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Abstract
Current methods of toxic language detection (TLD) typically rely on specific tokens to conduct decisions, which
makes them suffer from lexical bias, leading to inferior performance and generalization. Lexical bias has both “useful”
and “misleading” impacts on understanding toxicity. Unfortunately, instead of distinguishing between these impacts,
current debiasing methods typically eliminate them indiscriminately, resulting in a degradation in the detection
accuracy of the model. To this end, we propose a Counterfactual Causal Debiasing Framework (CCDF ) to mitigate
lexical bias in TLD. It preserves the “useful impact” of lexical bias and eliminates the “misleading impact”. Specifically,
we first represent the total effect of the original sentence and biased tokens on decisions from a causal view. We then
conduct counterfactual inference to exclude the direct causal effect of lexical bias from the total effect. Empirical
evaluations demonstrate that the debiased TLD model incorporating CCDF achieves state-of-the-art performance in
both accuracy and fairness compared to competitive baselines applied on several vanilla models. The generalization
capability of our model outperforms current debiased models for out-of-distribution data.
Disclaimer: The samples presented by this paper may be considered offensive or vulgar.
Keywords: Toxic Language Detection, Lexical Bias, Causal Inference

1. Introduction

In recent years, researchers have introduced natu-
ral language processing techniques to detect toxic
language. However, due to biased training, cur-
rent toxic language detection (TLD) methods are
prone to relying on lexical bias to perform deci-
sions. The lexical bias associates toxicity with the
presence of biased tokens (e.g., identity mentions,
insults, and markers of African American English)
(Davidson et al., 2019; Zhang et al., 2020), which
undermines the fairness of minorities (Thiago et al.,
2021; Hutchinson et al., 2020). As an example, as
shown in Figure 1, the TLD model tends to classify
all samples containing "n*gga" (a cordial phrase for
dialogue between Africans) as toxic language, due
to its frequent occurrence in toxic samples during
training. This actually compromises the freedom
of expression of Africans (Sap et al., 2019). Mean-
while, lexical bias also affects the generalization
ability of the TLD model, resulting in limited detec-
tion performance of the model for out-of-distribution
(OOD) data (Vidgen et al., 2019; Ramponi and
Tonelli, 2022; Zhou et al., 2021b).

Researchers have presented several methods
to mitigate lexical bias in TLD. Due to the expen-
sive labor costs of constructing unbiased datasets
(Dinan et al., 2019), many studies have attempted
to weaken lexical prior while training with original

* Corresponding author

Token Toxic Non-
Toxic Ratio (%)

black 244 76 76.25
n*gga 541 17 96.95
f*ck 878 46 95.02
ass 1592 132 92.34

Table 1: Proportion of toxic samples containing
several biased tokens in the dataset (Founta et al.,
2018), which are crawled from Twitter.

data, and enable models to make decisions without
the impact of the bias (Swayamdipta et al., 2020;
Chuang et al., 2021; Ramponi and Tonelli, 2022).
However, these methods fail to distinguish the “use-
ful impact” and “misleading impact” of lexical bias
for understanding toxicity. In fact, lexical bias has
positive effects on TLD, which was viewed as an ef-
fective surface feature for identifying toxic language
in earlier work (Abney, 2014; Dinakar et al., 2015).
As shown in Table 1, biased tokens are used to
express toxic semantics in considerable comments.
Therefore, interpreting lexical bias as a detriment
to TLD and directly eliminating the bias can lead to
a significant reduction in the accuracy of debiased
models (Zhou et al., 2021b). To maintain detection
performance while debiasing, it is necessary to ex-
amine how lexical bias influences model decisions
from the dual characteristics.

In this work, we propose a novel Counterfactual
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Figure 1: Due to the biased training, the TLD model is prone to identify all samples containing biased
tokens, such as "n*gga", as toxic language. In this paper, we present a Counterfactual Causal Debiasing
Framework to mitigate lexical bias by excluding the direct causal effect of biased tokens on model decisions
from the total effect.

Causal Debiasing Framework (CCDF) to mitigate
lexical bias for TLD. We employ causal learning
techniques to examine the “useful” and “mislead-
ing” impact of lexical bias since it is applicable to
estimating the effects of variables on model deci-
sions (Pearl and Mackenzie, 2018). We formulate
the “useful impact” of lexical bias as the causal
effect of biased tokens combined with context infor-
mation on decisions, while the "misleading impact"
refers to the direct causal effect of biased tokens
without introducing any context. As shown in Fig-
ure 1, two scenarios are constructed to calculate
the causal effect of variables in TLD. Specifically,
we design Factual TLD to estimate the total effect
of biased tokens and the input sentence on detec-
tion, which jointly influence the predicate logit of
the model. The Counterfactual TLD is proposed to
estimate the direct causal effect of biased tokens,
where the model is invariant to the changes of the
sentence and only relies on the lexical bias to make
decisions. We then conduct counterfactual infer-
ence to exclude the direct causal effect of biased
tokens from the total effect, thus preserving the
positive effects of lexical bias and mitigating the
negative effects.

