
LREC-COLING 2024, pages 15542–15551
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

15542

TaiChi: Improving the Robustness of NLP Models by Seeking
Common Ground While Reserving Differences

Huimin Chen†, Chengyu Wang‡, Yanhao Wang†, Cen Chen†, Yinggui Wang§
†School of Data Science and Engineering, East China Normal University, Shanghai, China

‡Alibaba Group, Hangzhou, China
§Ant Group, Hangzhou, China

saichen@stu.ecnu.edu.cn, chengyu.wcy@alibaba-inc.com,
{yhwang,cenchen}@dase.ecnu.edu.cn, wyinggui@gmail.com

Abstract
Recent studies have shown that Pre-trained Language Models (PLMs) are vulnerable to adversarial examples,
crafted by introducing human-imperceptible perturbations to clean examples to deceive the models. This vulnerability
stems from the divergence in the data distributions of clean and adversarial examples. Therefore, addressing this
issue involves teaching the model to diminish the differences between the two types of samples and to focus more
on their similarities. To this end, we propose a novel approach named TaiChi that employs a Siamese network
architecture. Specifically, it consists of two sub-networks sharing the same structure but trained on clean and
adversarial samples, respectively, and uses a contrastive learning strategy to encourage the generation of similar
language representations for both kinds of samples. Furthermore, it utilizes the Kullback-Leibler (KL) divergence loss
to enhance the consistency in the predictive behavior of the two sub-networks. Extensive experiments across three
widely used datasets demonstrate that TaiChi achieves superior trade-offs between robustness to adversarial attacks
at token and character levels and accuracy on clean examples compared to previous defense methods. Our code
and data are publicly available at https://github.com/sai4july/TaiChi.
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1. Introduction

Pre-trained Language Models (PLMs), such as
BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,
2019), have achieved prominent performance in
many natural language processing (NLP) applica-
tions due to their strong ability to learn text repre-
sentations. However, they are well known to be vul-
nerable to adversarial examples (Gao et al., 2018;
Li et al., 2019; Ren et al., 2019; Jin et al., 2020)
that are delicately crafted from (original) clean ex-
amples with human-tolerable spelling, syntactic, or
grammatical mistakes. For example, as illustrated
in Table 1, a BERT-based sentiment classification
model is easily misled by an adversarial sample
that simply changes one token “perfect” in a clean
sample to its synonym “spotless”. Such attacks
put the security of PLM-based text classification
models at risk.

As suggested by several existing studies (Gao
et al., 2018; Li et al., 2019; Ren et al., 2019; Jin
et al., 2020), the vulnerability of PLMs is due to
the inconsistent distributions between adversarial
and clean examples, such as differences in word
choice and sentence structure. Therefore, an intu-
itive defense method, Adversarial Data Augmenta-
tion (ADA) (Morris et al., 2020; Si et al., 2021), re-
duces this inconsistency by incorporating adversar-
ial samples into the training set. As such, the model
can learn to recognize subtle differences in char-

Sentence Label Predict
perfect performance by xxx Positive Positive
spotless performance by xxx Positive Negative

Table 1: Adversarial example generated by PWWS
(Ren et al., 2019) for a BERT-based sentiment clas-
sification model.

acteristics between both types of samples (clean
vs. adversarial), improving its robustness against
adversarial attacks. Furthermore, the core idea of
ADA echoes the consistency regularization princi-
ple in semi-supervised learning (Lee, 2013; Sohn
et al., 2020; Kim et al., 2022): A model should pro-
duce the same prediction when small perturbations
are applied to the input. To make ADA effective, two
conditions must be met: First, the vector represen-
tations of adversarial and clean examples produced
by the model must be closely aligned. Second, the
model should assign different predicted labels to
adversarial and clean examples, necessitating that
the vector representations of clean examples and
their adversarial counterparts lie near the model’s
decision boundary.

