
LREC-COLING 2024, pages 15595–15605
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

15595

Targeted Syntactic Evaluation on the Chomsky Hierarchy

Taiga Someya, Ryo Yoshida, Yohei Oseki
The University of Tokyo

{taiga98-0809, yoshiryo0617, oseki}@g.ecc.u-tokyo.ac.jp

Abstract
In this paper, we propose a novel evaluation paradigm for Targeted Syntactic Evaluations, where we assess how
well language models can recognize linguistic phenomena situated at different levels of the Chomsky hierarchy.
Specifically, we create formal languages that abstract four syntactic phenomena in natural languages, each
identified at a different level of the Chomsky hierarchy, and use these to evaluate the capabilities of language
models: (1) (Adj)n NP, (2) NPn VPn, (3) Nested Dependency, and (4) Cross Serial Dependency. We first train
three different language models (LSTM, Transformer LM, and Stack-RNN) on language modeling tasks and then
evaluate them using pairs of a positive and a negative sentence by investigating whether they can assign a higher
probability to the positive sentence than the negative one. Our result demonstrated that all language models have
the ability to capture the structural patterns of the (Adj)n NP formal language. However, LSTM and Transformer
LM failed to capture NPn VPn language and no architectures can recognize nested dependency and Cross Serial
dependency correctly. Neural language models, especially Transformer LMs, have exhibited high performance
across a multitude of downstream tasks, leading to the perception that they possess an understanding of natural
languages. However, our findings suggest that these models may not necessarily comprehend the syntactic
structures that underlie natural language phenomena such as dependency. Rather, it appears that they may extend
grammatical rules equivalent to regular grammars to approximate the rules governing dependencies.

Keywords: linguistics, targeted syntactic evaluation, formal language

1. Introduction

In the field of natural language processing (NLP),
neural language models have achieved remark-
able success in various downstream tasks (Wang
et al., 2019b,c). To find out the underpinnings be-
hind their success, the literature on Targeted Syn-
tactic Evaluations (Linzen et al., 2016; Marvin and
Linzen, 2018) has investigated what kind of lin-
guistic phenomena these neural language models
can and cannot capture.1 Targeted Syntactic Eval-
uations first focused on subject-verb agreement
in English and other European languages (Linzen
et al., 2016; An et al., 2019; Mueller et al., 2020),
and recently a lot of following-up work was done to
cover a wide range of linguistic phenomena across
languages (Wilcox et al., 2018; Gulordava et al.,
2018; Ravfogel et al., 2018; Marvin and Linzen,
2018; Kann et al., 2019; Chowdhury and Zam-
parelli, 2018; Futrell et al., 2019; Warstadt et al.,
2019; Da Costa and Chaves, 2020; Chaves, 2020;
Mueller et al., 2020; Trotta et al., 2021; Xiang et al.,
2021; Mikhailov et al., 2021).

This line of research in Targeted Syntactic Eval-

1As an anonymous reviewer correctly pointed out,
the concept of evaluating language models using spe-
cially crafted datasets (test suites) rather than text cor-
pora was already proposed by Lehmann et al. (1996) On
the other hand, the unified evaluation of language mod-
els focusing specifically on grammatical phenomena is
considered to have started later, as exemplified by the
work of Linzen et al. (2016)

uations has enabled us to measure the perfor-
mance of various language models on individual
phenomena such as subject-verb agreement and
ellipsis. However, much remains unknown about
why these models excel in recognizing certain lin-
guistic phenomena while struggling with others. In
parallel, the field of formal language theory has
made strides in understanding the properties and
complexities of various languages, and some syn-
tactic phenomena have been theoretically situated
within the Chomsky hierarchy (Chomsky, 1957;
Langendoen, 1981; Shieber, 1985).

Building upon these observations, our study pro-
poses a novel evaluation paradigm that goes be-
yond measuring the performance on individual
syntactic phenomena. We instead focus on as-
sessing how well these models can recognize phe-
nomena situated at different levels of the Chom-
sky hierarchy. Specifically, we have constructed
formal languages that abstract four syntactic phe-
nomena in natural languages, each identified at a
different level of the Chomsky hierarchy.

In this paper, we focus on four syntactic phenom-
ena: (1) (Adj)n NP, which imitates the repetition
of adjectives before nouns, (2) NPn VPn, which
imitates the embedded sentences without gram-
matical agreement between noun phrases and
verb phrases, as seen in Japanese, (3) Nested
Dependency, which imitates the embedded sen-
tences with the grammatical agreement between
noun phrases and verb phrases as seen in En-
glish, and (4) Cross Serial Dependency, which im-

15596

Targeted
Syntactic Evaluation
(Linzen et al., 2016)

Neural Networks
and the Chomsky Hierarchy
(e.g., Delétang et al., 2023)

Ours

Targeting phenomena in natural languages /
Evaluating as a language model ✓ ✓

Aligned with the Chomsky Hierarchy ✓ ✓

Table 1: Comparison of existing evaluation methods with our propoed approach. Our study bridges the
existing two evaluation methods by incorporating the perspective of where each syntactic phenomenon
resides in the Chomsky hierarchy into the framework of Targeted Syntactic Evaluations (TSE).

itates the sentences with multiple dependencies
crossing each other, as seen in Swiss German.
For each formal language, we create five variants
with varying vocabulary sizes and test three differ-
ent language models (LSTM, Transformer LM, and
Stack-RNN) against these formal languages in or-
der to investigate their ability to recognize formal
languages with different complexities.