We evaluate the performance of the debiased
TLD model incorporating CCDF for in-distribution
data and out-of-distribution data. The experimen-
tal results demonstrate that the debiased model
achieves state-of-the-art in both accuracy and fair-
ness on several vanillas. And its migration ability
outperforms current models. We further discuss
the rationales of CCDF with empirical experiments.

The main contributions of this work are summa-
rized as follows:

• We examine the positive and negative effects
of lexical bias on model decisions in toxic lan-
guage detection from the causal view.

• We present a Counterfactual Causal Debias-
ing Framework to retain the positive effects of

lexical bias and mitigate negative effects, im-
proving fairness while maintaining accuracy.

• We perform an empirical evaluation and
demonstrate the effectiveness of our proposed
framework in both in-distribution and out-of-
distribution data1.

2. Related Work

2.1. Debiasing for Toxic Language
Detection

Toxic language is viewed as a rude, disrespect-
ful, or unreasonable comment that is likely to make
someone leave a discussion (Dixon et al., 2018). In
recent years, researchers have tackled the problem
of toxic language detection (TLD) using techniques
of natural language processing (AlKhamissi et al.,
2022; Tekiroglu et al., 2020; Zhou et al., 2021a;
Mathew et al., 2021; Caselli et al., 2020; Hanu
and Unitary team, 2020; Min et al., 2023; Lu et al.,
2023a,b). Despite excellent performance on spe-
cific datasets, however, these methods over-rely on
lexical bias in decision making, resulting in harm
to the fairness of minority groups (Thiago et al.,
2021). To mitigate the bias in TLD, many research
efforts have been presented. The straightforward
method is to balance the biased data, including
using adversarial data (Xia et al., 2020; Dixon et al.,
2018), filtering (Bras et al., 2020; Swayamdipta
et al., 2020), relabeling (Zhou et al., 2021b) and
counterfactual data augmentation (Sen et al., 2021,
2022). However, the application of these methods
is challenging due to the significant costs of hu-
man annotation and the uncontrollability of data
selection.

In view of this, several debiasing methods that
weaken the influence of lexical priors have been

1Codes of this paper are available at https://
github.com/DUT-lujunyu/Debias

https://github.com/DUT-lujunyu/Debias
https://github.com/DUT-lujunyu/Debias
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presented, which can be applied directly to the orig-
inal data. (Kennedy et al., 2020; Attanasio et al.,
2022) calculated additional penalty loss for sam-
ples containing biased tokens to mitigate lexical
bias. InvRat (Chuang et al., 2021) aimed to main-
tain invariant predictions, regardless of whether the
model determines the sample contains biased to-
kens, thereby removing the bias. Badjatiya et al.
(2019) and Ramponi and Tonelli (2022) remove and
mask biased tokens directly on the original sample
during the training phase, respectively. Motivated
by LMixin (Swayamdipta et al., 2020), Zhou et al.
(2021b) designed a separate branch which only
makes decisions based on lexical bias while train-
ing, and directly excluded it in the test phase. While
these methods have a certain degree of debiasing
effect, they fail to leverage the positive effect of
lexical bias, resulting in a decrease in the accuracy
of debiased TLD models. In contrast, our CCDF
performs counterfactual reference to ensure the de-
tection performance of the model while mitigating
the lexical bias.

2.2. Debiasing for Other NLU Tasks

In natural language understanding (NLU) tasks,
some studies have focused on mitigating social bi-
ases in pre-trained language models to improve
the fairness of models (Zmigrod et al., 2019; Liang
et al., 2020; Cheng et al., 2021; Garimella et al.,
2021; Kaneko and Bollegala, 2021; Guo et al.,
2022; He et al., 2022; Webster et al., 2020). How-
ever, these methods are not applicable to debiasing
for TLD due to the substantial difference in purpose.
Specifically, they aim to eliminate the unbalanced
model behaviors on socially sensitive topics, such
as the spurious correlations between gender and
careers, while the purpose of debiasing for TLD
is to mitigate the dependence of model decisions
on lexical bias. In addition, the sentences in TLD
datasets are crawled from online platforms and con-
tain more flexible word variants compared with the
samples in ordinary NLU datasets (Wang et al.,
2014), which also brings challenges for debiasing
(Zhou et al., 2021a).

