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Abstract

Classifying research output into context-specific label taxonomies is a challenging and relevant downstream task,
given the volume of existing and newly published articles. We propose a method to enhance the performance of
article classification by enriching simple Graph Neural Network (GNN) pipelines with multi-graph representations that
simultaneously encode multiple signals of article relatedness, e.g. references, co-authorship, shared publication
source, shared subject headings, as distinct edge types. Fully supervised transductive node classification experiments
are conducted on the Open Graph Benchmark OGBN-arXiv dataset and the PubMed diabetes dataset, augmented
with additional metadata from Microsoft Academic Graph and PubMed Central, respectively. The results demonstrate
that multi-graphs consistently improve the performance of a variety of GNN models compared to the default graphs.
When deployed with SOTA textual node embedding methods, the transformed multi-graphs enable simple and
shallow 2-layer GNN pipelines to achieve results on par with more complex architectures.

Keywords: Heterogeneous Graph Learning, Graph Neural Networks, Article Classification, Document Re-
latedness

1. Introduction

Article classification is a challenging down-
stream task within natural language processing
(NLP) (Mirończuk and Protasiewicz, 2018). An im-
portant practical application is classifying existing
or newly-published articles according to specific
research taxonomies. The task can be approached
as a graph node classification problem, where
nodes represent articles with corresponding feature
mappings, and edges are defined by a strong sig-
nal of article relatedness, e.g. citations/references.
Conventionally, graph representation learning is
handled in two phases: unsupervised node feature
generation, followed by supervised learning on said
features using the graph structure. Graph neural
networks (GNNs) can be successfully employed
for the second phase of such problems, being ca-
pable of preserving the rich structural information
encoded by graphs. In recent years, prolific GNN
architectures have achieved strong performance
on citation network benchmarks (Kipf and Welling,
2017; Hamilton et al., 2017; Veličković et al., 2018;
Frasca et al., 2020; Li et al., 2021).

We focus on combining textual information from
articles with various indicators of article related-
ness (citation data, co-authorship, subject fields,
and publication sources) to create a graph with
multiple edge types, also known as multi-graphs
or heterogeneous graphs (Barabási and Pósfai,
2017). We use two established node classification
benchmarks - the citation graphs OGBN-arXiv and
PubMed - and leverage their connection to large
citation databases - Microsoft Academic Graph
(MAG) and PubMed Central - to retrieve the meta-
data fields and enrich the graph structure with ad-
ditional edge types (Hu et al., 2020; Sen et al.,

Figure 1: Illustration of the proposed multi-graph
input, which enables the neighboring feature ag-
gregation for a node X1 to be performed across a
variety of subgraphs, leveraging multiple signals of
article relatedness (References, Authorship, and
shared Journal depicted here).

2008). For node feature generation, we experiment
with two approaches based on language model
(LM) fine-tuning for graph representation learning -
SimTG and TAPE - to infer embeddings based on
articles’ titles and abstracts, with the intention of
capturing higher-order semantics compared to the
defaults (Duan et al., 2023; He et al., 2024). We
test our transformed graphs with a variety of GNN
backbone models, converted to support heteroge-
neous input using the relational graph convolutional
network (R-GCN) framework (Schlichtkrull et al.,
2018). In essence, we approach a typically ho-
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mogeneous task using heterogeneous techniques.
The method is intuitively simple and interpretable;
we do not utilize complex model architectures and
training frameworks, focusing primarily on data re-
trieval and preprocessing to boost the performance
of simpler models, thus maintaining a reasonably
low computational cost and small number of fitted
parameters.

A considerable volume of research is devoted to
article classification, graph representation learning
with respect to citation networks, and the adaptation
of these practices to heterogeneous graphs (Wu
et al., 2019b; Bing et al., 2022). However, the ap-
plication of heterogeneous graph enrichment tech-
niques to article classification is not well-studied
and presents a research opportunity. Existing
works on heterogeneous graphs often consider mul-
tiple node types, expanding from article to entity
classification; we exclusively investigate the hetero-
geneity of paper-to-paper relationships to remain
consistent with the single-node type problem set-
ting. The emergence of rich metadata repositories
for papers, e.g. OpenAlex, illustrates the relevance
of our research (Priem et al., 2022).

Scalability is often a concern with GNN architec-
tures. For this reason, numerous approaches sim-
plify typical GNN architectures with varying strate-
gies, e.g. pre-computation or linearization, without
sacrificing significant performance in most down-
stream tasks (Frasca et al., 2020; Wu et al., 2019a;
Prieto et al., 2023). Other solutions avoid GNNs
altogether, opting for simpler approaches based on
early graph-based techniques like label propaga-
tion, which outperform GNNs in several node clas-
sification benchmarks (Huang et al., 2021). The
success of these simple approaches raises ques-
tions about the potential impracticality of deep GNN
architectures on large real-world networks with a
strong notion of locality, and whether or not such
architectures are actually necessary to achieve sat-
isfactory performance.