Our experimental result demonstrated that all
language models have the ability to capture the
structural patterns of the (Adj)n NP formal lan-
guage. However, LSTM and Transformer LM
failed to capture the NPn VPn formal language
and no architectures can recognize the Nested De-
pendency and Cross Serial Dependency correctly.
In recent years, neural language models, espe-
cially Transformer LMs, have exhibited a high per-
formance across a multitude of NLP downstream
tasks, leading to the perception that they pos-
sess an understanding of natural languages. How-
ever, our findings suggest that these models may
not necessarily comprehend the syntactic struc-
tures that underlie natural language phenomena
such as dependency. Rather, it appears that they
may extend grammatical rules equivalent to regu-
lar grammars to approximate the rules governing
dependencies.2

2. Related Work

The evaluation of language models has primar-
ily been based on metrics such as perplexity,
which provides an objective measure of their per-
formance but lacks insight into their performance
on specific downstream tasks. While large-scale
benchmarks such as GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019a) provide valu-
able information in this regard, many recent stud-
ies have attempted to demonstrate that language
models have learned the syntax of natural lan-
guages. One such study was conducted by Linzen
et al. (2016), who used minimal pairs to investigate
the sensitivity of language models to the subject-
verb agreement in English. The results showed
that LSTM language models are fairly sensitive to

2Our code is publicly available at https://github.
com/osekilab/TSE-Chomsky

English subject-verb agreement. However, this
study and other related studies (e.g., Marvin and
Linzen, 2018; Futrell et al., 2019; Gulordava et al.,
2018) only focused on a limited range of linguistic
phenomena.

In order to tackle this problem, more recent stud-
ies have introduced large-scale datasets for com-
prehensive syntactic evaluations (Warstadt et al.,
2019, 2020). These datasets have made it pos-
sible to target a wide range of linguistic phenom-
ena, not just subject-verb agreement, and to more
thoroughly analyze the linguistic performance of
language models. Additionally, these datasets
have been constructed for several languages be-
sides English (Trotta et al., 2021; Xiang et al.,
2021; Mikhailov et al., 2021), allowing us to ver-
ify if the results obtained in English also hold for
other languages, and to make comparisons be-
tween languages. More recently, Hu et al. (2020)
proposed a more sophisticated testing paradigm
inspired by psycholinguistics, where they used a
2× 2 paradigm with a strict, multi-fold success cri-
terion.

However, a common limitation in these stud-
ies is that it is not always straightforward to dis-
cern the root causes when there are discrepancies
in accuracy across different linguistic phenomena.
In most cases, the analyses remain descriptive,
merely cataloging the extent to which models per-
form well on various syntactic tasks. In this paper,
we propose a new evaluation paradigm where we
evaluate language models using formal languages
that mimic actual syntactic, each identified at a
different level of the Chomsky hierarchy. This al-
lows for a more interpretable evaluation of various
language models, addressing the shortcomings of
previous methodologies.3

Another line of research has focused on the
ability of neural language models to recognize
formal languages (Bodón and Wiles, 2000; Bo-

3Several studies have pointed out that using natural
languages for evaluation poses the risk that language
models may rely on superficial lexical cues to solve
tasks, without actually grasping the underlying rules
of various syntactic phenomena (e.g., Gulordava et al.,
2018; Maudslay and Cotterell, 2021). The use of formal
languages is also motivated by this potential problem.

https://github.com/osekilab/TSE-Chomsky
https://github.com/osekilab/TSE-Chomsky

15597

den and Wiles, 2002; Suzgun et al., 2019; Bhat-
tamishra et al., 2020; Ebrahimi et al., 2020; Hahn,
2020; Delétang et al., 2023). These studies
have investigated, both theoretically and experi-
mentally, how far neural language models can rec-
ognize formal languages in the Chomsky hierar-
chy. For example, RNNs and LSTMs can rec-
ognize some context-free languages (Rodriguez
and Wiles, 1997; Skachkova et al., 2018; Suzgun
et al., 2019) and some simple context-dependent
languages (Bodón and Wiles, 2000; Boden and
Wiles, 2002), while Transformers are not well po-
sitioned in the Chomsky hierarchy (Bhattamishra
et al., 2020; Hahn, 2020).

However, existing studies do not necessarily
train various architectures explicitly “as language
models”. Additionally, they focus solely on the
sequence of non-terminal symbols that define
the structure of the target languages, neglecting
the types of terminal tokens within those non-
terminals. As a result, these studies lack the con-
sideration for a vocabulary with the richness and di-
versity found in natural language. Therefore, while
our work shares a common ground with these stud-
ies in trying to identify language models’ positions
on the Chomsky Hierarchy and utilizing formal lan-
guage for evaluating them, these studies and ours
differ in crucial ways: these previous studies are
primarily concerned with the generalization capa-
bilities of neural networks in general, whereas our
research specifically aims to understand the ex-
tent to which neural “language models” can cap-
ture complex phenomena inherent in “natural lan-
guage” (Table 1). In this paper, we train each
model under language modeling tasks, and adopt
the evaluation paradigms used in existing studies
on Targeted Syntactic Evaluation, but extend them
by incorporating formal languages that mimic ac-
tual syntactic phenomena.

3. Experiments

3.1. Formal languages
In this subsection, we introduce the four types
of formal languages investigated in this paper:
(Adj)n NP, NPnVPn, Nested Dependency, and
Cross Serial Dependency.4

Formal definition of formal languages We de-
fine the formal languages investigated in this paper
as follows: Let Vnon. be a set of finite non-terminal
symbols. For each non-terminal symbol A ∈ Vnon.,
we define T terminal symbols aA,0, · · · , aA,T . Next,
we determine a set of finite-length strings consist-
ing only of non-terminal symbols Lnon. ⊆ V ∗

non..