3. Preliminaries

3.1. Causal Learning

Causal learning aims to estimate the impact of vari-
ables on model decisions, which has been widely
applied in various fields (Niu et al., 2021; Tang et al.,
2020; Tian et al., 2022; Choi et al., 2022; Qian et al.,
2021). Here we introduce the basic concepts of
causal learning. For distinction, we use the up-
percase letter to denote the variable (e.g., X ) and
the lowercase refers to its observed value (e.g., x),

Figure 2: Illustration of causal graph. (a) Factual
scenario; (b, c) Counterfactual scenario. Where
white nodes denote variables with observed values
and gray nodes denote variables with counterfac-
tual values

while the lowercase letter with "*" represents the
counterfactual value (e.g., x∗).

Causal graph is a directed acyclic graph G =
{V, E}, where V represents the set of variables
and E refers to the set of causal relationships
from independent variables to dependent variables.
An example of the causal graph is shown in Fig-
ure 2(a), which has three variables, X, M, and
Y. In this case, M is a mediator between X and
Y. Meanwhile, X has a direct causal effect and
an indirect causal effect on Y, i.e., X → Y and
X → M → Y . Therefore, Y can be denoted as
Yx,m = Y (X = x,M = m), where m = M(X = x)
in the factual scenario.

Causal effects reflect a comparison between
the potential outcomes of the same individual in
either treatment or not. Here we take variable X
as an example. In the factual scenario, X is under
treatment condition and gets observed value. And
M and Y can respond to the variations of X. In the
counterfactual scenario, X is under no-treatment
condition and cannot directly affect its successor
nodes. Furthermore, for a given variable in the
causal graph, Total Effect (TE) refers to the sum of
its predecessors’ causal effect on it. By comparing
Figure 2(a) and Figure 2(b), the TE on Y can be
written as follows:

TE = Yx,m − Yx∗,m∗ , (1)
where Yx∗,m∗ = Y (X = x∗,M = M(X = x∗)).

In causal learning, TE consists of the natural
direct effect (NDE) and total indirect effect (TIE).
Where NDE estimates the direct causal effect of X
on Y by blocking M, resulting in M failing to respond
to the variations of X, as shown in the comparison
between Figure 2(c) and Figure 2(b). NDE can be
written as follows:

NDE = Yx,m∗ − Yx∗,m∗ . (2)
Then TIE is the remaining effect of X and M on Y
after excluding the direct causal effect of X on Y ,
which can be obtained by comparing TE and NDE,
denoted as:

TIE = TE −NDE = Yx,m − Yx,m∗ (3)
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Figure 3: The model diagram of CCDF, where Only X, Only B and Ensemble represent different branch
models, i.e. FE , FX , and FB, respectively. The vector representations of the original sentence and
biased tokens are obtained by the same encoder. Lf , Lx, Le, and Lb respectively refer to the loss values
between each predicate logit (i.e. Ye,x,b, Yx, Ye, and Yb) and the ground-truth label.

Figure 4: Comparison between (a) Factual TLD
and (b) Counterfactual TLD using causal graph.

3.2. Problem Formulation
Let X = {w1, ..., wn} a sentence containing n to-
kens. These tokens consist of both biased tokens,
e.g. identity mentions, denoted as B = {b1, ..., bm},
and unbiased tokens. To recognize the biased to-
kens, a public toxic lexicon ToxTrig2 (Zhou et al.,
2021b) is introduced. For an X with a ground-truth
label y ∈ {0, 1}, the TLD models aim to predict
whether X is toxic or non-toxic, where the predic-
tion is denoted as Y.

4. Methodology

4.1. Overview
We first introduce our Counterfactual Causal De-
biasing Framework (CCDF) from a causal view,
and analyze the total effect of biased tokens and
original sentence on model decisions during the
biased training (i.e. Factual TLD). Counterfactual
reference is then performed in the test phase to
make debiased predictions by excluding the direct
causal effect of lexical bias from the total effect (i.e.
Counterfactual TLD). The diagram of our CCDF is
presented in Figure 3.

4.2. Causal View of CCDF
In the CCDF, we first propose an ensemble feature
E integrating the original sentence X and biased

2https://github.com/XuhuiZhou/Toxic_
Debias/blob/master/data/word_based_bias_
list.csv

tokens B. This facilitates the model to more ade-
quately employ contextual information to determine
whether biased tokens are used to express toxic
semantics, maximizing the positive effects of lexical
bias on model decisions. Then, several separate
branch models are respectively utilized to obtain
the logits for the three variables, i.e., E, X, and
B. We further incorporate these logits with a fu-
sion function to generate the final predictions. The
causal graph of CCDF is shown in Figure 4 and its
details are as follows.

Node X and B. These two nodes denote the orig-
inal sentence X and biased tokens B, respectively.
We employ the same encoder to obtain the vector
representations of the two inputs. The correspond-
ing separator (e.g., "[SEP]" in BERT (Devlin et al.,
2019)) is utilized to separate each bi.

Node E. It refers to the ensemble feature of X
and B. As a mediator from X and B to Y, E can be
written as follows:

Ex,b = E(X = x,B = b) (4)

In this work, we employ Cross Attention to integrate
X and B to obtain E:

E = softmax(XT · B)X, (5)

where X and B refer to the vector representations
of X and B, respectively.