Compared to simple homogeneous graphs, het-
erogeneous graphs encode rich structural and se-
mantic information, and are more representative of
real-world information networks and entity relation-
ships (Bing et al., 2022). For example, networks
constructed from citation databases can feature re-
lations between papers, their authors, and shared
keywords, often expressed in an RDF triple, e.g.
“paper (co-)authored by−−−−−−−−−→ author,” “paper includes−−−−→ key-
word,” “paper cites−−→ paper.” Heterogeneous GNN
architectures share many similarities with their ho-
mogeneous counterparts; a common approach is
to aggregate feature information from local neigh-
borhoods, while using additional modules to ac-
count for varying node and/or edge types (Yang
et al., 2022). Notably, the relational graph convolu-
tional network approach (R-GCN) by Schlichtkrull

et al. (2018) shows that GCN-based frameworks
can be effectively applied to modeling relational
data, specifically for the task of node classification.
The authors propose a modeling technique where
the message passing functions are duplicated and
applied individually to each relationship type. This
transformation can be generalized to a variety of
GNN convolutional operators in order to convert
them into their relational (heterogeneous) counter-
parts.

2. Methodology

We propose an approach focusing on dataset prove-
nance, leveraging their linkage to large citation and
metadata repositories, e.g. MAG and PubMed Cen-
tral, to retrieve additional features and enrich their
graph representations. The proposed method is
GNN-agnostic, compatible with a variety of model
pipelines (provided they can function with hetero-
geneous input) and textual node embedding tech-
niques (results are presented with the provided fea-
tures, plus the SimTG and TAPE embeddings). Fig-
ure 1 provides a high-level overview of the method.

The tested GNN backbones (see Section 3) are
converted to support heterogeneous input using
the aforementioned R-GCN transformation defined
by Schlichtkrull et al. (2018), involving the dupli-
cation of the message passing functions at each
convolutional layer per relationship type; we employ
the PyTorch Geometric (PyG) implementation of
this technique, using the mean as the aggregation
operator (Fey and Lenssen, 2019).

2.1. Datasets
Our experiments are conducted on two datasets:
the Open Graph Benchmark (OGB) OGBN-arXiv
dataset and the PubMed diabetes dataset.

The OGB OGBN-arXiv dataset consists of
169,343 Computer Science papers from arXiv,
hand-labeled into 40 subject areas by paper au-
thors and arXiv moderators, with 1,166,243 refer-
ence links (Hu et al., 2020). Default node features
are constructed from textual information by averag-
ing the embeddings of words (which are generated
with the Skip-Gram model) in the articles’ titles and
abstracts. The dataset provides the mapping used
between papers’ node IDs and their original MAG
IDs, which can be used to retrieve additional meta-
data.

The PubMed diabetes dataset consists of 19,717
papers from the National Library of Medicine’s
(NLM) PubMed database labeled into one of three
categories: “Diabetes Mellitus, Experimental,” “Dia-
betes Mellitus Type 1,” and “Diabetes Mellitus Type
2,” with 44,338 references links (Sen et al., 2008).
TF-IDF weighted word vectors from a dictionary
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Dataset Edge Type |N |LCC |E|LCC |E| Avg. Degree Avg. Clust. Coeff. Homophily

OGBN-arXiv

References 169,343 2,315,598 2,315,598 13.7 0.310 0.654
Authorship 145,973 6,697,998 6,749,335 39.9 0.775 0.580
Source 63 3,906 605,660 3.6 1 0.590
Subject Area 144,529 8,279,492 8,279,687 48.9 0.630 0.319

PubMed

References 19,716 88,649 88,649 4.5 0.246 0.802
Authorship 17,683 729,468 731,376 37.1 0.705 0.721
Source 2,213 4,895,156 11,426,930 579.6 1 0.414
Subject Area 18,345 1,578,526 1,578,530 80.1 0.481 0.550

Table 1: Properties of constructed subgraphs: number of nodes and edges (post-conversion to undirected)
in the largest connected component (LCC), total number of edges, average degree, network average
clustering coefficient (Schank and Wagner, 2005), and edge homophily ratio (fraction of edges connecting
nodes with the same label) (Ma et al., 2022). Note that the References subgraphs are the only ones
without isolated nodes. Note that the network average clustering coefficient computation excludes isolated
nodes with zero local clustering.

of 500 unique words are provided as default node
features. Similarly, the papers’ original PubMed
IDs can be used to fetch relevant metadata.

2.2. Data Augmentation
For OGBN-arXiv, we used a July-2020 snapshot
of the complete Microsoft Academic Graph (MAG)
index (240M papers) - since MAG (and the asso-
ciated API) was discontinued later - to obtain ad-
ditional metadata (Zhang et al., 2022)1. Potential
indicators of paper relatedness include: authors,
venue, and fields of study. Fields of study, e.g.
“computer science,” “neural networks,” etc. are au-
tomatically assigned with an associated confidence
score (which we do not use), and each paper can
have multiple fields of study, making them func-
tionally similar to keywords. Other metadata (DOI,
volume, page numbers, etc.) are not useful for our
purposes.

