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Abstract
Finetuning pretrained language models (LMs) have enabled appealing performance on a diverse array of tasks. The
intriguing task-agnostic property has driven a shifted focus from task-specific to task-agnostic distillation of LMs.
While task-agnostic, compute-efficient, performance-preserved LMs can be yielded by task-agnostic distillation,
previous studies mainly sit in distillation of either encoder-only LMs (e.g., BERT) or decoder-only ones (e.g., GPT) yet
largely neglect that distillation of encoder-decoder LMs (e.g., T5) can posit very distinguished behaviors. Frustratingly,
we discover that existing task-agnostic distillation methods can fail to handle the distillation of encoder-decoder
LMs. To the demand, we explore a few paths and uncover a path named as MiniEnD that successfully tackles the
distillation of encoder-decoder LMs in a task-agnostic fashion. We examine MiniEnD on language understanding and
abstractive summarization. The results showcase that MiniEnD is generally effective and is competitive compared to
other alternatives. We further scale MiniEnD up to distillation of 3B encoder-decoder language models with inter-
polated distillation. The results imply the opportunities and challenges in distilling large language models (e.g., LLaMA).

Keywords: encoder-decoder language models, task-agnostic distillation, scaling.

1. Introduction

Pretrained language models (LMs) powered by fine-
tuning have achieved remarkable performance on a
wide range of downstream tasks (Devlin et al., 2019;
Liu et al., 2019; Radford et al., 2019). Driven by the
pursued task-agnostic property, distillation of LMs
has witnessed a paradigm shift from task-specific to
task-agnostic distillation (Sanh et al., 2019). Under
a teacher-student regime, task-agnostic distillation
distils pretrained LMs into ones of small compute
on pretraining data so that these small LMs can
be applied to tasks by finetuning (Jiao et al., 2020;
Wang et al., 2020; Liang et al., 2023; Zhang et al.,
2023c,a). In contrast, task-specific distillation distils
finetuned LMs on finetuning data and consumed
resource can be even huge when the number of
tasks explode (Hinton et al., 2015; Sun et al., 2019;
Xia et al., 2022; Yang et al., 2022). Additionally, it
is acknowledged that task-agnostic distillation typ-
ically brings performance gain over task-specific
distillation does (Zhang et al., 2022a, 2023b).

The above-mentioned merits has inspired prior
studies to study the task-agnostic distillation of
encoder-only LMs (e.g., BERT, Devlin et al., 2019)
and decoder-only LMs (e.g., GPT, Radford et al.,
2019). However, the study on the distillation of the
encoder-decoder LMs (e.g., T5, Raffel et al., 2020)
is solely limited to a task-specific aspect (Shleifer
and Rush, 2020; Zhang et al., 2022b; Li et al.,
2022; Tao et al., 2022), while task-specific distil-
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Figure 1: The failures of prior distillation meth-
ods. The setting is to distil a base-scale teacher
to a 6-layer student. Either distilling last layer self-
attention distributions (Wang et al., 2021) or log-
its (Sanh et al., 2019) for encoder-decoder LMs
yields severe degradation or only marginal gain
compared to pretraining from scratch, in contrast
to significant improvements for either encoder-only
or decoder-only LMs. Note that the lower the per-
plexity, the better.

lation of encoder-decoder LMs remains unexplored.
Core and unique to encode-decoder LMs, the in-
terplay between encoder and decoder in the cross-
attention layers should be explicitly rendered in the
distillation of encoder-decoder LMs. Failing to ac-
count for the encoder-decoder interplay, existing
distillation methods invariably fail to handle task-
agnostic distillation of encoder-decoder LMs, as
shown in Figure 1.

https://github.com/GeneZC/MiniEnD
https://github.com/GeneZC/MiniEnD
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To this end, we carry out the first investiga-
tion ever on task-agnostic distillation of encoder-
decoder LMs, with a focus set on the encoder-
decoder interplay. In a preliminary study, we show
that distillation of encoder-decoder LMs can con-
tribute to stable gradient norms of last hidden states,
a key desiderata to the expressiveness of LMs. Mo-
tivated by it, we offer a path named as MiniEnD
that successfully tackles the distillation of encoder-
decoder LM by alternatively distilling the cross-
attention to explicitly fall to both the encoder and
the decoder.