Link X → E and B → E. Both X and B have
direct causal effects on E due to E being built with
the information of X and B.

Link E → Y, X → Y, and B → Y . These links
denote the process by which each branch model
outputs the predicate logit separately during the
biased training phase. Therefore, E, X, and B have
direct causal effects on Y. The branch models are
represented as FE , FX , and FB , respectively.

Node Y . It refers to the final prediction result of
CCDF, which integrates the outputs of three branch
models with a fusion function. In the scenario of
Factual TLD, all the input variables get observed

https://github.com/XuhuiZhou/Toxic_Debias/blob/master/data/word_based_bias_list.csv
https://github.com/XuhuiZhou/Toxic_Debias/blob/master/data/word_based_bias_list.csv
https://github.com/XuhuiZhou/Toxic_Debias/blob/master/data/word_based_bias_list.csv
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values. Therefore, branch models can respond to
the variation of E, X, and B. And Y can be written
as follows:

Ye,x,b = Y (E = e,X = x,B = b), (6)

where e = Ex,b integrates the information of both
lexical bias and context information.

4.3. Debiasing Inference with Casual
Effect

As the definition of total effect (TE) shown in Section
3.1, we compare the Factual TLD and no-treatment
condition to get TE of E, X, and B on Y, which can
be written as:

TE = Ye,x,b − Ye∗,x∗,b∗ , (7)

where e∗, x∗, and b∗ denote the corresponding vari-
ables under no-treatment condition.

Furthermore, based on the casual graph, the ef-
fect of biased tokens B on the predicate logits Y
can be divided into two parts: the direct causal ef-
fect via B → Y and the indirect causal effect via
B → E → Y which incorporates the context in-
formation. Due to the significance of maintaining
detection performance while debiasing, it is nec-
essary to address the effect of B from both sides.
To mitigate the negative effects of lexical bias, the
direct causal effect of B on Y, i.e., B → Y , has to
be eliminated from the total effect. Meanwhile, to
exert the positive effects of the bias, the indirect
causal effect, i.e., B → E → Y , should be reserved.
The scenario of Counterfactual TLD is designed to
estimate the direct causal effect of B, and counter-
factual inference is then conducted. Specifically,
we block the direct causal effect of E and X on Y,
causing the branch model FE and FX invariant,
which cannot respond to the variation of input vari-
ables E and X. This leads to the TLD model only
relying on the lexical bias to make decisions, which
is the natural direct effect (NDE) of B on Y.

NDE = Ye∗,x∗,b − Ye∗,x∗,b∗ . (8)

Then the total indirect effect (TIE) of variables on
Y can be calculated by excluding NDE from TE:

TIE = TE −NDE = Ye,x,b − Ye∗,x∗,b. (9)

And we use TIE as the debiased prediction.

4.4. Other implementation details
In the implementation, we employ three separate
MLPs as branch models. As shown in Figure 3,
FX , FE , and FB are running in the Factual TLD,
while FX and FE are blocked in the Counterfactual

TLD. Therefore, the output of each branch model
can be defined as follows:

Yb = yb = FB(b), (10)

Yx =

{
yx = FX(x) if X = x

y∗x = cx if X = ∅
, (11)

Ye =

{
ye = FE(x, b) if X = x

y∗e = ce if X = ∅
, (12)

where cx and ce refer to the invariant responses
of FX and FE , respectively, which can be trained
or set as hyperparameters. And ∅ denotes the
no-treatment condition.

To obtain the final predicate logit, we utilize the
harmonic function to integrate Ye, Yx, and Yb. The
fused score Ye,x,b is as follows:

Ye,x,b = h (Ye, Yx, Yb) = log
Ze,x,b

1 + Ze,x,b
, (13)

where Ze,x,b = tanh (Ye) · tanh (Yx) · tanh (Yb) .
In the training phase, we utilize cross-entropy to

calculate the difference between the predicate log-
its, including the output of each branch (i.e. Ye, Yx,
and Yb) and the fused score Ye,x,b, and the ground-
truth label y. The final loss function is defined as
follows:

Lall = Lf + Le + Lx + Lb (14)
= L(Ye,x,b, y) + L(Ye, y) + L(Yx, y) + L(Yb, y).

The parameters of TLD models are optimized
by minimizing Lall. In addition, since X and B
share the same encoder, we do not backpropagate
L(Yb, y) to the encoder, preventing the encoder
from learning lexical bias directly. And L(Yb, y) is
only used to update parameters of FB .

