is used for train-
ing the student model. The data used for training
the fusion model comes from the European Par-
allel corpus4 (en<->de, en<->cs) and the United
Nations Parallel corpus5 (en<->ru), because these
two parallel corpora are of relatively high-quality.
We then utilize the LaBSE (Feng et al., 2022) to
filter out high-quality parallel corpora with scores
greater than 0.88. Since the en<->cs direction re-
sulted in only 100k data after screening, to balance
the total amount of data in each language direction,
we select the top 100k parallel corpora in terms of
LaBSE score for en<->de, en<->ru. We then input
the source language of each direction into Chat-
GPT and MS-Translator for translation to obtain the
data for training the fusion model. The data for train-
ing the student model originates from the single-
language data filtered from WMT166 (there are no
repetitions with the data used for training the fusion
model), which is obtained after the translation by
ChatGPT and MS-Translator. When filtering this
portion of data, we first use the Jaccard Distance
(Hancock, 2004) to deduplicate texts with a similar-
ity greater than 0.8, and then use GPT2 (Radford
et al., 2019) to calculate the perplexity of sentences
in the en->xx7 direction, selecting those that have a
perplexity of less than 200 (the lower the perplexity,
the smoother the text). For the xx->en direction,
we employ XLM-R (Conneau et al., 2020) to select
in the same manner.

For the fusion model, we randomly select 2,000
instances per language direction from the fusion
part of FuseData. These instances are designated
as the validation and test sets.

For the student model, we select 1,000 instances
randomly from each language direction in the stu-
dent part and use these as the validation set. We
use the public benchmarks from WMT22 (Kocmi
et al., 2022) and FLORES-101 (Goyal et al., 2022)

4https://www.statmt.org/europarl
5https://conferences.unite.un.org/

uncorpus
6https://huggingface.co/datasets/wmt16
7’xx’ refers to the German, Czech, and Russian lan-

guages as a whole.

https://www.statmt.org/europarl
https://conferences.unite.un.org/uncorpus
https://conferences.unite.un.org/uncorpus
https://huggingface.co/datasets/wmt16
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Lang-
Pair

WMT22
sentences

FLORES-101
sentences

cs->en 1448 1012
en->cs 2037 1012
de->en 1984 1012
en->de 2037 1012
ru->en 2016 1012
en->ru 2037 1012

Table 2: The number of sentences contained in
the test datasets used for evaluation.

test datasets for evaluation. As shown in Table
2, these two test datasets have 1000 to 2000 test
sentences in each language direction.
Baselines. The baselines we used for com-
parison are the Sequence-level Knowledge Dis-
tillation (SLKD) methods (Kim and Rush, 2016;
Gordon and Duh, 2019) and the Quality-Aware
Sequence-level Knowledge Distillation (QA-SLKD)
methods. In this paper, ChatGPT-SL and MS-SL
represent SLKD methods using the translation re-
sults from ChatGPT and MS-Translator, respec-
tively. LaBSE-QA refers to the QA-SLKD method
that uses LaBSE (Feng et al., 2022) as a qual-
ity assessment model to filter high-quality transla-
tions from candidate translations for training data.
Comet-QA8. refers to the QA-SLKD method based
on the cometkiwi-da (Rei et al., 2022b) quality as-
sessment model.
Metrics. For evaluation, previous efforts (Fre-
itag et al., 2022; Hendy et al., 2023) suggest that
utilizing neural network-based metrics, which have
demonstrated a high correlation with human eval-
uation and are resilient to domain shift. Follow-
ing their recommendations, we employ COMET-22
(Rei et al., 2022a), a reference-based metric that
combines direct assessments (DA), sentence-level
scores, and word-level tags from Multidimensional
Quality Metrics (MQM) error annotations. Addition-
ally, we also evaluate and report the translation
quality with BLEU score by tokenized case sensi-
tive SacreBLEU9.
Implementation Details. In our experiments,
we utilized the mt0-large (Muennighoff et al., 2023)
model as the backbone for both the fusion model
and the student model. For the fusion model train-
ing, we use the AdamW (Loshchilov and Hutter,
2017) optimizer with a learning rate of 5e-5. We
use 4 NVIDIA Tesla V100 GPU cards for the model
training, with a batch size of 8 per GPU. We search
the value of the margin β in the Eq.10 within the
range [1, 10], and the value of 5 is determined
based on the model performance on the validation

8https://unbabel.com/research/comet
9https://huggingface.co/spaces/

evaluate-metric/sacrebleu

set. We conduct experiments on the validation set
using the same approach to search the values of λ,
τ , and K in the top-k. In the end, we select λ = 0.6,
τ = 2, and K = 8. During the inference of the
fusion model, we decode with beam search and
set beam size to 4. For all the baseline models, we
apply the AdamW optimizer with a learning rate of
6e-5. The batch size is set to 16 per GPU. For all
models, we use an early stopping scheduler when
there is no improvement on the validation set.