We check MiniEnD on language understand-
ing and abstractive summarization in sense
that encoder-decoder LMs are more capable of
sequence-to-sequence tasks. For evaluation on
language understanding, we take GLUE (Wang
et al., 2019) to benchmark the performance.
For evaluation on abstractive summarization, we
adopt CNN/DailyMail (See et al., 2017) and
XSum (Narayan et al., 2018) as two testbeds. The
results of both distilling T5 and BART indicate that
MiniEnD is effective and competitive to other com-
pression options such as quantization. We further
scale our method up to the distillation of 3B T5xlarge
with the aid of progressive distillation. The results
suggest that distilling large language models (e.g.,
LLaMA, Touvron et al., 2023) should be promising
but can be challenging.

2. Background

2.1. Encoder-decoder LM

Typically, an encoder-decoder LM is composed of
an encoder and a decoder, each of which is essen-
tially a stack of transformer layers (Vaswani et al.,
2017). Concretely, a transformer layer in the en-
coder contains a multihead self-attention (MSA)
module and a feedforward network (FFN) module.
Similarly, a transformer layer in the decoder com-
prises an MSA module, an FFN module, and addi-
tionally a multihead cross-attention (MCA) module
that is inserted between the MSA and the FFN
modules and accounts for absorption of encoded
information from the encoder. Around each of these
modules is attached necessarily a layer normaliza-
tion and a residual connection.

MSA and FFN Mathematically, the procedure that
a transformer encoder layer consumes an interme-
diate encoder inputX ∈ Rn×d containing a n-length
sequence of d-dimension vectors from last layer
and gives an output to next layer can be depicted

as a composition of MSA and FFN:

MSA(X;WQ,WK,WV)

=

A∑
i

SelfAttn(X;WQ
i ,W

K
i )XWV

i W
O
i ,

SelfAttn(X;WQ
i ,W

K
i )

= Softmax(XWQ
i W

K⊤
i X⊤/dA),

FFN(X;WI,WO) =

I∑
j

g(XWI
j)W

O
j ,

where potential details (e.g., linear bias and layer
normalization) are omitted. i is used to indicate i-th
head parameterized by WQ

i , WK
i , WV

i ∈ Rd×dA ,
WO

i ∈ RdA×d among A heads, and j is used to
indicate j-th intermediate neuron parameterized by
WI

j ∈ Rd×1 and WO
j ∈ R1×d among I neurons. g

is an activation function (e.g., GELU).

MCA Likewise, the procedure that a transformer
decoder layer processes an intermediate decoder
input Z ∈ Rm×d based on the final encoder output
E ∈ Rn×d can be incrementally described as an
insertion of MCA:

MCA(Z,E;WQ′
,WK′

,WV′
)

=

A∑
i

CrossAttn(Z,E;WQ′

i ,WK′

i )EWV′

i WO′

i ,

CrossAttn(Z,E;WQ′

i ,WK′

i )

= Softmax(ZWQ′

i WK′⊤
i E⊤/dA),

Here, each cross-attention head is parameterized
by another set of parameters WQ′

i , WK′

i , WV′

i ∈
Rd×dA , WO′

i ∈ RdA×d.

2.2. Task-agnostic Distillation
Give a teacher model T , task-agnostic distillation
aims at distilling the teacher into a smaller student
model S on pretraining data so that the student can
at least outperform its pretrain-from-scratch coun-
terpart on as many tasks as possible, as opposing
one task in task-specific distillation.

3. Distillation of Encoder-decoder
Interplay

In an encoder-decoder LM, the decoder is architec-
turally connected to the encoder through MCA mod-
ules. In spite that state-of-the-art methods mainly
manipulate the decoder during distillation (e.g., log-
its, Zhang et al., 2022b), the encoder could be
learned anyway through the connections offered by
MCA modules. However, it is still not clear to what
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Figure 2: The preliminary results of gradient norms
when using the implicit or explicit objective. The
implicit objective imposes distinct gradient varia-
tions and unexpected gradient spikes during the
distillation.

extent the encoder-decoder interplay is significant
in the distillation and whether the implicit connec-
tions mentioned above are enough for alignment
of the interplay.