4Adj, NP, and VP indicate adjective, noun phrase,
and verb phrase, respectively.

Then, each string contained in Lnon. is rewritten by
replacing every non-terminal symbol A in it with
one of aA,0, · · · , aA,T . If a non-terminal symbol
appears multiple times in a string, it may be re-
placed with different terminal symbols. The result-
ing set of strings consisting only of terminal sym-
bols is defined as the language L. The language
L is determined by the set of non-terminal sym-
bols Vnon., the number T of terminal symbols cor-
responding to each non-terminal symbol, and the
set Lnon. of non-terminal symbol strings. Note that
Lnon. and L belong to the same class in the Chom-
sky hierarchy: If there is a grammar that gener-
ates Lnon., we can construct a grammar that gen-
erates language L by applying the rewriting rules
A→ aA,0| · · · |aA,T to all the non-terminal symbols
A. Conversely, if there is a grammar that gen-
erates language L, we can construct a grammar
that generates Lnon. by applying the rewriting rules
aA,0 → A, · · · , aA,T → A.

(Adj)n NP The formal language Lnon. which be-
longs to this type is defined as follows:

Vnon. = {Adj,NP} (1)
Lnon. = {AdjnNP : n > 0} (2)

This type of formal language corresponds to a lin-
guistic phenomenon we observe in English: we
can repeat an infinite number of adjectives before
a noun. In (i), for example, we can infinitely repeat
old before man and the sentence is still grammati-
cal (Chomsky, 1957).

(i) The (old)n man comes.

This corresponds to Vnon. with the following
rewriting rules:

Adj→ old (3)
NP→ man (4)

This formal language is a regular language that
can be easily recognized by a finite state automa-
ton with two states: one for a sequence of Adj’s
and the other for the single occurrence of NP after
the sequence of Adj’s.

NPn VPn The formal language Lnon. which be-
longs to this type is defined as follows:

Vnon. = {NP,VP} (5)
Lnon. = {NPnVPn : n > 0} (6)

This type of formal language corresponds to a lin-
guistic phenomenon we observe in Japanese. In
(ii), for example, there are three NP (noun phrases)
followed by three VP (verb phrases). There is no
particular requirement for grammatical agreement
between each NP and VP.

15598

(ii) Taroo-ga
Taroo-Nom

Hanako-ga
Hanako-Nom

Ziroo-ga
Ziroo-Nom

hashitta
ran

to
that

itta
said

to
that

omotta.
thought.

‘Taroo thought that Hanako said that Ziroo
ran.’

This corresponds to Vnon. with the following
rewriting rules:

NP→ Taroo|Hanako|Ziroo| · · · (7)
VP→ hasitta|itta|omotta| · · · (8)

This formal language cannot be generated by a fi-
nite state automaton, since it requires memory to
keep track of the number of NP’s generated so far,
thus it is not a regular language. However, it is a
context-free language (Chomsky, 1957), which is
one level higher in the Chomsky hierarchy.

Nested Dependency The formal language Lnon.
which belongs to this type is defined as follows:

Vnon. = {NP0, · · · ,NPN−1,VP0, · · · ,VPN−1} (9)
Lnon. = {NPi0 · · ·NPin−1

,VPin−1
· · ·VPi0 :

n ≥ 0; 0 ≤ i0, · · · , in−1 ≤ N − 1} (10)

This type of formal language corresponds to a lin-
guistic phenomenon we observe in English. In (iii),
for example, the plural noun phrase the dogs must
agree in number with the plural verb bark, and the
singular noun phrase the cat with the singular verb
chases.

(iii) The dogs that the cat chases bark.

This corresponds to Vnon. with the following non-
terminal symbols and rewriting rules:

Vnon. = {NPsingular,NPplural · · · ,
VPsingular,VPplural, · · · } (11)

NPsingular → the cat|the dog| · · · (12)
NPplural → the cats|the dogs| · · · (13)

VPsingular → chases|barks| · · · (14)
VPplural → chase|bark| · · · (15)

This formal language is also known as a context-
free language (Chomsky, 1957), which is one level
higher in the Chomsky hierarchy than a regular lan-
guage.

Cross Serial Dependency The formal language
Lnon. which belongs to this type is defined as fol-
lows:

Vnon. = {NP0, · · · ,NPN−1,VP0, · · · ,VPN−1}
(16)

Lnon. = {NPi0 · · ·NPin−1
VPi0 · · ·VPin−1

:

n ≥ 0; 0 ≤ i0, · · · , in−1 ≤ N − 1} (17)

This type of formal language corresponds to a lin-
guistic phenomenon we observe in Swiss German.
In (iv), for example, the dative verb hälfe has the
dative noun phrase em Hans as its argument, and
the accusative verb aastriiche has the accusative
noun phrase es huus as its argument. Here, there
is a syntactic dependency between the verb and
its argument: they should have the same case-
marking (Shieber, 1985).

(iv) ...
...

mer
we

em Hans
Hans-DAT

es
the

huus
house-ACC

hälfed
helped

aastriiche.
paint.
‘... we helped Hans paint the hause.’

This corresponds to Vnon. with the non-terminal
symbols and the rewriting rules:

Vnon. = {NPdative,NPaccusative · · ·
VPdative,VPaccusative, · · · } (18)

NPdative → em Hans|em huus| · · · (19)
NPaccusative → de Hans|es huus| · · · (20)

VPdative → hälfe| · · · (21)
VPaccusative → aastriiche| · · · (22)

This formal language is known as a context-
dependent language, also called a copy lan-
guage (Aho and Ullman, 1972), which is one level
higher in the Chomsky hierarchy than a context-
free language.