However, as illustrated in Figure 1, we observe
that the representations of adversarial samples
generated by the popular attack method PWWS
(Ren et al., 2019) actually diverge from those of
clean samples, and most are positioned far from
the model’s decision boundary. This phenomenon

https://github.com/sai4july/TaiChi
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Figure 1: Illustration of BERT sentence representa-
tions of clean examples and their adversarial coun-
terparts generated by PWWS on the SST-2 dataset.

calls into question the rationale behind using the
same one-hot label for adversarial samples as their
clean counterparts in ADA to enhance the robust-
ness of the model (Si et al., 2021) since the under-
lying assumptions about vector representations do
not hold. Our experimental results, which will be
discussed in Tables 4 and 5, indirectly validate this
by indicating that ADA can significantly decrease
the model performance on clean samples. There-
fore, although ADA may increase model robustness
to some degree, it could also compromise the ac-
curacy and generalizability of models due to the
potential label-shift problem, thereby limiting the
models’ applicability in practical scenarios.

To address the issue mentioned above, we pro-
pose a novel method called TaiChi1 that adopts
a different approach from vanilla ADA to enhance
the robustness of PLM-based text classification
models. In the TaiChi framework, we aim to re-
solve the potential problem of label conflicts by
guiding the model to generate similar representa-
tions for clean samples and their adversarial coun-
terparts. Considering that label conflicts stem from
a single model’s need to process two types of sam-
ples with disparate characteristics, we introduce a
Siamese network architecture in TaiChi. This archi-
tecture comprises two sub-networks, each trained
on either clean or adversarial samples – referred
to as the clean and adversarial models, respec-
tively. Then, we apply a contrastive learning ap-

1“TaiChi” is an important concept in Chinese culture
that symbolizes the interplay of two competitive and com-
plementary forces, known as “Yin” and “Yang”. This also
signifies the philosophy of our work.

proach (Reimers and Gurevych, 2019; Chen et al.,
2020; Clark et al., 2020; Conneau et al., 2020) to
encourage the encoder of each model to produce
similar vector representations for clean examples
and their adversarial counterparts, while simultane-
ously distinguishing them from unrelated samples.
Our intuition is that this will implicitly enable each
model to make consistent predictions on both clean
and adversarial samples. Furthermore, we employ
the Kullback-Leibler (KL) divergence loss (Joyce,
2011) to promote information exchange between
the clean and adversarial models, thus enhancing
the consistency of their predictive behaviors. This
facilitates a model-level integration and achieves
a more favorable balance between generalization
and robustness for both models.

Finally, we conduct extensive experiments on
three widely used benchmark datasets to evaluate
the effectiveness of TaiChi. The results2 demon-
strate that TaiChi achieves significantly better trade-
offs between robustness to adversarial attacks at
token and character levels and accuracy on clean
examples compared to previous defense methods.
Through ablation studies, we further verify the con-
tributions of the adversarial model, contrastive loss,
and Kullback-Leibler (KL) divergence loss compo-
nents in the TaiChi framework separately.

2. Related Work

2.1. Adversarial Data Augmentation
Adversarial Data Augmentation (ADA) is a com-
monly used method to enhance the robustness of
machine learning models. The fundamental prin-
ciple of ADA involves generating adversarial sam-
ples with respect to clean ones, assigning each
adversarial sample the same one-hot label as its
clean counterpart, and incorporating them into the
training set for model refinement. Traditionally, ad-
versarial samples in ADA pertain exclusively to tan-
gible texts produced by altering the original texts.
Notable methods for this type of adversarial sam-
ple generation include DeepWordBug (Gao et al.,
2018), TextBugger (Li et al., 2019), TextFooler
(Jin et al., 2020), and Probability Weighted Word
Saliency (PWWS) (Ren et al., 2019). In this study,
we broaden the concept of adversarial examples to
include “virtual” samples devised in the embedding
space by perturbing word vectors, as in (Miyato
et al., 2017; Madry et al., 2018; Jiang et al., 2020;
Zhu et al., 2020). Owing to the generation method,
virtual adversarial samples are often more distant
from the originals, yet their vector representations
tend to be closer to their real counterparts, poten-
tially leading to enhanced model generalizability.

2We utilize the clean model for inference due to its
higher prediction accuracy on clean samples.
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Figure 2: Framework of our method TaiChi. The neural network in red (Clean) signifies the model trained
only on clean samples for classification, whereas the network in blue (Adversarial) denotes the model
designed for adversarial examples. Here, x and x′ refer to a clean sample and its adversarial counterpart,
respectively. Additionally, z, p and z′, p′ represent the vector representations and the corresponding logits
for x and x′, respectively. Finally, Lone-hot, CE, CTR, and KL denote the one-hot labeling process, the text
classification task, the contrastive data augmentation task, and the model-level fusion task, respectively.