A Gradient Perspective We take a closer look
at the connections between the encoder and the
decoder through the lens of gradients. The gradi-
ent norms of last layer hidden states of both the
encoder and the decoder are examined under im-
plicit and explicit objectives, detailed in the following
paragraphs, when distilling from BART (Lewis et al.,
2020). We hypothesize that a distillation objective
explicitly involving the encoder-decoder interplay
alignment could behave much differently in terms of
gradients if the interplay is central to the distillation
of encoder-decoder LMs. And naturally, if subop-
timal cases are identified in the implicit objective,
we can further highlight that the implicit objective
suffers from the limited interplay alignment and the
explicit objective can provide a more effective one.

Implicit versus Explicit Objective We instanti-
ate the implicit objective as aligning logits and last
decoder layer self-attention distributions, and the

explicit objective as aligning logits, last decoder
layer self-attention distributions, and last decoder
layer cross-attention distributions. The core idea
of last layer attention distribution alignment is bor-
rowed from MiniLM (Wang et al., 2021). Any align-
ment can be abstracted as L(S; T ,D∗), where D∗
denotes, with slight abuse of notation, the distribu-
tion of the input. As a crucial part, the alignment of
self-attention is like the following:

LSelfAttn(S; T ,DZ) = EZ∼DZ

R∑
k=1

KL(Reln(Z; T WQ
k ),Reln(Z; SWQ

k ))

+ KL(Reln(Z; T WK
k ),Reln(Z; SWK

k ))

+ KL(Reln(Z; T WV
k ),Reln(Z; SWV

k )),

Reln(Z;T WQ
k )

= Softmax(ZT WQ
k
T WQ⊤

k Z⊤/dR),

where KL stands for kullback-leibler divergence.
Particularly, attention heads are first merged from
the original A attention heads and then split to
R heads for alignment of the number of attention
heads. T /SWQ

k is the redistributed query parame-
ter of the k-th head within totally R heads from the
last decoder layer, likewise T /SWK

k and T /SWV
k

are the key and value parameters.
The alignment of cross-attention is similar but

sort of different in that the keys and the values
are aligned in fact from the encoder side, as the
following:

LCrossAttn(S; T ,DZ,DE) = EZ∼DZ,E∼DE

R∑
k=1

KL(Reln(Z; T WQ′

k ),Reln(Z; SWQ′

k ))

+ KL(Reln(E; T WK′

k ),Reln(E; SWK′

k ))

+ KL(Reln(E; T WV′

k ),Reln(E; SWV′

k )),

where the notations should be self-contained by
referring to previously mentioned ones. The implicit
and explicit objectives are therefore as follows:

LImp = LLogit(S; T ,DZ) + LSelfAttn(S; T ,DZ),

LExp =LLogit(S; T ,DZ) + LSelfAttn(S; T ,DZ)

+ LCrossAttn(S; T ,DZ,DE)

Preliminary Results Preliminary results are
shown in Figure 2, from which we can see that
1) the implicit objective and the explicit objective
lead to distinct gradient variations, and 2) in com-
parison to smooth gradient transitions under the
explicit objective, implicit objective yields gradient
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Figure 3: The overview of MiniEnD. Two directions are proposed to consider the encoder-decoder interplay
alignment.

spikes, which may result in instability for a nice con-
vergence (Zeng et al., 2022). Thereby, from the
gradient perspective, we conclude that the encoder-
decoder interplay is of crucial importance to the
distillation of encoder-decoder LMs, and an explicit
correspondence to the interplay is superior to an
implicit one.

4. MiniEnD

The conclusion above drives us to the path dubbed
as MiniEnD that places encoder-decoder interplay
alignment in the core of encoder-decoder LM distil-
lation. The path leads to two directions, as outlined
in Figure 3.

Decoder Cross-Attention The first follows our
practice in pilot study, where a fraction is always
added towards the alignment of output logits. The
overall distillation objective is therefore formulated
as:

L(S; T ,DZ,DE) = LLogit(S; T ,DZ)+

LSelfAttn(S; T ,DZ) + LCrossAttn(S; T ,DZ,DE).

The alignment of logits can be further detailed
as:

LLogit(S; T ,DZ) = EZ∼DZ

CE(ZSWE,ZT WE),

where CE stands for soft cross entropy and T /SWE

denotes output embedding.