5. Experiments

5.1. Datasets and Evaluation Metrics
For fair comparisons with baselines of debiasing
methods for the TLD model, we followed Zhou et al.
(2021b) and selected the same benchmarks in both
in-distribution and out-of-distribution data. Specif-
ically, we first conducted the main experiment on
(Founta et al., 2018), which has 32K toxic and
54K non-toxic samples crawled from Twitter. Refer-
enced by Zhou et al. (2021b), we focused on three
kinds of lexical biases, including non-offensive mi-
nority identity (nOI), e.g., gay, offensive minority
identity (OI), e.g., n*gga, and offensive non-identity
(OnI), e.g., f*ck. Overall accuracy (Acc) and F1

are used to measure the detection performance
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of TLD models. Then F1 and false positive rate
(FPR) on the samples containing nOI, OI, and OnI
are respectively reported, evaluating the degree of
lexical bias in the model. Intuitively, the lower the
FPR, the less the model relies on lexical bias in
decision making, and the fairer the model.

We then evaluated the performance of trained
models on OOD data. We used the test set of (Di-
nan et al., 2019) as the adversarial dataset, which
contains 6k artificial sentences (including 600 toxic
samples). The language style of these artificially
constructed samples is quite different from the in-
distribution data crawled from Twitter and has a
more standardized character. In addition, many
of the toxic samples in this dataset are implicit
and do not contain insults towards minorities. This
presents a serious challenge to the generalization
capability of TLD models. Here we use the accu-
racy and weighted F1 as evaluation metrics.

5.2. Baselines and Experimental Settings
We conducted various baselines to mitigate lexi-
cal bias in TLD models, including both weakening
lexical prior with original data and unbiased train-
ing with data filtering. For methods of weakening
lexical prior, we selected Masking (Ramponi and
Tonelli, 2022), LMixin (Swayamdipta et al., 2020)
and InvRat (Chuang et al., 2021). We evaluated
the methods on three commonly used PLMs, in-
cluding BERT-base (Devlin et al., 2019), RoBERTa-
base and RoBERTa-large (Liu et al., 2019). For
methods of data filtering, two data filtering methods
were introduced and applied on RoBERTa-large,
including AFLite (Bras et al., 2020) and DataMaps
(Swayamdipta et al., 2020). The filtered training
data size is 33% of the original training set.

In the experimental stage, we trained TLD mod-
els on the training set of (Founta et al., 2018) and
saved their best parameters on the validation set.
Then we respectively evaluated the performance
of models on the test set and adversarial dataset.
To further prove the generalization of our CCDF,
we also evaluated its performance on balanced
training data filtered by AFLite and DataMaps, re-
spectively. We did not perform any pre-processing
of the datasets, or any hyperparameter search, but
followed all the settings in Zhou et al. (2021b). We
use one NVIDIA GeForce RTX 3090 to perform the
experiments. AdamW is used as the optimizer for
model training.

5.3. Quantitative Results

5.3.1. Main Discussions

Table 2 shows our empirical evaluation results of
both in-distribution and OOD data. And we have
the following findings:

RQ1: Performance of Weakening Lexical
Prior Methods on In-distribution Data. Overall,
whereas most debiasing methods of weakening the
lexical prior can improve the fairness of TLD mod-
els, they also lead to a reduction in the accuracy
of models’ detection for in-distribution data. Here
we take LMixin as an example, which is a compet-
itive baseline for mitigating lexical bias. After the
adoption of LMixin, the accuracy and F1 value of
the models decrease on average by almost 2.5%
for the samples of the test set.

We also notice that models introducing Mask-
ing have little performance degradation on in-
distribution data and have almost the worst ability
to mitigate the bias. This is because Masking itself
is an incomplete method of debiasing, and the bi-
ased tokens are only masked in the training set and
remain in the validation and test sets. Therefore,
even though it prevents the model from learning the
lexical bias during the training phase, the model
can still make decisions on the test set based on
the lexical prior learned during pre-training. Since
the PLM itself has already learned the semantics
of these tokens, the overall impact of Masking on
model performance is minimal.

In contrast, with the introduction of our CCDF,
TLD models outperform the original vanilla in de-
tecting in-distribution data, and achieve state-of-
the-art debiasing effects for the lexical bias of nOI
and OI. This demonstrates that our method can
effectively mitigate bias while preserving model de-
tection performance, achieving a trade-off between
model accuracy and fairness.

RQ2: Performance of Weakening Lexical
Prior Methods on Out-of-distribution Data. Com-
pared to the original vanilla, TLD models introduc-
ing the debiasing method exhibit a better detection
performance on OOD data. This indicates that
removing spurious associations between biased to-
kens and labels can improve the generalization abil-
ity of the models. Moreover, our CCDF significantly
outperforms other debiasing methods to provide
maximum benefit to the model, with an improve-
ment of approximately 4.5% in the F1 value. Mean-
while, We also find that the accuracy of TLD models
in detecting OOD data is much higher than the F1

value. This is because the adversarial dataset con-
tains implicitly toxic samples that the models often
misclassify as non-toxic, leading to a decrease in
F1. We will further conduct an error analysis to
illustrate these samples in Section 5.4 below.