Conversely, real adversarial samples, with vector
representations that may be more divergent from
the clean ones, can amplify the robustness of mod-
els more substantially than virtual samples, as they
better approximate real-world adversarial instances.
Furthermore, real texts offer superior explainability
compared to abstract word vectors in NLP applica-
tions. Consequently, our research prioritizes the
balance between robustness and generalizability
in text classification models when employing real
adversarial samples.

2.2. Contrastive Learning
Contrastive learning is a widespread representa-
tion learning technique with extensive applications
across various fields, such as graph neural net-
works (You et al., 2020), natural language process-
ing (Gao et al., 2021; Reimers and Gurevych, 2019;
Chen et al., 2020; Conneau et al., 2020), computer
vision (Dai and Lin, 2017), and speech recognition
(Wang et al., 2022). Its core concept involves im-
proving the representational capabilities of a model
by focusing on and bringing together positive pairs
while distancing negative pairs. In the context of
text classification, a positive pair is defined as two
samples that share semantic proximity. This work
utilizes contrastive learning to diminish the repre-
sentational gap between clean samples and their
adversarial counterparts, striving to minimize dis-
crepancies in their vector representations.

3. Our Method

This section introduces the framework of our pro-
posed method TaiChi. First, we provide a formal
definition of the adversarial samples utilized in our
approach. Subsequently, we explain the three train-
ing tasks that constitute our method.

3.1. The TaiChi Framework

The framework of our method, TaiChi, is shown in
Figure 2. It comprises two models with identical
structures: the Clean model fclean and the Adver-
sarial model fadv. In addition, there are three key
training tasks: classification, data augmentation,
and model-level fusion. The Clean and Adver-
sarial models are distinguished primarily by the
composition of their classification training sets. For
classification, the Clean model only uses clean
samples, while the Adversarial model exclusively
uses adversarial samples. It is important to note
that the Adversarial model is designed only to
augment the Clean model and is not used for in-
ference after the combined training process.

3.2. Basic Model Structure

The basic structure shared by the Clean and Ad-
versarial models is described below. The model
f : X → C consists of two main components: the
encoder and the K-class classifier. The encoder,
denoted fENC : X → Z, where X is the input space
and Z is the embedding space, transforms a se-
quence of m input tokens x = [t1, t2, . . . , tm] into
a sequence of vector representations fENC(x) =
[h1, h2, . . . , hm]. The encoder then uses the aver-
age vector representation z(x) = 1

m

∑m
i=1 hi as the

aggregate sentence representation. The K-class
classifier, represented as fCLS : Z → C, where
C = {1, 2, . . . ,K} is the label space, maps the em-
bedding space Z to label space C. The classifier
fCLS can be decomposed into two functions: u :
Z → RK , which projects the input embeddings onto
prediction logits p = u(z) = [p1, p2, . . . , pK ], where∑K

i=1 pi = 1, and v : RK → C, which maps the log-
its to a specific category by choosing the label with
the highest logit value, i.e., c = argmaxi∈[K] pi.



15545

Adversarial
samples

attack algorithm & 
clean samples

attack

Stage 1: train a basic model on clean samples

Clean
samples

train

Basic model

output

!"#$!"#$%

output

Stage 2: generate adversarial samples

!"#$!"#$%

Figure 3: Illustration of the adversarial sample gen-
eration procedure.

3.3. Generating Adversarial Samples
The core ideas of existing methods to generate ad-
versarial examples are very similar and intuitive.
Generally, an adversarial sample is generated by
first identifying the words or characters in an (origi-
nal) clean text with the largest impact on the predic-
tion of the model and then modifying them accord-
ingly. Therefore, in our method, we assume that
an attacker’s algorithm is already known, and the
algorithm is directly used to simulate the attacker’s
activities on our fine-tuned model. This allows us
to generate adversarial samples as an augmented
training set to improve the robustness of the model.