Encoder Self-Attention In the second direction,
the interplay part is instead accounted for by the
last encoder self-attention distributions as:

L(S; T ,DZ,DX) = LLogit(S; T ,DZ)+

LSelfAttn(S; T ,DZ) + LEncSelfAttn(S; T ,DX),

The rationale of introducing the encoder self-
attention alignment abides in that this term together
with the decoder self-attention alignment can ade-
quately replace the cross-attention term, aligning

the encoder-decoder interplay by conducting align-
ment on each end in a separate manner.

5. Experiments

5.1. Data and Metrics

Following the pretraining of T5 and BART, we
use C4 (Raffel et al., 2020) as the corpus for
task-agnostic distillation of T5 and OpenWeb-
Text (Gokaslan et al., 2019) for that of BART. They
are separately processed to follow the pretraining
styles of T5 and BART. That is, C4 is converted
to the masked language modeling style and Open-
WebText is converted to the denoising style.

For evaluation of MiniEnD, we mainly take
GLUE (Wang et al., 2019) for language under-
standing. The GLUE benchmark consists of
two sequence classification tasks, SST-2 (Socher
et al., 2013), i.e., CoLA (Warstadt et al., 2019),
and seven sequence-pair classification tasks, i.e.,
MRPC (Dolan and Brockett, 2005), STS-B (Cer
et al., 2017), QQP, MNLI (Williams et al., 2018),
QNLI (Rajpurkar et al., 2016), RTE (Bentivogli
et al., 2011), WNLI (Levesque et al., 2012). We
exclude WNLI and CoLA due to the evaluation
inconsistency (in other words, MiniLMs get dra-
matically worse results while LMs get much better
ones as found out in Xia et al., 2022) and use the
left tasks. Following BERT (Devlin et al., 2019),
we report Accuracy (Acc) on SST-2, MNLI, QNLI,
RTE, Spearman Correlation scores (SpCorr) on
STS-B, and F1 on MRPC, QQP, CoNLL. Average
score over tasks from GLUE (GLUE Score) is ad-
ditionally computed. Regarding that one of the
most promising properties of encoder-decoder LMs
is sequence-to-sequence modeling, we addition-
ally adopt CNN/DailyMail (See et al., 2017) and
XSum (Narayan et al., 2018) for abstractive sum-
marization. We report Rouge-{1,2,L} (Rg-{1,2,L})
on both of them. Results are reported on develop-
ment sets. GFLOPs are also attached as theoreti-
cal speedup references.
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Table 1: The data statistics, maximum sequence lengths, and metrics. The maximum decoder sequence
lengths of T5 and BART are indicated differently for language understanding tasks since they use different
finetuning strategies.

Dataset #Train exam #Dev exam Max enc len Max dec len Metric
C4 364.9M – 512 114 –
OpenWebText 37.8M – 512 512 –
SST-2 67.3K 0.9K 64 1 / 64 Accuracy
MRPC 3.7K 0.4K 128 1 / 128 F1
STS-B 7.0K 1.5K 128 1 / 128 Spearman Correlation
QQP 364.0K 40.0K 128 1 / 128 F1
MNLI-m/mm 393.0K 20.0K 128 1 / 128 Accuracy
QNLI 105.0K 5.5K 128 1 / 128 Accuracy
RTE 2.5K 0.3K 128 1 / 128 Accuracy
CNN/DailyMail 287.1K 13.4K 512 128 F1
XSum 204.0K 11.3K 512 128 F1

Table 2: The hyperparameters for both distillation and finetuning. In order to realize the global batch size,
necessary gradient accumulations should be used. The beam search setting applies to BART only.

Hyperparameter
Distillation Finetuning

C4 OpenWebText GLUE CNN/DailyMail XSum
Batch size 1024 1024 {16,32} {16,32} {16,32}
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 3e-4 3e-4 {1e-5,2e-5,3e-5} {1e-4,2e-4,3e-4} {1e-4,2e-4,3e-4}
Training epochs 1 5 10 10 10
Earlystop epochs – – 5 5 5
Warmup proportion 0.01 0.01 0.1 0.1 0.1
Weight decay 0.01 0.01 0.01 0.01 0.01
Number of beams – – – 4 6
Length penalty – – – 2.0 1.0

The detailed data statistics, maximum sequence
lengths, and metrics for datasets we use are shown
in Table 1, where the corpora used for distillation is
also attached.