4.2. Main Results
The experiment results are shown in Table 3. For
all methods, we adopt a one-to-many approach,
training a model in the English->xx directions and
a model in the xx->English direction, respectively.
Fusion-SL represents using the Fusion model to
merge candidate translations and obtain training
data directly for training the student model with-
out adding soft labels. We have the following ob-
servations: (1) Our TAeKD method achieved the
best results in all six language directions on the
WMT22 and FLORES-101 test sets, with a 2-point
improvement in BLEU score compared to the pre-
vious Quality-Aware Sequence-level KD methods.
In addition, COMET-22 places more emphasis on
evaluating the semantic alignment and fluency of
translation results compared to BLEU. In all tests,
the student model trained with TAeKD had the high-
est COMET-22 score, indicating that the transla-
tions outputted by the student model trained with
TAeKD are superior to other methods in terms of
both word-level alignment and semantic-level align-
ment. (2) Although the Fusion-SL method adopts
a similar training strategy to the LaBSE-QA and
COMET-QA methods, the experimental compar-
isons have shown that the Fusion-SL method out-
performs these two methods in terms of perfor-
mance. This highlights the effectiveness of us-
ing synthetic training data from fusion models to
train the model, and indicates that fine-grained
fusion results in higher-quality training data than
sentence-level fusion. (3) Compared to Fusion-
SL, the TAeKD method that utilizes the soft labels
shows a significant improvement, indicating that
the soft labels offer a more informative and robust
learning signal for the student model, improving
its performance and enabling effective knowledge
transfer from the teacher model.

4.3. Analysis
In this section, we conduct thorough analyses on
the proposed TAeKD method for knowledge distil-
lation from closed-source MNMT Systems.
Ablation Study on Fusion Model. To exam-
ine the effectiveness of the proposed fusion model
in integrating multi-system translation results, we

https://unbabel.com/research/comet
https://huggingface.co/spaces/evaluate-metric/sacrebleu
https://huggingface.co/spaces/evaluate-metric/sacrebleu
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Method
WMT22 FLORES-101 WMT22 FLORES-101

BLEU COMET-22 BLEU COMET-22 BLEU COMET-22 BLEU COMET-22
DE->EN EN->DE

ChatGPT-SL 25.48 78.68 33.24 84.25 20.56 79.97 28.19 80.18
MS-SL 24.95 78.40 32.62 83.92 21.30 79.78 28.21 79.86

LaBSE-QA 25.64 78.67 33.44 84.26 21.33 79.98 28.29 80.26
Comet-QA 25.56 78.63 33.21 84.13 21.03 79.82 28.49 80.13
Fusion-SL 25.82 79.09 33.82 84.44 21.70 80.75 29.89 81.06

TAeKD 26.73 79.78 35.31 85.17 22.41 81.24 31.68 82.12
CS->EN EN->CS

ChatGPT-SL 30.79 77.48 28.52 82.42 18.69 79.21 21.90 81.79
MS-SL 31.05 77.16 28.72 82.25 19.39 79.44 22.47 71.28

LaBSE-QA 31.09 77.36 28.55 82.30 19.31 79.76 22.64 81.68
Comet-QA 31.14 77.37 28.78 82.44 19.57 79.82 22.88 81.93
Fusion-SL 31.96 77.88 29.52 82.75 20.31 80.44 23.44 82.92

TAeKD 33.68 78.86 30.62 83.65 21.66 82.00 25.19 84.73
RU->EN EN->RU

ChatGPT-SL 29.63 77.86 23.78 80.76 21.54 80.49 18.88 78.57
MS-SL 29.65 77.70 24.84 80.82 22.44 80.30 19.17 78.68

LaBSE-QA 30.50 77.93 24.44 80.86 22.58 80.75 19.58 78.79
Comet-QA 30.62 78.14 24.98 80.99 22.51 80.60 19.34 79.17
Fusion-SL 30.91 78.32 25.17 81.17 22.78 81.19 19.70 79.31

TAeKD 32.35 78.72 26.14 81.55 23.22 81.35 20.44 79.96

Table 3: The BLEU and COMET-22 scores for English<->German, Russian, and Czech languages are
assessed on the WMT22 and FLORES-101 test sets.