Given a victim model f that has already been
fine-tuned on a task-specific training set Dclean =
{(xi, yi)}ni=1, where yi ∈ RK is the one-hot la-
bel and K represents the number of classes, we
use a certain attack algorithm to construct an ad-
versarial training set of the corresponding attack
type Dadv = {(x′

i, y
′
i)}ni=1, where each sample

that is correctly classified in the original training
set is wrongly classified after modifications, i.e.,
fθ(x

′
i) ̸= fθ(xi). In particular, when Dclean and

Dadv are used together as the training set, xi and
x′
i with the same index are called a pair of clean and

adversarial samples, and the adversarial sample
x′
i shares the same one-hot label of its correspond-

ing clean sample xi, i.e., yi = y′i. An illustration
of the adversarial sample generation procedure is
presented in Figure 3.

3.4. Training Tasks
We detail the implementation of TaiChi as follows.
Initially, we concurrently input a clean sample xi ∈
Dclean and its associated adversarial sample x′

i ∈
Dadv into fclean and fadv to derive their average em-
beddings z(clean), z′(clean), z(adv), z′(adv), as well as

the logit vectors p(clean), p′(clean), p(adv), p′(adv). Sub-
sequently, we outline the three training tasks.
Classification. The primary training objective in
our method is text classification. We distinguish the
two models based on their respective classification
tasks. Specifically, the Clean model fclean is solely
tasked with classifying clean samples from Dclean.
The cross-entropy loss for fclean is thus given as

Lclean
CE = − 1

N

N∑
i=1

K∑
c=1

yi,c log p
(clean)
i,c ,

where N denotes the batch size. Parallelly, the
Adversarial model fadv exclusively processes ad-
versarial samples from Dadv for classification. Thus,
the cross-entropy loss for fadv is

Ladv
CE = − 1

N

N∑
i=1

K∑
c=1

y′i,c log p
′(adv)
i,c .

Data Augmentation. Ideally, a model’s resilience
against noise is bolstered when the representa-
tions of clean and adversarial samples produced
by PLMs are highly similar. Meanwhile, we aim
for the model to discern true adversarial exam-
ples from irrelevant samples, rather than indiscrim-
inately reducing the distance between representa-
tions of arbitrary sample pairs. To achieve both
objectives, we incorporate contrastive learning as
an additional regularization mechanism during fine-
tuning. Specifically, we treat the sentence represen-
tations z

(clean)
i of a clean sample x

(clean)
i and z

′(clean)
i

of its corresponding adversarial sample x
′(clean)
i as

a positive example pair. For a batch of N clean and
corresponding adversarial samples, we consider
z
′(clean)
j , for all j ≠ i, as negative samples relative

to a specific z
(clean)
i . Consequently, the contrastive

loss objective based on clean samples is formu-
lated as follows:

L(clean)
CTR = −

∑N
i=1 log

exp(s(z
(clean)
i ,z

′(clean)
i )/τ)∑N

j=1 1[j ̸=i] exp(s(z
(clean)
i ,z

′(clean)
j )/τ)

,

where s(u, v) = ∥u − v∥2 denotes the l2-distance
between two vectors u and v, τ is the temperature
hyperparameter, and 1[j ̸=i] is an indicator function
for j ̸= i. Analogously, the contrastive objective for
the adversarial samples is

L(adv)
CTR = −

∑N
i=1 log

exp(s(z
′(adv)
i ,z

(adv)
i )/τ)∑N

j=1 1[j ̸=i] exp(s(z
′(adv)
i ,z

(adv)
j )/τ)

.

Model-level Fusion. Using the classification and
data augmentation tasks, we have built two distinct
models: Clean and Adversarial. We then turn to
the central concept of TaiChi, which involves facili-
tating communication between these seemingly an-
tagonistic models to find commonalities while pre-
serving their unique strengths. In practical terms, if
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Method Data Augmentation CLS Training Tasks Adversarial Model
Baseclean n/a clean CE ×
Baseadv n/a adv CE ×

FGSM (Goodfellow et al., 2015) virtual clean CE ×
PGD (Madry et al., 2018) virtual clean CE ×
FreeLB (Zhu et al., 2020) virtual clean CE ×