RQ3: Comparison with Debiasing Methods
of Data Filtering. Models trained on the balanced
data have high performance on in-distribution data.
This is because data filtering methods are able to
select the most efficient samples, enabling models
to achieve optimal results while utilizing minimal
data. However, the debiasing effect of these mod-
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Test (12893) nOI (602) OI (553) OnI (3236) OOD (6000)
Method Acc ↑ F1 ↑ F1 ↑ FPR ↓ F1 ↑ FPR ↓ F1 ↑ FPR ↓ Acc ↑ F1 ↑

weakening lexical prior with BERT-base:

Vanilla† 93.530.1 91.390.1 89.290.3 9.220.4 98.900.0 85.713.4 97.190.0 66.341.4 91.280.1 81.432.4

Masking 93.240.1 91.080.1 89.330.2 9.560.4 98.800.2 83.333.4 97.240.0 64.880.5 91.550.0 81.710.6
LMixin 91.850.5 89.510.5 87.190.2 10.242.7 98.330.0 74.520.0 97.080.1 59.511.8 91.580.1 83.673.2

CCDF(ours) 93.750.0 91.590.0 88.540.7 4.100.9 98.620.8 78.570.0 97.150.2 59.022.3 91.630.1 85.811.2

weakening lexical prior with RoBERTa-base:

Vanilla† 94.040.1 91.700.1 90.100.3 8.400.4 98.600.0 81.003.4 97.000.0 63.401.4 92.190.1 81.782.4

Masking 93.910.1 92.010.1 89.600.2 5.300.4 98.210.2 80.953.4 97.320.0 62.760.5 92.270.0 82.350.6
LMixin 92.050.5 90.530.5 87.510.2 6.352.7 97.930.0 71.430.0 97.140.1 63.091.8 91.920.1 83.113.2
InvRat† - 91.000.5 85.501.6 3.400.6 97.501.0 76.203.4 97.200.2 61.101.5 - -

CCDF(ours) 94.050.0 91.860.0 85.910.7 2.850.9 97.690.8 71.430.0 97.120.2 57.233.3 92.390.1 86.121.2

weakening lexical prior with RoBERTa-large:

Vanilla‡ 94.210.0 92.330.0 89.760.3 10.241.3 98.840.1 85.710.0 97.340.1 64.720.8 92.200.1 82.202.0

Masking 93.670.1 91.750.1 87.560.7 8.191.1 98.400.5 83.333.4 97.400.1 61.792.3 91.930.2 84.012.2
LMixin‡ 90.440.7 86.941.1 85.470.3 11.151.7 97.640.3 71.430.0 90.411.8 44.551.5 - -
LMixin 91.671.1 89.581.1 86.760.8 6.940.7 98.120.3 78.572.9 96.950.1 56.101.2 91.950.1 85.351.9

CCDF(ours) 94.150.1 92.070.1 86.650.9 3.751.0 98.490.3 78.570.0 97.420.1 58.543.2 92.330.0 86.401.6

balancing training data with RoBERTa-large:

AFLite 93.860.1 91.940.1 90.210.4 8.221.1 98.900.0 85.710.0 97.320.1 62.440.0 91.340.2 79.612.3
w/ CCDF 93.850.1 91.830.0 86.360.6 3.830.7 98.780.2 78.570.0 97.310.1 59.352.8 91.730.1 82.561.9

DataMaps 94.330.1 92.450.1 89.160.7 7.391.0 98.870.1 85.710.0 97.540.0 64.391.4 91.540.3 81.621.3
w/ CCDF 94.250.0 92.200.1 88.110.4 3.750.9 98.340.1 78.570.0 97.130.1 60.491.1 92.200.3 83.641.8

Table 2: Evaluation on the test set of (Founta et al., 2018) and adversarial dataset (Dinan et al., 2019).
Results show the mean and s.d. (subscript) of Acc and F1 across 3 runs, as well as F1 and FPR towards
test samples containing specific mentions in ToxTrig, including nOI, OI, and OnI. The best results of
debiasing methods that weaken lexical prior are highlighted in each column. † : results reported in Chuang
et al. (2021); ‡: results reported in Zhou et al. (2021b). ↑: greater the better; ↓: lower the better.

els is limited, especially for the lexical bias of OI and
OnI. This is due to the fact that data filtering only
relies on the confidence probability of the model
on the sample without effectively eliminating sam-
ples containing lexical bias. Furthermore, for OOD
data, we reach the same conclusion as Zhou et al.
(2021a) that data filtering methods have poor gen-
eralization ability compared to debiasing methods
that weaken lexical prior due to insufficient training
data (only 33% of the original data after filtering).
Besides, these methods require a relatively high
time overhead to perform additional training rounds
for data selection. In contrast, our method is more
efficient by training on the original dataset and has
a better effect of mitigating bias.