3.2. Data Generation
In this paper, we perform a BLiMP-style Targeted
Syntactic Evaluation (Warstadt et al., 2020): we
first train a language model on a language mod-
eling task on positive examples and then evalu-
ate the language model by investigating whether
the language model can assign a higher probabil-
ity to positive examples than negative ones. We
prepare data for each formal language defined in
the previous subsection with five different num-
bers of terminal symbols (= T in section 3.1): 5,
10, 50, 100, and 500. This results in a total of
24 formal languages. For simplicity, we only test
the Nested Dependency and Cross Serial Depen-
dencys with three non-terminal symbols (Vnon. =
{NP0, · · · ,NP2,VP0, · · · ,VP2}).

3.2.1. Data size and data split

For each formal language, we create 110,000 ran-
dom samples of strings of length l ∼ U(4, 30).
We use 90,000 samples as train data, and 10,000
and 10,000 samples for validation and “in-dist”
test data, respectively. We also create “out-of-
dist” test data by sampling 10,000 strings of length
l ∼ U(31, 100) from each grammar, to evaluate

15599

Data type Positive example Negative examples
(Adj)n NP
(Regular) Adj Adj Adj Adj Adj NP Adj Adj Adj NP Adj NP

Adj NP NP NP Adj NP

NPn VPn

(Context-free) NP NP NP VP VP VP NP NP VP VP VP
NP NP NP VP VP VP VP

Nested Dependency
(Context-free) NP1 NP3 NP4 VP4 VP3 VP1

NP1 NP3 NP4 VP1 VP3 VP4

NP1 NP4 NP3 VP4 VP3 VP1

Cross Serial Dependency
(Context-sensitive) NP3 NP2 NP1 VP3 VP2 VP1

NP3 NP2 NP1 VP2 VP3 VP1

NP3 NP1 NP2 VP3 VP2 VP1

Table 2: Examples of four types of formal languages investigated in this paper and the positions on the
Chomsky Hierarchy. Here, we demonstrate patterns only with non-terminal symbols and ignore terminal
symbols.

whether the language model can generalize to
longer strings than those seen during training. Fi-
nally, we generate negative examples for “in-dist”
and “out-of-dist” test data in the manner described
in Subsection 3.2.3, to create minimal pairs for
evaluation.

3.2.2. Generating positive examples

We generate positive examples for each formal
language by first sampling the necessary number
of non-terminal symbol sequences belonging to
the formal language and then replacing each non-
terminal symbol with a terminal symbol based on
the rewriting rules (Algorithm 1). Here, each ter-
minal symbol is selected from the set of terminal
symbols that can be rewritten from the target non-
terminal symbol according to the normal distribu-
tion.

Algorithm 1 Algorithm for Generating Positive Ex-
amples from a Given Formal Language
1: function GENERATE SAMPLE(Lnon.)
2: Snon. ← a sequence of non-terminals

sampled from Lnon.
3: string ← ∅
4: for i← 0, length(Snon.)− 1 do
5: snon. ← Snon.[i]
6: V ← {v | snon. → v} ▷ Rewriting

rules
7: v ← v sampled from V according to

Normal Distribution
8: string.append(v)
9: end for

10: return string
11: end function

3.2.3. Generating negative examples

To prepare minimal pairs for evaluation, we gener-
ate negative examples for ‘in-dist” and “out-of-dist“
test data in the following way (cf. Table 2):

(Adj)n NP We generate a negative example by
replacing k ∼ U(1, l− 1) occurrences of Adj’s with
NP’s in a corresponding positive example of length
l.

NPnVPn We generate a negative example by ei-
ther adding or removing a single occurrence of NP
or VP in a corresponding positive example.

Nested/Cross Serial Dependency We gener-
ate a negative example by selecting two positions
within the NP or VP and swapping their occur-
rences in a corresponding positive example. We
create negative examples by breaking dependen-
cies between non-terminals because we are inter-
ested in whether the language models can suc-
cessfully capture the dependencies between non-
terminals.

3.3. Models
In this paper, we evaluate the performance of the
following three neural language models using our
formal languages. In this study, we are particularly
interested in understanding the performance differ-
ences across various architectures. Therefore, to
ensure a fair comparison, we keep the number of
layers and the dimensionality of embeddings con-
sistent across all models under investigation.

LSTM A 2-layer LSTM (Hochreiter and
Schmidhuber, 1997) language model with
256-dimensional word embedding and 256-
dimensional hidden layer, implemented in
PyTorch.5 The total number of parameters is
around 1.05M.

Transformer LM A 5-layer, 4-head Trans-
former (Vaswani et al., 2017) decoder with 128-
dimensional word embedding, 512-dimensional

5https://pytorch.org/

https://pytorch.org/

15600

Data Type #Terms
LSTM Stack-RNN Transformer

LM

in-dist out-of-
dist in-dist out-of-

dist in-dist out-of-
dist

(Adj)n NP
(Regular)

5 100.0 100.0 100.0 100.0 100.0 99.83
10 100.0 100.0 100.0 100.0 100.0 99.94
50 100.0 100.0 100.0 100.0 100.0 99.97
100 99.82 99.99 100.0 100.0 100.0 99.96
500 92.06 97.80 93.22 99.13 99.94 99.98

NPnVPn

(Context-free)

5 99.94 65.83 100.0 100.0 99.76 55.06
10 99.61 62.12 100.0 100.0 99.55 57.47
50 64.79 50.72 99.97 100.0 97.56 60.69
100 53.31 50.89 99.80 99.94 95.45 61.07
500 55.70 50.79 52.85 51.61 94.63 59.99