SMART (Jiang et al., 2020) virtual clean CE ×
ADA (Si et al., 2021) real text clean+adv CE ×
Clean / TaiChiw/o KL real text clean CE+CTR ×

Adversarial real text adv CE+CTR ×
BaseKL / TaiChiw/o CTR real text clean CE+KL ✓

TaiChiw/o ADV real text clean CE+CTR+KL ×
TaiChi (*) real text clean CE+CTR+KL ✓

Table 2: Comparison of methods used in the experiments. “Data augmentation” describes the types
of adversarial samples employed (n/a for none, virtual for samples generated in the embedding space
by perturbing word vectors, and real text for samples created by direct perturbations of the original
texts). “CLS” specifies the training data used for text classification (clean for clean samples only, adv for
adversarial samples only, and clean+adv for a combination of both). “Training Tasks” indicates which
of the three tasks – CE, CTR, and KL – are utilized in the training process. Finally, “Adversarial Model”
denotes the presence or absence of an adversarial model for model-level fusion.

two models have been effectively fused, saying that
they have assimilated the characteristics of each
other’s training data, they should yield consistent
predictions for the same input samples. That is,
for an input sample x, the logits p(clean) and p(adv)

produced by the Clean and Adversarial models,
respectively, should closely resemble each other.
We employ the Kullback-Leibler (KL) divergence
loss (Joyce, 2011) to implement this model-level
fusion. The KL divergence loss is distinct for clean
and adversarial samples. For clean samples, the
KL divergence loss function is defined as

L(clean)
KL = − 1

N

N∑
i=1

p
(clean)
i log

p
(adv)
i

p
(clean)
i

.

The KL divergence loss function for adversarial
samples is defined as

L(adv)
KL = − 1

N

N∑
i=1

p
′(adv)
i log

p
′(clean)
i

p
′(adv)
i

.

Overall Training Objective. The models are fine-
tuned in a multi-task fashion with the combined
training objective:

L = (L(clean)
CE + L(clean)

CTR )︸ ︷︷ ︸
Clean

+(L(adv)
CE + L(adv)

CTR )︸ ︷︷ ︸
Adversarial

+ (L(clean)
KL + L(adv)

KL )︸ ︷︷ ︸
KL Divergence

,

where the superscripts (clean) and (adv) denote
the objectives specific to the Clean and Adversar-
ial models and the subscripts CE, CTR, and KL
correspond to the objectives of the classification,
contrastive data augmentation, and model-level fu-
sion tasks, respectively.

4. Experiments

4.1. Setup
Methods. We benchmark our method, TaiChi,
against five well-established defense techniques
for countering adversarial attacks: FGSM (Goodfel-
low et al., 2015), PGD (Madry et al., 2018), FreeLB
(Zhu et al., 2020), SMART (Jiang et al., 2020), and
ADA (Si et al., 2021). For baselines, we use two
BERT-based text classification models (Devlin et al.,
2019) fine-tuned on clean samples (Baseclean) and
adversarial samples (Baseadv ), respectively. Ad-
ditionally, we conduct ablation studies to assess
each component of TaiChi in isolation. We desig-
nate the models involved in these studies as follows:
Clean (or TaiChiw/o KL) and Adversarial are the
models that only incorporate the CTR data aug-
mentation objective and differ in their training sets
for classification. TaiChiw/o CTR (or BaseKL) refers
to the model trained exclusively on clean samples,
with the CTR objective omitted. TaiChiw/o ADV repre-
sents the model trained on clean samples, modify-
ing the original dual-model fusion training objective
to include the KL divergence loss within a single
model. The KL divergence loss for TaiChiw/o ADV is
defined as follows:

LKL = − 1

N

N∑
i=1

p
(clean)
i log

p
′(clean)
i

p
(clean)
i

.

Consequently, the overall training objective of
TaiChiw/o ADV is given as follows:

L = L(clean)
CE + L(clean)

CTR + LKL.

The distinctions among these methods are outlined
in Table 2 for clarity.
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Dataset C L #train #dev #test
SST-2 2 19 6.9K 872 1.8K

AG 4 32 114K 6K 7.6K
TREC 6 10 5K 452 500

Table 3: Statistics of datasets used in the experi-
ments, where C represents the number of classes,
L is the average sentence length, and #train, #dev,
and #test denote the numbers of samples in the
training, validation, and test sets, respectively.