Furthermore, we evaluate the performance of
CCDF on balanced training data. The results indi-
cate that the incorporation of CCDF can further en-
hance the fairness of the model trained on the bal-
anced data, resulting in a significantly lower FPR.
Meanwhile, the debiased model retains the benefits
of the filtering data method, maintaining detection
performance on in-distribution data. The results of

Test nOI OOD
Method F1 ↑ FPR ↓ F1 ↑

RoBERTa-base 91.700.1 8.400.4 81.782.4
CCDF 91.860.0 2.850.9 86.121.2

w/o Fe 91.820.1 3.571.2 83.691.7
w/o Fx 91.860.1 3.040.8 84.231.5
w/o Fx & Fb 91.760.1 7.640.5 82.241.7

Table 3: Ablation experiments on branch model,
where w/o Fx & Fb refers to the model which only
relies on Fe to make decisions.

OOD data demonstrate its enhanced capacity for
generalization.

5.3.2. Ablation Experiments

Here we further conduct ablation experiments on
the branch model of our CCDF. The experimental
results are shown in Table 3. From the results, we
obtain the following conclusions:

(1) Ablation of branch model Fx or Fe has lit-
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Sentence Label Vanilla LMixin CCDF

(a) @user @user You don’t have to pay for their bullshit read your
  

rights read the law I don’t pay fo. . .

(b) RT @user: my ex so ugly to me now like...i’ll beat that hoe ass.   

(c) @user Stop that, it’s not your fault a scumbag decided to steal
  

otems which were obviously meant for someone i. . .

(d) He should go back to his lad.   

Table 4: Examples from the test set and adversarial dataset with predictions from vanilla (RoBERTa-base),
LMixin, and our CCDF.  denotes toxic label and  denotes non-toxic label. Biased tokens in examples
are highlighted.

tle effect on the performance of the model on in-
distribution data. This is because counterfactual
reasoning can still be performed on the ablated
model to remove the negative effects of lexical bias
and improve fairness. Meanwhile, the accuracy
of the ablated model on OOD data is significantly
reduced. This reflects that joint training of multi-
ple branches facilitates the generalization ability
of the model. In addition, whether ablating branch
model Fx or Fe, ablated CCDF has a more com-
petitive performance than baselines, illustrating the
effectiveness of our framework.

(2) We also find that CCDF without the branch
model Fx has higher accuracy and better fairness
than without Fe, and has stronger generalization
on OOD data. Meanwhile, compared with vanilla,
Fe performs better. This reflects the fact that inte-
grating context information and biased tokens for
making decisions can fully exploit the positive ef-
fects of lexical bias, demonstrating the significance
of ensemble features to TLD.

5.4. Qualitative analysis
In this section, we further illustrate the capability
of our CCDF in mitigating the lexical bias for TLD,
providing several examples shown in Table 4. We
choose RoBERTa-base as vanilla and list predic-
tions from LMixin and our CCDF for comparison.

For Exp. (a), the vanilla incorrectly predicts this
non-toxic sentence as toxic, due to the biased token
"bullshit", which is itself a high-frequency swear
word, even though in context it does not express
the semantics of toxic. And the vanilla introducing
either LMixin or CCDF can perform a debiased
decision. For Exp. (b), we find that the vanilla and
our CCDF correctly predict the label, while LMixin
does not. This is because it ignores the positive
effects of biased tokens (i.e., "hoe" and "ass"). In
contrast, our CCDF integrates context information
and lexical bias to preserve the positive effect and
provide more accurate predictions.

To gain more insights into the performance of
our model, we list two sentences that our model

misclassifies, Exp. (c) and (d) shown in Table 4,
and conduct an error analysis. For Exp. (c), both
debiased models introducing LMixin and CCDF in-
correctly predict this toxic sentence as non-toxic,
while vanilla correctly predicts the label. This is
because the toxicity degree of "scumbag" is small,
leading debiased models to consider the sample
as non-toxic. And for Exp. (d), which implicitly
expresses sarcasm towards LGBTQ, vanilla and
LMixin also make incorrect predictions. This result
reflects that current TLD models still lack enough
world knowledge to capture potential toxicity, result-
ing in poor detection of samples that do not contain
insults.

6. Conclusion

In this paper, we propose a Counterfactual Causal
Debiasing Framework to mitigate lexical bias in
toxic language detection. We formulate the bias as
the causal effect of biased tokens on decisions and
build a causal graph to analyze the causal relation-
ship between variables and predicate logits. In the
training phase, our framework integrates context
information to leverage the positive effects of lexical
bias, guaranteeing the detection performance of
the model. The negative effects of the bias are then
removed from the total effect by performing counter-
factual reasoning during the testing phase. In the
experiments, we show that our framework signif-
icantly outperforms the state-of-the-art debiasing
methods on both accuracy and fairness for TLD.
Furthermore, we demonstrate that the debiased
model employing our framework has an excellent
generalization capability in out-of-distribution data.
In the future, we will further evaluate the debiasing
effect of CCDF for other NLU tasks, as well as the
performance applied to large language models.