5.2. Implementation

The distillation is carried out on 16 Nvidia A100s.
The number of relation heads is set to 32. After
the distillation, the finetuning is carried out on one
Nvidia A100. For language understanding tasks,
T5 is finetuned with simplicity and performance
guarantee following EncT5 (Liu et al., 2021) which
uses the very first token (i.e., [BOS]) representa-
tion from the decoder, while BART is finetued follow-
ing its original paper which uses the very last token
(i.e., [EOS]) representation from the decoder. As
for abstractive summarization tasks, both T5 and
BART are finetuned in a sequence-to-sequence
manner. For fast development, we use greedy
search for T5 and beam search for BART only. The
beam search setting strictly follows the original pa-
per. In order to achieve higher training efficiency,
we utilize fully-sharded data parallel (Zhao et al.,
2023) to shard both the teacher and the student

across GPUs during the distillation. For all cases,
students are always randomly initialized before the
distillation following MiniLM (Wang et al., 2020).

The details of hyperparameters for distillation
and finetuning are shown in Table 2. We will be
releasing our code and scripts in the final version
for exact reproducibility.

5.3. Baselines

We name two variants of MiniEnD as MiniEnD-
D and MiniEnD-E respectively, where MiniEnD-D
uses decoder cross-attention for interplay align-
ment and MiniEnD-E uses encoder self-attention
instead. As there are no existing work in task-
agnostic distillation of encoder-decoder LMs, we
mainly compare MiniEnD to task-agnostic base-
lines that are heavily adapted to encoder-decoder
LMs and task-specific baselines that may be not
super fair for comparison.

We compare MiniEnD-D and MiniEnD-E dis-
tilled from T5 to task-agnostic baselines on GLUE,
CNN/DailyMail, and XSum: MlmKD (Hinton et al.,
2015) that directly distils masked language mod-
eling logits; MiniLM (Wang et al., 2021) that
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Table 3: The results on GLUE. The best results are boldfaced.

Method GFLOPs SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE GLUE
Acc F1 SpCorr F1 Acc Acc Acc Score

T5base 25.4 1× 94.6 93.0 90.0 88.9 86.7/86.8 92.9 74.7 88.5
T56L;384H 3.18 92.2 90.2 86.0 87.3 81.2/81.7 88.2 70.0 84.6
MiniDisc5%

➀ 7.80 93.8 89.8 85.3 86.7 82.9/82.7 89.2 64.6 84.4
MlmKD6L;384H 3.18 92.3 88.7 86.2 87.5 81.6/82.1 88.2 67.9 84.3
MiniLM6L;384H 3.18 3∼

8×

92.1 89.6 85.2 87.0 81.2/81.5 88.0 68.6 84.1
MlmKD+MiniLM6L;384H 3.18 92.4 89.2 86.0 87.3 81.7/82.1 89.1 67.9 84.5
MiniEnD-D6L;384H 3.18 92.1 90.6 85.8 87.7 81.8/82.3 89.0 68.6 84.7

w/o LLogit 3.18 92.2 90.1 86.6 87.6 82.2/82.8 89.1 68.6 84.9
MiniEnD-E6L;384H 3.18 8× 92.7 90.0 86.1 87.4 81.8/82.1 88.8 69.3 84.8

w/o LLogit 3.18 92.3 89.9 86.6 87.7 82.5/83.1 89.2 69.0 85.0
➀ MiniDisc is distilled from T5xlarge, and owns larger GFLOPs.

Table 4: The results on CNN/DailyMail and XSum. The best results are boldfaced.

Method GFLOPs CNN/DailyMail XSum
Rg-1 Rg-2 Rg-L Rg-1 Rg-2 Rg-L

T5base 25.4 1× 40.1 19.4 31.5 34.7 12.4 29.7
T56L;384H 3.18 35.7 16.8 28.4 28.6 8.9 24.8
MlmKD6L;384H 3.18 36.0 17.0 28.7 28.9 9.2 25.0
MiniLM6L;384H 3.18 8× 35.0 16.5 28.0 25.9 7.5 22.5
MlmKD+MiniLM6L;384H 3.18 35.8 17.0 28.7 29.0 9.1 25.1
MiniEnD-D6L;384H 3.18 36.2 17.2 28.9 29.5 9.2 25.4