Datasets. We use three text classification datasets
with different numbers of classes and tasks in the
experiments, namely, SST-2 (Socher et al., 2013)
for binary sentiment classification, AG (Zhang
et al., 2015) for four-class news classification, and
TREC (Li and Roth, 2006) for six-class question
classification. The statistics of these datasets are
reported in Table 3.
Performance Measures. The performance of a
model is evaluated in terms of generalizability and
robustness. Generalizability is assessed by the
model’s test accuracy on clean samples, denoted
as clean%. To gauge the robustness of a model, we
employ the following four prevalent attack methods:

• DeepWordBug (Gao et al., 2018) operates
at the character level, scoring and perturbing
the most influential tokens in a sentence by
swapping, substituting, deleting, or inserting
characters.

• PWWS (Ren et al., 2019) is a word-level attack
that uses word saliency and classification prob-
ability to determine which word to substitute
and in what sequence.

• TextFooler (Jin et al., 2020) also targets
words, choosing replacements based on their
significance – measured by the impact of their
removal on class probability – and synonym
similarity in the embedding space.

• TextBugger (Li et al., 2019) functions at both
word and character levels by modifying se-
lected target tokens using various techniques
such as synonym replacement and character-
level perturbations.

The robustness of the model is measured by the
accuracy on adversarial samples generated by
each attack method, denoted as deepwordbug%,
pwws%, textfooler%, and textbugger%, respec-
tively. We used the implementations of these attack
algorithms provided in the TextAttack framework
(Morris et al., 2020).
Implementation Details. Adversarial attacks were
conducted using different sample sizes across var-
ious datasets. For the SST-2 and AG datasets,
we randomly selected 1,000 samples from the test

Measure Baseclean Baseadv Baseadv (soft)
clean% 92.6 76.7 88.9

Table 4: Test accuracy on clean samples (clean%)
of different models on the SST2 dataset. All models
in this suite of experiments are trained from scratch.

sets; and for the TREC dataset, we attacked all 500
test samples. To train the models, we set the batch
size to 16, the maximum sequence length to 50, the
number of training epochs to 3, and the learning
rate to 3× 10−5. We used bert-base-uncased3 as
the pre-trained model, with other hyperparameters
defaulting to those of the Transformer model (Wolf
et al., 2020). The baseline implementations were
sourced from the original authors, and their default
parameter configurations were followed. All exper-
iments were performed on a server with two Intel
Xeon Silver 4210R 2.40 GHz CPUs and an NVIDIA
Tesla V100 SXM2 32 GB GPU.

4.2. Results
Validation of Label Conflict. To substantiate our
assertion in Section 1 regarding the potential inap-
propriateness of ADA’s practice of assigning identi-
cal one-hot labels to adversarial samples as their
clean counterparts, we use the adversarial attack
algorithm PWWS for illustration. In both Baseclean
and Baseadv , clean and adversarial samples are
labeled with their ground-truth labels. Conversely,
Baseadv (soft) differs from Baseadv in that it utilizes
the predicted logits from Baseclean as soft labels.
For instance, the adversarial training sample “spot-
less performance by xxx” is labeled [0,1] (positive)
in Baseadv , whereas in Baseadv (soft) it receives
a soft label of [0.8,0.2] (leaning negative). The
findings presented in Table 4 reveal that Baseadv
records the lowest accuracy on clean test samples,
which is in line with our expectations. Moreover,
although Baseadv (soft) trails behind Baseclean for
clean sample test accuracy, it shows a notable en-
hancement over Baseadv . These observations lend
credence to the concerns highlighted in Section 1
and may catalyze further investigation into label-
ing strategies to bolster the robustness of the NLP
model. In our work, we address label conflicts by
incorporating an adversarial model, applying a con-
trastive learning approach, and leveraging the KL
divergence loss for model optimization.
Effectiveness of TaiChi. To assess the efficacy of
our approach TaiChi, we benchmark it against five
established defense strategies for mitigating adver-
sarial attacks in terms of generalizability and robust-
ness. As detailed in Table 5, TaiChi significantly