Nested
Dependency
(Context-free)

5 55.59 48.41 47.47 47.69 83.98 57.42
10 49.27 49.07 49.71 49.35 84.18 56.74
50 50.58 50.57 50.73 50.06 76.82 52.66
100 50.99 50.70 50.76 51.04 51.50 50.71
500 51.12 51.03 50.61 50.70 51.15 50.76

Cross Serial
Dependency

(Context-sensitive)

5 62.13 54.04 80.65 79.69 84.05 58.00
10 53.49 49.71 81.71 81.44 83.62 57.28
50 50.37 50.19 51.53 50.44 78.56 54.08
100 50.58 50.79 50.57 50.73 51.04 51.14
500 50.61 50.94 50.37 51.17 50.97 50.61

Table 3: The accuracy on the in-dist/out-of-dist test data for each formal language and architecture. For
each architecture, we report the score for the model that exhibits the lowest perplexity on the validation
set among the 30 models (10 random seeds×3 learning rates). The values greater than 90% are shown
in bold. In-dist test data consists of strings with the same length distribution as in train/dev data, while
out-of-dist test data consists of longer strings than in train/dev data.

feedforward layer, and sinusoidal word encoding,
implemented in PyTorch. The total number of
parameters is around 991k.

Stack-RNN A single-layer RNN language model
with 256-dimensional word embedding and 256-
dimensional hidden layer, augmented with a dif-
ferentiable stack of size 150 (Joulin and Mikolov,
2015). Each cell of the stack contains an 8-
dimensional vector. The total number of param-
eters is around 136k.

Training and Evaluation Configura-
tions We use SGD for LSTM models and
AdamW (Loshchilov and Hutter, 2019) for Trans-
former LM and Stack-RNN model. Each language
model is trained for 15 epochs with a batch size
of 512, using 10 different random seeds and
3 different learning rates (0.1/0.2/0.3 for LSTM
models, 0.0001/0.0003/0.0005 for Transformer
LM and Stack-RNN model).6 Each model is
evaluated through the percentage of pairs where
the language model successfully assigned a
higher probability to the positive example than

6All the language models are trained on NVIDIA
V100 GPU with 16GB memory.

the negative one in “in-dist” and “out-of-dist” test
data:7

P (Spositive) > P (Snegative)

For each architecture under consideration, we re-
port the score for the model that exhibits the lowest
perplexity on the validation set among the 30 mod-
els (10 random seeds× 3 learning rates).

4. Results and Discussion

The results are presented in Table 2, which shows
the scores for each architecture on in-dist/out-of-
dist test data. We considered architectures that
achieved an accuracy greater than 90% to have
successfully captured the rules of each data.8 In
the following sections, we organize the results and
provide our analysis for each formal language.

7In the case of NPn VPn, the lengths of positive and
negative examples are different, so the probability of
each example is calculated as the average probability
assigned to each word contained in the sentence.

8This is because we are interested in whether these
language models can recognize our formal languages
at all, and this evaluation metric mostly follows that of
Delétang et al. (2023)

15601

(Adj)n NP For this type of formal language, all
architectures have successfully captured the rules
for both in-dist and out-of-dist test data, regardless
of the number of terminal symbols. This result bol-
sters and is consistent with the results reported in
previous studies that LSTM and Stack-RNN can
recognize regular languages (e.g., Delétang et al.,
2023). The result is not necessarily consistent with
the reported results that Transformer cannot rec-
ognize a part of regular languages (Bhattamishra
et al., 2020; Delétang et al., 2023), but this may be
due to the fact that (Adj)n NP is among the simplest
regular languages. Additionally, the result is also
consistent with the results that LSTM and Trans-
former can successfully capture those local depen-
dencies found in morphology or internal structure
of noun phrases (Warstadt et al., 2020; Someya
and Oseki, 2023). Furthermore, the high accu-
racy observed in this formal language suggests
that each architecture can capture this syntactic
phenomenon across languages without relying on
superficial lexical cues found in natural languages
(cf. Gulordava et al., 2018; Maudslay and Cotterell,
2021).

NPn VPn For in-dist test data, Transformer LM
and Stack-RNN models were able to successfully
capture the rules, while LSTM failed when the vo-
cabulary size is large. However, only the Stack-
RNN model was able to generalize correctly on
out-of-dist data, where the model is tested with
those sentences that are strictly longer than the
sentences in train/dev data. This result is not con-
sistent with the previous results that LSTM mod-
els can capture context-free language (e.g., Weiss
et al., 2018; Wiles and Elman, 1995), and suggests
that the results do not hold true when tested follow-
ing targeted syntactic evaluation approach (e.g.,
Linzen et al., 2016): models are trained on a lan-
guage modeling task and each non-terminal sym-
bols in formal language have corresponding ter-
minal symbols. Furthermore, it is suggested that
novel architectures, such as those incorporating
stack memory mechanisms, may be necessary to
capture such phenomena.

Nested Dependency For in-dist test data, Trans-
former LM performs fairly well when the vocab-
ulary size is small, while the other architectures
failed in all the cases. As for out-of-dist test data,
no architectures were able to generalize the rules
correctly. This is not necessarily consistent with
the previous results that Stack-RNN can recog-
nize palindrome languages, and suggests that the
results does not hold true when tested following
targeted syntactic evaluation approach and that
the model cannot recognize the corresponding
syntactic phenomenon in natural languages, i.e.,

nested dependencies. Additionally, these results
are not consistent with the previous findings that
LSTM and Transformer-based language models
can capture English center embedding to some
extent (Wilcox et al., 2019; Hu et al., 2020), sug-
gesting that these language models may not nec-
essarily capture the rules of center embedding, but
rather solve the task using lexical information such
as co-occurrence or frequency.