w/o LLogit 3.18 35.7 17.0 28.6 27.3 8.2 23.7
MiniEnD-E6L;384H 3.18 8× 36.1 17.3 28.9 28.9 9.1 24.9

w/o LLogit 3.18 35.8 17.1 28.7 27.2 8.0 23.6

BARTbase 12.7 1× 39.4 18.5 30.6 36.9 14.7 31.9
LogitKD3/1L;768H

➀ 4.23 38.0 16.0 25.2 32.9 12.4 26.9
DQ-BART8bit

➁ 12.7 1∼
3× 42.4 19.3 28.8 38.2 15.7 30.7

MiniEnD-D6L;384H 3.18 4× 38.5 18.5 29.7 33.6 12.9 29.2
➀ LogitKD is distilled with an asymmetric layer setting, i.e., more encoder layers

than decoder layers, for saved performance decline.
➁ DQ-BART only quantizes parameter precision to lower one, i.e., 8 bit, but does not

reduce parameter amount. Quantization would not give any speedup in GFLOPs
though nice reduction in model size.

distils last decoder layer attention distributions;
MlmKD+MiniLM that is essentially a combination of
preceding two. We also compare MiniEnD-D and
MiniEnD-E distilled from T5 to a task-specific base-
line that is as far as we know the most comparable
one on GLUE: MiniDisc (Zhang et al., 2022a) that
exploits a teacher assistant for large compression.

On the other hand, we compare MiniEnD-D dis-
tilled from BART to two recent task-specific base-
lines on CNN/DailyMail and XSum: LogitKD and
DQ-BART (Li et al., 2022) that jointly quantizes and
distils from the teacher.

For MiniEnD above baselines, student structures
are denoted either with *L;*H for number of layers
and dimension of hidden states in random initializa-
tion, or with *% for preserved portion of parameters
in pruning initialization.

5.4. Main Results

Baselines fail, yet MiniEnD triumphs. From
results in Table 3 and Table 4, we can tell that
baselines fail to handle the distillation of encoder-
decoder LMs since they either underperform the
baseline pretrained from scratch or outperform it by
only a small margin. For example, MlmKD+MiniLM
achieves 84.5 versus 84.6 from T5 in GLUE Score,
and 35.8 versus 35.7 from T5 in CNN/DailyMail
Rg-1.

Contrarily, MiniEnD can safely escape from
performance degradation and bring further per-
formance increment. For example, MiniEnD-D
reaches 0.1 absolute improvement in GLUE Score,
and 0.9 absolute improvement in XSum Rg-1. The
improvement in GLUE Score seems to be not very
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Figure 4: The results of data scaling using MiniEnD-D.

significant, but can be boosted according to the
ablation. That is, MiniEnD-E w/o LLogit goes up to
85.0, which is notably better than 84.6 from T5 in
the average sense.
All count, and interplay forms the key. On an-
other note, removing LLogit will consistently produce
performance deterioration on CNN/DailyMail and
XSum. We conjecture there is a tradeoff of using
between using LLogit or not. Namely, the use of
LLogit will offer better generative ability but worse
discriminative ability, and the removal of it will work
reversely.

Anyway, either LCrossAttn in MiniEnD-D or
LSelfEncAttn in MiniEnD-E shall be a crucial ingre-
dient as the interplay alignment term is the only
difference between MiniEnD and MlmKD+MiniLM
but results in a considerable performance gap.

And it may be suspected that whether LSelfAttn

is still important given that MiniLM is not an ideal
choice for the distillation of encoder-decoder LMs.
We suggest the use of it in two aspects: 1)
MlmKD+MiniLM is better than MlmKD alone; 2)
the interplay alignment will witeness a subtle per-
formance drop after the removal of LSelfAttn, say
MiniEnD-D will decrease from 84.7 to 83.0 in GLUE
Score.
Quantization has two sides. MiniEnD surpasses
most of them except DQ-BART. However, we
should emphasize that quantized LMs usually per-
form better but run much slower than distilled LMs
do when compression is the same. In our case,
DQ-BART uses 8 bit precision and gives rise to a
4× model size reduction which is the same as that
of MiniEnD. In addition to that, MiniEnD is orthogo-
nal to quantization and thus can be enhanced with
other quantization schemes.