3https://huggingface.co/google-bert/
bert-base-uncased

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
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Dataset Method clean% deepwordbug% pwws% textfooler% textbugger%

SST-2

Baseclean 92.6 21.1 16.0 7.1 37.3
PGD 92.5 22.8 22.5 10.6 39.9

FGSM 90.9 26.5 21.9 12.5 36.9
FreeLB 91.7 21.7 19.0 8.3 35.1
SMART 92.6 25.3 20.2 12.8 38.8

ADA 90.8 22.5 28.9 17.3 38.1
TaiChi 91.7 (↓ 0.9) 34.1 (↑ 7.6) 34.8 (↑ 5.9) 20.3 (↑ 3.0) 51.0 (↑ 11.1)

TREC

Baseclean 94.6 42.6 53.4 42.2 64.8
PGD 95.4 51.0 59.0 46.4 66.6

FGSM 94.8 48.4 53.2 40.0 62.4
FreeLB 95.0 52.4 54.0 40.0 62.8
SMART 94.8 48.6 53.0 40.8 62.8

ADA 91.9 54.6 64.0 40.4 72.4
TaiChi 93.9 (↓ 1.5) 61.0 (↑ 6.4) 68.0 (↑ 4.0) 51.8 (↑ 5.4) 75.2 (↑ 2.8)

AG

Baseclean 94.4 15.7 25.5 10.0 31.5
PGD 94.4 41.3 19.6 44.8 19.3

FGSM 93.4 41.3 58.0 35.6 42.7
FreeLB 94.0 40.0 55.8 35.2 43.2
SMART 93.0 18.7 22.7 6.8 29.5

ADA 92.9 45.4 48.9 35.9 24.1
TaiChi 93.8 (↓ 0.6) 48.8 (↑ 3.4) 65.7 (↑ 7.7) 45.3 (↑ 0.5) 50.7 (↑ 7.5)

Table 5: Results of different defense methods against four types of adversarial attacks. For ADA and
TaiChi, we report their average clean% of four types of attacks. For TaiChi, we compare its score on each
measure with the best among all remaining methods (in bracket).

PLM Method clean% deepwordbug% pwws% textfooler% textbugger%

BERT-Large
Baseclean 93.5 15.8 16.6 6.5 36.4

ADA 90.9 26.8 21.3 11.7 43.5
TaiChi 92.9 (↓ 0.6) 34.9 (↑ 8.1) 33.2 (↑ 11.9) 15.4 (↑ 3.7) 53.6 (↑ 10.1)

DeBERTa
Baseclean 93.0 22.9 20.9 8.8 40.7

ADA 92.5 29.6 30.5 13.7 49.2
TaiChi 92.6 (↓ 0.4) 39.5 (↑ 9.9) 37.1 (↑ 6.6) 19.3 (↑ 5.6) 52.7 (↑ 3.5)

Table 6: Additional results of Baseclean, ADA, and TaiChi against four types of adversarial attacks on the
SST-2 dataset when BERT-Large and DeBERTa are used as base models.

enhances the robustness of text classification mod-
els against all four attack methods across three dif-
ferent datasets. The robustness metrics for TaiChi
are consistently at least 3% higher than those of the
best-performing existing methods. In certain cases,
it even shows improvements of more than 10% com-
pared to the second-best method. Meanwhile, the
detrimental impact on accuracy in clean samples
is marginal, not exceeding a reduction of 1.5%. In
particular, TaiChi performs better on both general-
izability and robustness than ADA in all datasets.
This outcome underscores the efficacy of the con-
trastive learning-based data augmentation and the
KL divergence loss-based model-level fusion tech-
niques used by TaiChi, compared to enriching the
training set by directly adding adversarial samples
assigned with one-hot labels, as is done in ADA.

Finally, we conduct additional experiments on the
SST-2 dataset using BERT-Large4 and DeBERTa
(He et al., 2021) as base models. The results are

4https://huggingface.co/google-bert/
bert-large-uncased

reported in Table 6, which further validates the ap-
plicability of TaiChi to other PLMs.