Method en->de en->cs en->ru
ChatGPT 53.67 41.78 41.40
MS-Translator 51.30 42.18 40.98
LaBSE 55.86 43.98 43.27
Fusion 57.76 46.49 47.37

w/o QAL 54.98 45.60 45.76

Table 4: Ablation study on the proposed fusion
model. The results are based on FuseData test set
(w/o indicates without).

conduct ablation experiments on the test set of the
FuseData. ChatGPT and MS-Translator represent
the direct measurement of the BLEU score of these
two systems on the test set. LaBSE represents
the BLEU score measured by selecting higher-
quality translations from these two systems using
the Labse encoding model. Fusion refers to the
BLEU score of the synthesized translation, which is
obtained through the fine-grained integration of can-
didate translations using our one-to-many fusion
model. w/o QAL represents the result of synthetic
translations output by the fusion model trained with-
out a quality assessment learning mechanism. The
main results are presented in Table 4. It can be
seen that the fusion method outperforms all base-
lines on most of the datasets. Furthermore, we
find an obvious performance drop after removing
the quality assessment learning (QAL) mechanism.
This indicates that the QAL mechanism enables
the model to learn the ability to evaluate the qual-
ity of candidate translations, allowing the model to

λ 0.1 0.2 0.3 0.4
BLEU 26.12 26.34 26.50 26.65

λ 0.5 0.6 0.7 0.8
BLEU 26.70 26.73 26.69 26.65

Table 5: Results for the English->German lan-
guage direction on the WMT22 test set as λ
changes.

more accurately select segments of higher-quality
candidate translations.
Impact of Increasing Training Data for Student
Model. We conduct experiments to compare the
performance trends of student models trained using
different training methods as the training data size
increases. As shown in Figure 3, the x-axis repre-
sents the varying training data sizes used to train
the student model. The ordinate axis represents
the average BLEU scores of the student models
in the en->de, en->ru, and en-cs directions on the
FLORES-101 test set and the WMT22 test set, re-
spectively. As the training data increases, the rate
of performance improvement for student models
trained using the TAeKD method remains almost
unchanged, while the rate of performance improve-
ment for the Comet-QA method gradually slows
down. This indicates that compared to other meth-
ods, the TAeKD method shows a larger improve-
ment as the data volume increases, highlighting
the effectiveness of the proposed TAeKD.
Impact of Top-K and Temperature. In our ex-
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Figure 3: Compare the performance variations of
student models trained using different methods as
the training data increases. The unit of the horizon-
tal axis is ten thousand.

periments, the student model just matches the top-
K output distributions of the teacher model, instead
of the full distribution in order to reduce the memory
cost. In addition, as shown in Eq.11, we input the
top-K output distributions into the softmax function
for normalization and use the temperature coeffi-
cient τ to adjust the smoothness of the soft labels
output by the softmax function. In this section, we
conduct experiments on the WMT22 test set in the
German->English language direction, with varying
values of K (from 2 to 16) and τ (from 1 to 3), to
understand their impact on distillation. From the
results shown in Figure 4, we see that increasing
K from 1 to 8 will improve the BLEU score, while
bigger K will bring no gains, even with the full dis-
tribution. We conjecture that there may be some
noise present in the distribution of lower scores out-
put by the teacher model, which could impact the
training of the student model. We also observe that
as τ increases, the performance initially improves
and reaches its peak, and then it starts to decline.

2 4 6 8 10 12 14 16
K

26.50

26.55

26.60

26.65

26.70
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eu

Temperature=1
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Temperature=3

Figure 4: Results for the English->German lan-
guage direction on the WMT22 test set as K and
τ changes.

Impact of Distillation Coefficient λ. For the
training objective of TAeKD, we introduce the

distillation coefficient λ in Eq.13 to balance the
sequence-level KD loss and the word-level KD loss.
To analyze the impact of distillation coefficient λ,
we show the results of different values of λ on the
WMT22 test set in Table 5. We observe that as λ
increases, when λ is small, the student does not
perform well due to the lack of response-based
knowledge of the teacher, and when λ is around
0.6, the student performs best.

5. Related Work

5.1. Multilingual Neural Machine
Translation

Multilingual Neural Machine Translation (MNMT)
has shown significant promise in developing effi-
cient machine translation systems for numerous
languages and enhancing the translation quality
for low-resource languages (Johnson et al., 2017;
Ha et al., 2016; Dabre et al., 2021). Recent re-
search (Arivazhagan et al., 2019) on factors influ-
encing the performance of MNMT models indicates
that the quality and quantity of training data for mul-
tilingual models are the primary factors affecting
their performance. Moreover, Dabre et al. (2021)
demonstrates that MNMT systems tend to gener-
alize better due to their exposure to diverse lan-
guages, which leads to improved translation quality
compared to bilingual NMT systems. The current
most advanced MNMT systems, such as Microsoft
Translate, Google Translate (Johnson et al., 2017),
and ChatGPT (OpenAI, 2022), have been trained
by their respective creators using large-scale, high-
quality training data. The performance of these
models even surpasses that of previous state-of-
the-art bilingual models (Hendy et al., 2023) and
exhibits diverse strengths and weaknesses. How-
ever, for commercial reasons, these models are
typically closed-source, comprising both the model
parameters and the training data. To solve this prob-
lem, this work aims to study how to efficiently trans-
fer knowledge from these closed-source MNMT
systems to a smaller and computationally efficient
model.