Limitations

In this work, we utilized a toxic lexicon as prior
knowledge to recognize biased tokens. However,
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since lexical bias is generated during model training
rather than being artificially proposed (Hutchinson
et al., 2020), the external lexicon may not align with
the biased tokens learned by the TLD model dur-
ing training. Consequently, an incomplete lexicon
could result in new lexical bias, which would nega-
tively impact the fairness of the model (Joshi and
He, 2022). Furthermore, our study did not investi-
gate sentence-level dialectal bias, such as African
American English (AAE), which is officially consid-
ered a less appropriate language variety, and this
exacerbates racial bias (Sap et al., 2019). Based
on the above, it is imperative to acknowledge that
CCDF should not be perceived as a universal so-
lution to mitigate all the bias in TLD. Instead, it
should be regarded as an innovative attempt to
highlight certain aspects of a complex, elusive, and
multifaceted problem. In the future, we will investi-
gate techniques for identifying lexical bias from the
standpoint of model training and examine strategies
for alleviating dialectal bias in the TLD model.
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A. Experimental Details

A.1. Hyperparameter Setting
We use one NVIDIA GeForce RTX 3090 to perform
the experiments. AdamW is used as the optimizer
for model training. The invariant responses of FX

and FE in the Counterfactual TLD, i.e. cx and ce,
are obtained by training. Other details of hyperpa-
rameters are directly followed (Zhou et al., 2021b),
listed in Table A1. While under non-optimal hy-
perparameters, debiased models with CCDF still
obtain state-of-the-art performance in both accu-
racy and fairness across most datasets compared
with other methods.

Hyperparameter Value
epochs 3

saved steps 1000
batch size 8

learning rate 1e-5
dropout 0.1

hidden state of MLPs 256
padded length of sentence 128

padded length of biased tokens 16

Table A1: The hyperparameters of the experiments.

A.2. Baseline Introduction and
Implementation

Here we further introduce the baselines and their
implementation details. The same hyperparame-
ters are utilized as our CCDF.

Masking (Ramponi and Tonelli, 2022): In the
training set, the biased tokens are masked, while in
the validation set and test set, they are still retained.

LMixin (Zhou et al., 2021b): In the training
phase, model decisions depend on the outputs of
two branch models, whose inputs are the original
sentence and biased tokens respectively, like our
CCDF without FE . In the test phase, the model
makes predictions only based on the sentence.

InvRat (Chuang et al., 2021): InvRat is a three-
player framework consisting of an environment-
agnostic predictor, an environment-aware predictor,
and a rationale generator. Therefore, three inde-
pendent RoBERTa models are running at the same
time during the training phase.

AFLite (Bras et al., 2020): An ensemble of sim-
ple linear classifiers is trained and tested on the
dataset. Samples that are correctly classified by
most of the classifiers in the ensemble are con-
sidered to contain lexical bias and are discarded.
The algorithm is iterative until the remaining data
reaches the target size.

DataMaps (Swayamdipta et al., 2020): For a
specific model, there are different regions in a

Figure B1: Causal graph of ablated CCDF.

dataset, including easy, hard, and ambiguous re-
gions. These regions are identified based on the
confidence of the model in the true category of ex-
amples, and the variation of this confidence during
the training phase. DataMaps-Easy, DataMaps-
Ambiguous, and DataMaps-Hard subsets of the
dataset are then created (Founta et al., 2018).

Following (Zhou et al., 2021a), the size of filtered
subsets is set to 33% of the original training set
for both filtering methods, and label proportions
are preserved. Then a RoBERTa-large classifier is
fine-tuned on filtered subsets.

B. Causal View of Ablated CCDF

Here we introduce the ablated CCDF from the
causal view. As shown in Figure B1(a), for CCDF
ablating branch model Fe, only the original sen-
tence X and biased tokens B, but not ensemble
feature E, directly affect the model decisions Y.
Therefore, TE of variables on Y can be written as:

TE = Yx,b − Yx∗,b∗ . (15)
And NDE of B on Y is:

NDE = Yx∗,b − Yx∗,b∗ . (16)
We then obtain the TIE by comparing TE and NDE
as debiased predicate logits:

TIE = TE −NDE = Yx,b − Yx∗,b. (17)
Similarly, the causal graph of CCDF ablating Fx

is shown in Figure B1(b) and the causal effect is
calculated as follows:

TE = Ye,b − Ye∗,b∗ . (18)

NDE = Ye∗,b − Ye∗,b∗ . (19)

TIE = TE −NDE = Ye,b − Ye∗,b. (20)
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