Cross Serial Dependency First of all, this phe-
nomenon has not been observed in languages that
have been the subject of Targeted Syntactic Eval-
uation thus far (e.g., Linzen et al., 2016; Mueller
et al., 2020). Our work is the first to evaluate this
phenomenon using a formal language. In terms of
the in-dist test data, Stack-RNN and Transformer
LM perform fairly well when the number of termi-
nal symbols was small, while LSTM failed in all the
cases. As for the out-of-dist test data, Strack-RNN
perform comparably well when the vocabulary size
is small, while no architectures were able to gen-
eralize the rules correctly. These results suggest
that novel architectures are required to capture this
syntactic phenomenon.

Summary All language models demonstrated
the ability to capture the structural patterns of the
(Adj)n NP formal language, even with increased
vocabulary size. However, LSTM and Transformer
LM failed to capture NPn VPn language and no ar-
chitectures can recognize nested dependency and
Cross Serial dependency correctly. Since their in-
troduction, Transformer LMs have exhibited high
performance across a multitude of downstream
tasks (Wang et al., 2018, 2019a) leading to the
perception that they possess an understanding of
natural languages. However, our findings sug-
gest that these models may not necessarily com-
prehend the syntactic structures that underlie nat-
ural language phenomena such as dependency.
Rather, it appears that they may extend grammat-
ical rules equivalent to Regular grammars to ap-
proximate the rules governing dependencies.

5. Conclusion

Existing research in the realm of Targeted Syn-
tactic Evaluations has primarily focused on em-
pirically assessing the capabilities of various lan-
guage models to capture specific syntactic phe-
nomena present in natural languages. However,
these studies have largely remained observational,
evaluating which syntactic phenomena a given lan-
guage model can or cannot capture, without pro-
viding substantive insights into the reasons behind
these results. Separately, another line of research
has examined the extent to which different neural

15602

models can recognize languages belonging to spe-
cific classes within the Chomsky hierarchy.

In this paper, we propose a novel evalua-
tion paradigm for Targeted Syntactic Evaluations,
where we assess how well language models can
recognize linguistic phenomena situated at differ-
ent levels of the Chomsky hierarchy. Specifically,
we created formal languages that abstract four syn-
tactic phenomena in natural languages, each iden-
tified at a different level of the Chomsky hierarchy,
and used these to evaluate the capabilities of lan-
guage models: (1) (Adj)n NP, (2) NPn VPn, (3)
Nested Dependency, and (4) Cross Serial Depen-
dency. We first trained three different language
models (LSTM, Transformer LM, and Stack-RNN)
on language modeling tasks and then evaluated
them using pairs of a positive and a negative sen-
tence by investigating whether they can assign a
higher probability to the positive sentence than the
negative one. Our study bridges the two exist-
ing research paradigms by incorporating the per-
spective of where each syntactic phenomenon re-
sides in the Chomsky hierarchy into the framework
of Targeted Syntactic Evaluations. This allows us
to scrutinize the capabilities of various language
models in capturing syntactic phenomena in natu-
ral languages, in terms of their positioning within
the Chomsky hierarchy. Moreover, by utilizing for-
mal languages instead of natural languages for
evaluation, we mitigate the risk of language mod-
els relying on superficial lexical cues rather than
capturing the rules governing different syntactic
phenomena.

Our experimental result demonstrated that all
language models have the ability to capture the
structural patterns of the (Adj)n NP formal lan-
guage. However, LSTM and Transformer LM
failed to capture NPn VPn language and no ar-
chitectures can recognize nested dependency and
Cross Serial dependency correctly. Transformer
LMs have exhibited high performance across a
multitude of downstream tasks (Wang et al., 2018,
2019a) leading to the perception that they possess
an understanding of natural languages. However,
our findings suggest that these models may not
necessarily comprehend the syntactic structures
that underlie natural language phenomena such
as dependency. Rather, it appears that they may
extend grammatical rules equivalent to Regular
grammars to approximate the rules governing de-
pendencies.

Possible directions for future research are as fol-
lows. First, an immediate objective could be to
broaden the range of syntactic phenomena stud-
ied, thereby enhancing the robustness and gen-
eralizability of our findings. Second, evaluating
the performance of recently emerged pretrained
language models on this specialized benchmark

would offer important insights into their ability to
capture the underlying syntactic rules, rather than
merely relying on superficial lexical cues. Finally,
the introduction of novel architectures that per-
forms well in this benchmark could provide new
perspectives on how to build models that genuinely
understand language structures, rather than ap-
proximating understanding through lexical short-
cuts.

Limitations

In this study, we only tested a limited variety of
models. To evaluate whether each architecture
was able to capture the rules of each formal lan-
guage, we trained 30 models for each architecture
using 10 different random seeds and 3 different
learning rates. To fairly compare the performance
of the architectures, we kept the number of param-
eters roughly the same for each architecture. How-
ever, there are other hyperparameters such as em-
bedding dimensions and the number of layers that
vary between architectures. Therefore, it is pos-
sible that some architectures may perform better
with different hyperparameters.

Acknowledgements

This work was supported by JST PRESTO Grant
Number JPMJPR21C2, Japan.

6. Bibliographical References

Alfred V Aho and Jeffrey D Ullman. 1972. The The-
ory of Parsing, Translation and Compiling. Pars-
ing, vol. I. Prentice-Hall, Englewood Cliffs.

Aixiu An, Peng Qian, Ethan Wilcox, and Roger
Levy. 2019. Representation of constituents in
neural language models: Coordination phrase
as a case study. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 2888–2899, Hong
Kong, China. Association for Computational Lin-
guistics.