4.3. Ablation Studies
Overall Ablation Results. In our ablation study
on the SST-2 dataset, we dissect the contributions
of data augmentation and model-level fusion to the
performance of TaiChi separately. The key insights
obtained, as depicted in Figure 4, are as follows:

• First, TaiChiw/o CTR, which incorporates only
model-level fusion, exhibits marginally lower
accuracy on clean samples than Baseclean but
significantly better robustness.

• Second, TaiChiw/o KL, which employs only data
augmentation, outperforms Baseclean in accu-
racy for both clean and adversarial samples.

• Third, the accuracy of TaiChi on clean samples
is slightly lower than that of TaiChiw/o KL. But it
shows significantly better robustness against
all four types of attacks.

https://huggingface.co/google-bert/bert-large-uncased
https://huggingface.co/google-bert/bert-large-uncased
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Figure 4: Ablation studies for TaiChi on the SST-2 dataset.

bert-base-uncased Before Fine-Tune Baseclean TaiChiw/o KL TaiChiw/o CTR TaiChiw/o ADV TaiChi
MSE (pos, ↓) 0.0393 0.2830 0.0638 0.0966 0.0304 0.0303
MSE (neg, ↑) 0.1069 0.5935 0.7563 0.4713 0.5848 0.6275
KL (pos, ↓) 0.0030 1.3690 0.5222 0.2207 0.1771 0.1206
KL (neg, ↑) 0.0065 4.2273 4.7785 4.0947 2.1123 2.3727

CTR (↓) 6.6380 6.8853 6.0832 6.5214 6.0550 6.0305
clean% (↑) 49.6 92.6 92.9 92.4 90.4 91.6

textfooler% (↑) 1.0 7.1 12.4 14.6 19.8 20.3

Table 7: High-order statistical information exploring the abilities of different models to learn text representa-
tions on the SST-2 dataset under the TextFooler attack. Here, the average MSE and KL-divergence losses
between positive and negative sample pairs and the average contrastive learning loss are computed from
1K clean and adversarial sample pairs. Each pair of clean and adversarial samples forms a positive
sample pair. The negative pairs are constructed by assigning a fixed sentence with a negative label to all
clean samples with positive labels, and vice versa.

Figure 5: KL divergence loss vs. linear average for
model-level fusion on the SST-2 dataset under the
TextFooler attack.

• Fourth, although TaiChiw/o ADV underperforms
TaiChi in terms of accuracy on clean samples,
it achieves comparable robustness, highlight-
ing the efficacy of dual-model strategies and
reinforcing the value of the CTR and KL tasks
in bolstering model robustness.

KL Divergence Loss vs. Linear Average for
Model-level Fusion. We compare our KL diver-
gence loss-based fusion technique with a straight-
forward linear average model aggregation method,
where a new set of model parameters, favg, is com-
puted as a weighted average: favg = λfclean +
(1 − λ)fadv, for a hyperparameter λ ∈ (0, 1). As

illustrated in Figure 5, our method offers a more
advantageous balance between robustness and
generalizability than linear averaging due to the
interactive aspect of model fusion during training.
High-order Statistics. The statistics presented
in Table 7 indicate a strong correlation between
the consistency of model predictions for clean and
adversarial sample pairs (KL (pos)) and the over-
all model robustness, aligning with our hypothesis.
The model-level fusion task directly improves KL
(pos) by calibrating prediction outcomes, while the
data augmentation task indirectly enhances it by
reducing the distances between the two types of
samples in the embedding space (MSE (pos)). Ad-
ditionally, we posit that any loss in clean sample
accuracy attributable to our method may result from
the oversight of prediction inconsistencies between
samples with different labels (KL (neg)).

5. Conclusion

In this paper, we investigate the problem of im-
proving the robustness of text classification mod-
els by leveraging adversarial data augmentation.
We identify the shortcomings of previous methods,
that is, potentially unreasonable label assignments.
To address the above issue, we propose a novel
method, TaiChi, which introduces an additional ad-
versarial model that shares the same structure as
the original (clean) model, adopts a contrastive
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learning approach to data augmentation, and uti-
lizes the KL divergence loss for the fusion of clean
and adversarial models. Extensive experiments on
three widely used benchmark datasets confirm that
TaiChi achieves better generalizability-robustness
trade-offs than existing defense methods.
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