5.2. Ensemble Learning
Ensemble Learning (Polikar, 2012; Garmash and
Monz, 2016; Dong et al., 2020) aims to combine the
abilities of different models to compensate for the
biases and errors of a single model, thereby achiev-
ing better performance. There are plenty of typical
ensemble algorithms, such as Adaboost (Freund
and Schapire, 1997), Bagging (Breiman, 1996),
Stacking (Wolpert, 1992), etc. Weighted aver-
age (Wang et al., 2020; Singh and Jaggi, 2020)
is an efficient way to fuse several neural networks
into a single network (Matena and Raffel, 2022).
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Due to the reliance on accessing the weights of
each model, these methods cannot be employed to
merge the model without exposing its parameters.
In contrast, post-hoc ensemble methods (Zhang
et al., 2020; Sui et al., 2021) average the output
value after inference, thus eliminating the need to
access the model parameters. These methods are
typically employed in classification tasks, where the
final result is determined by the principle of minority
submission to the majority based on the classifi-
cation outcome of each model. Nevertheless, it
is difficult to apply these methods to multilingual
machine translation tasks, as each sequence in-
volves predicting several tokens. Consequently, we
propose a fusion model for post-hoc ensemble in
MNMT tasks.

5.3. Knowledge Distillation
Vanilla knowledge distillation (Hinton et al., 2015;
Gou et al., 2021) encourages the student model
to match the one-hot ground truth and the soft la-
bels provided by the teacher model. Kim and Rush
(2016) first refers to vanilla knowledge distillation
as word-level KD and further proposes sequence-
level KD to address the situation where obtaining
soft labels from the teacher model is not possible.
To improve the quality of training data, multiple
teacher systems can be utilized to translate the
same monolingual source data (team et al., 2022).
The training data is then selected with the highest
sentence similarity score, calculated by a multilin-
gual sentence embedding model (Feng et al., 2022)
that uses the source data as a reference. However,
the aforementioned sentence-level filtering method
lacks the ability to combine the advantages of dif-
ferent candidate translations and cannot provide
soft labels. To address these issues, we propose
the TAeKD, which uses a fusion model to provide
finely integrated translated data and soft labels.

6. Discussion

In this section, we will discuss the significance and
ethical implications of our research on knowledge
distillation from closed-source MNMT systems.

As mentioned in Section 1, our research has
two primary objectives. Firstly, it is to leverage
the complementarity of different MNMT systems
to generate high-quality training data. Secondly,
we aim to compensate for the loss in distillation
performance caused by the inability of the teacher
model to provide logit scores. Therefore, our pro-
posed method can be applied to address not only
the distillation problem of closed-source systems
but also other works related to these two issues,
that is significance for the MNMT research. This
also benefits the development of other research

areas within the field of MNMT.
In this line of research, the utilization of results

generated by multiple closed-source systems for
training students may raise potential ethical con-
cerns, particularly when owners of closed-source
systems prohibit the use of results for commer-
cial purposes to enhance other models. Hence, it
needs to be emphasized that our method is solely
intended for scientific research purposes and can-
not be applied for commercial use without the per-
mission from the owners of the closed-source sys-
tems. In the future, we hope that our research can
promote the study of distilling multiple large models
into smaller models, and encourage researchers
to develop more high-performance, smaller-sized
multilingual translation models.

7. Conclusion

In this paper, we propose TAeKD, a novel teacher
assistant enhanced knowledge distillation method
for augmenting the capacity of knowledge trans-
fer from closed-source MNMT models. TAeKD
adopts a fusion model that can finely fuse candidate
translations and provide soft targets to enhance the
effectiveness of knowledge distillation. Moreover,
a quality assessment learning mechanism is pro-
posed by distinguishing high-quality segments from
multiple candidates, thereby enhancing the gener-
alization of the fusion model. To facilitate research
on knowledge transfer from MNMT models, we also
introduce the FuseData, a benchmark consisting of
a blend of translations from multiple closed-source
systems. Extensive experiments including ablation
studies are carried out to show the effectiveness of
TAeKD and its components.
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