Satwik Bhattamishra, Kabir Ahuja, and Navin
Goyal. 2020. On the Ability and Limitations of
Transformers to Recognize Formal Languages.
In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 7096–7116, Online. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/D19-1287
https://doi.org/10.18653/v1/D19-1287
https://doi.org/10.18653/v1/D19-1287
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576

15603

Mikael Boden and Janet Wiles. 2002. On learn-
ing context free and context sensitive languages.
IEEE Transactions on Neural Networks, 13:491–
493.

Mikael Bodón and Janet Wiles. 2000. Context-free
and context-sensitive dynamics in recurrent neu-
ral networks. Connection Science, 12(3-4):197–
210.

Rui P Chaves. 2020. What don’t RNN language
models learn about Filler-Gap dependencies?
Proceedings of the Society for Computation in
Linguistics, 3(1):20–30.

Noam Chomsky. 1957. Syntactic structures. Mou-
ton.

Shammur Absar Chowdhury and Roberto Zampar-
elli. 2018. RNN simulations of grammaticality
judgments on long-distance dependencies. In
Proceedings of the 27th International Confer-
ence on Computational Linguistics, pages 133–
144, Santa Fe, New Mexico, USA. Association
for Computational Linguistics.

Jillian Da Costa and Rui Chaves. 2020. Assessing
the ability of transformer-based neural models to
represent structurally unbounded dependencies.
In Proceedings of the Society for Computation in
Linguistics 2020, pages 12–21, New York, New
York. Association for Computational Linguistics.

Grégoire Delétang, Anian Ruoss, Jordi Grau-
Moya, Tim Genewein, Li Kevin Wenliang, Elliot
Catt, Chris Cundy, Marcus Hutter, Shane Legg,
Joel Veness, and Pedro A Ortega. 2023. Neu-
ral networks and the chomsky hierarchy. In The
Eleventh International Conference on Learning
Representations.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang.
2020. How can self-attention networks
recognize dyck-n languages? CoRR,
abs/2010.04303.

Richard Futrell, Ethan Wilcox, Takashi Morita,
Peng Qian, Miguel Ballesteros, and Roger Levy.
2019. Neural language models as psycholin-
guistic subjects: Representations of syntactic
state. In Proceedings of the 2019 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short
Papers), pages 32–42, Minneapolis, Minnesota.
Association for Computational Linguistics.

Kristina Gulordava, Piotr Bojanowski, Edouard
Grave, Tal Linzen, and Marco Baroni. 2018. Col-
orless green recurrent networks dream hierar-
chically. In Proceedings of the 2018 Conference

of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers),
pages 1195–1205, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Transac-
tions of the Association for Computational Lin-
guistics, 8:156–171.

S Hochreiter and J Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan
Wilcox, and Roger Levy. 2020. A systematic
assessment of syntactic generalization in neural
language models. In Proceedings of the Associ-
ation of Computational Linguistics.

Armand Joulin and Tomas Mikolov. 2015. Infer-
ring algorithmic patterns with stack-augmented
recurrent nets. In Proceedings of the 28th Inter-
national Conference on Neural Information Pro-
cessing Systems - Volume 1, NIPS’15, page
190â��198, Cambridge, MA, USA. MIT Press.

Katharina Kann, Alex Warstadt, Adina Williams,
and Samuel R Bowman. 2019. Verb argument
structure alternations in word and sentence em-
beddings. In Proceedings of the Society for
Computation in Linguistics (SCiL) 2019, pages
287–297.

D. Terence Langendoen. 1981. The generative ca-
pacity of word-formation components. Linguistic
Inquiry, 12(2):320–322.

Sabine Lehmann, Stephan Oepen, Sylvie Regnier-
Prost, Klaus Netter, Veronika Lux, Judith Klein,
Kirsten Falkedal, Frederik Fouvry, Dominique
Estival, Eva Dauphin, Herve Compagnion, Ju-
dith Baur, Lorna Balkan, and Doug Arnold. 1996.
TSNLP - test suites for natural language pro-
cessing. In COLING 1996 Volume 2: The 16th
International Conference on Computational Lin-
guistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Gold-
berg. 2016. Assessing the ability of LSTMs to
learn Syntax-Sensitive dependencies. Transac-
tions of the Association for Computational Lin-
guistics, 4:521–535.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

https://doi.org/10.1080/095400900750060122
https://doi.org/10.1080/095400900750060122
https://doi.org/10.1080/095400900750060122
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
http://arxiv.org/abs/2010.04303
http://arxiv.org/abs/2010.04303
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
http://www.jstor.org/stable/4178223
http://www.jstor.org/stable/4178223
https://aclanthology.org/C96-2120
https://aclanthology.org/C96-2120
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

15604

Rebecca Marvin and Tal Linzen. 2018. Targeted
syntactic evaluation of language models. In
Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing,
pages 1192–1202, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Rowan Hall Maudslay and Ryan Cotterell. 2021.
Do syntactic probes probe syntax? experiments
with jabberwocky probing. In Proceedings of the
2021 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages
124–131, Online. Association for Computational
Linguistics.

Vladislav Mikhailov, Ekaterina Taktasheva, Elina
Sigdel, and Ekaterina Artemova. 2021. RuSen-
tEval: Linguistic source, encoder force! In Pro-
ceedings of the 8th Workshop on Balto-Slavic
Natural Language Processing, pages 43–65,
Kiyv, Ukraine. Association for Computational
Linguistics.