5.5. Analyses
Data Scaling Some would wonder whether the
huge amounts of GPU hours due to the large pre-
training corpus is necessary. So we inspect the

performance variation of MiniEnD-D by varying
data scale, which is shown in Figure 4.

The results generally hint that using a portion of
data could hardly approximate the full data perfor-
mance, though half data can achieve acceptable
performance. Therefore, we suggest the use of full
data in the distillation.

Model Scaling Inspired by pioneering work find-
ing a curse that larger teachers induces worse stu-
dents, we double check the existence of the curse
and offer a trial solution to the curse so that we can
scale the teacher up to 3B T5xlarge.

From the results in Table 5, we observe that the
curse of capacity gap still exists in our case. With
the increase of teacher scale, the student perfor-
mance decreases. We attempt to apply common
solutions the circumvent the curse. The first is to
make the student learn from a teacher assistant
distilled from the teacher (Mirzadeh et al., 2020).
The second is to make the student to learn from
a smaller teacher and then from the teacher (Lin
et al., 2023). Both two solutions inherit the idea of
inserting an additional distillation step thus progres-
sive distillation. We reveal that teacher assistant-
based distillation is somewhat useful but not
as excepted since T5xlarge⇒T512L;384H⇒T56L;384H
still does not imrpove over T5xlarge⇒T56L;384H
in some cases. Nonetheless, we unearth
that progressive distillation is more promis-
ing in terms of consistent performance gains
when comparing T5xlarge⇒{T5large⇒T512L;384H} to
T5xlarge⇒T512L;384H. We claim that distilling large
language models like LLaMA can therefore be ap-
pealing but challenging.

6. Conclusions

In this paper, we aim to provide a path that suc-
cessfully tackles the distillation of encoder-decoder
LMs, which fails most previous methods in the
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Table 5: The results of model scaling using MiniEnD-D. ⇒ denotes a distillation step, which should
be operated sequentially otherwise {} is prioritized. · · · ⇒ · · · ⇒ · · · indicates teacher assistant-based
distillation and · · · ⇒ {· · · ⇒ · · · } indicates progressive distillation.

Method GLUE CNN/DailyMail XSum
Score Rg-1 Rg-2 Rg-L Rg-1 Rg-2 Rg-L

T56L;384H 84.6 35.7 16.8 28.4 28.6 8.9 24.8
T512L;384H 85.0 37.2 17.9 29.6 31.2 10.5 27.0
T5base 88.5 40.1 19.4 31.5 34.7 12.4 29.7
T5large 90.7 40.6 19.4 31.7 38.2 15.1 32.9
T5xlarge 92.0 40.8 19.7 32.1 41.1 17.6 35.5
T5base⇒T56L;384H 84.7 36.2 17.2 28.9 29.5 9.2 25.4
T5large⇒T56L;384H 84.5 36.4 17.4 29.0 29.4 9.3 25.3
T5xlarge⇒T56L;384H 84.2 36.1 17.2 28.8 29.1 9.1 25.1
T5xlarge⇒T512L;384H⇒T56L;384H 84.6 36.6 17.5 29.2 29.2 9.1 25.1
T5large⇒T512L;384H 85.5 38.3 18.4 30.4 32.4 11.2 27.9
T5xlarge⇒T512L;384H 85.2 38.0 18.4 30.3 32.2 11.1 27.7
T5xlarge⇒{T5large⇒T512L;384H} 85.8 38.4 18.5 30.6 32.9 11.5 28.3

area. We find through a pilot study that the encoder-
decoder interplay is a key component that should
be aligned in the distillation so that the distilled
encoder-decoder LMs are promising. Based on the
idea, we propose two directions that the encoder-
decoder interplay alignment can be incorporated
and verify their effectiveness on a language under-
standing benchmark and two abstractive summa-
rization datasets. We further scale the distillation
of encoder-decoder LMs to a 3B teacher that re-
quires additional distillation steps. In this sense, we
recommend future research to devote more efforts
to exploring how large language models can be
distilled.

Limitations

This paper lacks a validation study on more re-
cently advanced encoder-decoder LMs such as
FLAN (Chung et al., 2022) and UL2 (Tay et al.,
2022) as well as their instruction-tuned versions.
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