Aaron Mueller, Garrett Nicolai, Panayiota Petrou-
Zeniou, Natalia Talmina, and Tal Linzen. 2020.
Cross-linguistic syntactic evaluation of word pre-
diction models. In Proceedings of the 58th An-
nual Meeting of the Association for Computa-
tional Linguistics, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Shauli Ravfogel, Yoav Goldberg, and Francis Ty-
ers. 2018. Can LSTM learn to capture agree-
ment? the case of basque. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Ana-
lyzing and Interpreting Neural Networks for NLP,
pages 98–107, Brussels, Belgium. Association
for Computational Linguistics.

Paul Rodriguez and Janet Wiles. 1997. Recurrent
neural networks can learn to implement symbol-
sensitive counting. In Advances in Neural In-
formation Processing Systems, volume 10. MIT
Press.

Stuart M. Shieber. 1985. Evidence against the
context-freeness of natural language. Linguis-
tics and Philosophy, 8(3):333–343.

Natalia Skachkova, Thomas Trost, and Dietrich
Klakow. 2018. Closing brackets with recur-
rent neural networks. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP,
pages 232–239, Brussels, Belgium. Association
for Computational Linguistics.

Taiga Someya and Yohei Oseki. 2023. JBLiMP:
Japanese benchmark of linguistic minimal pairs.

In Findings of the Association for Computa-
tional Linguistics: EACL 2023, pages 1581–
1594, Dubrovnik, Croatia. Association for Com-
putational Linguistics.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber,
and Sebastian Gehrmann. 2019. LSTM net-
works can perform dynamic counting. In Pro-
ceedings of the Workshop on Deep Learn-
ing and Formal Languages: Building Bridges,
pages 44–54, Florence. Association for Compu-
tational Linguistics.

Daniela Trotta, Raffaele Guarasci, Elisa
Leonardelli, and Sara Tonelli. 2021. Monolin-
gual and cross-lingual acceptability judgments
with the Italian CoLA corpus. In Findings of
the Association for Computational Linguis-
tics: EMNLP 2021, pages 2929–2940, Punta
Cana, Dominican Republic. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł Ukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neu-
ral Information Processing Systems, volume 30,
pages 5998–6008. Curran Associates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nan-
gia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2019a.
Superglue: A stickier benchmark for general-
purpose language understanding systems. In
Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nan-
gia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman.
2019b. Superglue: A stickier benchmark for
general-purpose language understanding sys-
tems. CoRR, abs/1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael,
Felix Hill, Omer Levy, and Samuel Bowman.
2018. GLUE: A multi-task benchmark and analy-
sis platform for natural language understanding.
In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 353–355, Brussels,
Belgium. Association for Computational Linguis-
tics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2019c. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understand-
ing. In International Conference on Learning
Representations.

https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2021.naacl-main.11
https://aclanthology.org/2021.bsnlp-1.6
https://aclanthology.org/2021.bsnlp-1.6
https://proceedings.neurips.cc/paper/1997/file/cf9a242b70f45317ffd281241fa66502-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/cf9a242b70f45317ffd281241fa66502-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/cf9a242b70f45317ffd281241fa66502-Paper.pdf
https://doi.org/10.1007/BF00630917
https://doi.org/10.1007/BF00630917
https://doi.org/10.18653/v1/W18-5425
https://doi.org/10.18653/v1/W18-5425
https://doi.org/10.18653/v1/2023.findings-eacl.117
https://doi.org/10.18653/v1/2023.findings-eacl.117
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/2021.findings-emnlp.250
https://doi.org/10.18653/v1/2021.findings-emnlp.250
https://doi.org/10.18653/v1/2021.findings-emnlp.250
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446

15605

Alex Warstadt, Alicia Parrish, Haokun Liu, An-
had Mohananey, Wei Peng, Sheng-Fu Wang,
and Samuel R Bowman. 2020. BLiMP: The
benchmark of linguistic minimal pairs for english.
Transactions of the Association for Computa-
tional Linguistics, 8:377–392.

Alex Warstadt, Amanpreet Singh, and Samuel R
Bowman. 2019. Neural network acceptability
judgments. Transactions of the Association for
Computational Linguistics, 7:625–641.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018.
On the practical computational power of finite
precision RNNs for language recognition. In Pro-
ceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2:
Short Papers), pages 740–745, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do RNN language
models learn about Filler–Gap dependencies?
In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 211–221, Brussels,
Belgium. Association for Computational Linguis-
tics.

Ethan Wilcox, Roger P. Levy, and Richard Futrell.
2019. Hierarchical representation in neural lan-
guage models: Suppression and recovery of ex-
pectations. In Proceedings of the 2019 ACL
Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, pages 181–
190, Florence, Italy. Association for Computa-
tional Linguistics.

Janet Wiles and Jeffrey Elman. 1995. Learning
to count without a counter: A case study of dy-
namics and activation landscapes in recurrent
networks.

Beilei Xiang, Changbing Yang, Yu Li, Alex
Warstadt, and Katharina Kann. 2021. CLiMP:
A benchmark for Chinese language model eval-
uation. In Proceedings of the 16th Conference
of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages
2784–2790, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/W19-4819
https://doi.org/10.18653/v1/W19-4819
https://doi.org/10.18653/v1/W19-4819
https://doi.org/10.18653/v1/2021.eacl-main.242
https://doi.org/10.18653/v1/2021.eacl-main.242
https://doi.org/10.18653/v1/2021.eacl-main.242

	Introduction
	Related Work
	Experiments
	Formal languages
	Data Generation
	Data size and data split
	Generating positive examples
	Generating negative examples

	Models

	Results and Discussion
	Conclusion
	Bibliographical References