For PubMed, an unprocessed version of the
dataset preserving the original paper IDs was
used (Namata et al., 2012)2. A January-2023 snap-
shot of the complete PubMed citation database
(35M papers) was accessed for additional meta-
data. Potential indicators of paper relatedness
include: authors, journal (indicated by unique
NLM journal IDs), and Medical Subject Headings
(MeSH®). The latter is an NLM-controlled hierar-

1The data is hosted by AMiner’s Open Academic
Graph project. All chunks were downloaded locally
and metadata of IDs corresponding to papers in OGBN-
arXiv were saved.

2This version of the dataset is hosted by the LINQS
Statistical Relational Learning Group. The 2023 annual
baseline on the NLM FTP server is accessed to retrieve
metadata. All files were downloaded locally and meta-
data of matching IDs were extracted (19,716 records
matched, 1 missing).

chical vocabulary used to characterize biomedical
article content.

Given the features of interest, we define three
additional edge types for each dataset:

• (Co)-Authorship: Two papers are connected
if they share an author. This is based on the
assumption that a given author tends to per-
form research on similar disciplines. Note that
unlike MAG, PubMed Central does not provide
unique identifiers for authors, so exact author
names are used for PubMed, which can lead
to some ambiguity in a minority of cases, e.g.
two distinct authors with the same name.

• Source: Two papers are connected if they were
published at the same venue (OGBN-arXiv),
or in the same journal (PubMed), with the in-
tuition that specific conferences and journals
feature papers contributing to similar research
areas.

• Subject Area: Two papers are connected
if they share at least one field of study
(OGBN-arXiv), or medical subject heading
(PubMed).

Since the OGBN-arXiv Source and both
datasets’ Subject Area relationships result in mas-
sive edge lists, posing out-of-memory issues on
the utilized hardware, we only create edges be-
tween up to k nodes per unique venue/field of
study/MeSH, where k is the mean number of pa-
pers per venue/field of study/MeSH, in order to
reduce the subgraphs’ sizes.

In a traditional citation network, the edges are
typically directed, but in our experiments, they are
undirected to strengthen the connections of com-
munities in the graph. The graph includes only
one node type, “paper.” Other approaches, notably

https://www.aminer.cn/oag-2-1
https://www.aminer.cn/oag-2-1
https://linqs.org/datasets/#pubmed-diabetes
https://linqs.org/datasets/#pubmed-diabetes
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Figure 2: Degree distribution, i.e. frequency of each degree value, of all subgraphs for OGBN-arXiv (left)
and PubMed (right), plotted on a log-log scale. Points indicate the unique degree values.

in the citation recommendation domain, leverage
node types to represent authors and journals (Guo
et al., 2017). However, this work strictly concerns
relationships between papers and not between pa-
pers and other entities, in order to apply the homo-
geneous problem settings. Practically, the resul-
tant graph would contain too many nodes, while
the number of features and metadata is insufficient
to generate informative representations of other
node types, limiting their usefulness in the feature
aggregation step. Hence, we specify our trans-
formed graph as a multi-graph, i.e. possessing one
node set, with distinct edges that are permitted to
connect the same pair of nodes, and not a “true”
heterogeneous graph.

For textual node feature representation, we lever-
age the recent SimTG and TAPE frameworks,
which both utilize the raw textual features of
datasets, in the form of concatenated titles and
abstracts, and focus on fine-tuning pre-trained LMs
and utilizing their last hidden states to infer node
embeddings for training GNNs (Duan et al., 2023;
He et al., 2024). These methods are present in
the top OGBN-arXiv leaderboard submissions (at
the time of writing). SimTG performs supervised
parameter-efficient fine-tuning (PEFT) of an LM
on the article classification task. Pre-computed
embeddings for OGBN-arXiv are provided (using
e5-large), which we utilize here. Since the au-
thors do not report results on PubMed, we repro-
duce their methods to generate embeddings for
this dataset, using a SciBERT model (Beltagy et al.,
2019). TAPE proposes an LLM-to-LM interpreter,
prompting GPT3.5 to perform zero-shot article clas-
sification and generate textual explanations for its
decision-making process; the GPT3.5 predicted la-
bels and explanations are then used to fine-tune
a DeBERTa model. In this case, pre-computed

embeddings were available for both datasets.

2.3. Subgraph Properties

Some insights on the characteristics of the defined
subgraphs can be derived from Table 1. While
the References graphs do not exhibit the tight clus-
tering typical of real-world information networks,
the strong signal of relatedness in the edges has
nonetheless ensured their compatibility with mes-
sage passing GNN paradigms (Wu et al., 2019b).
This relatedness is also evident in the Authorship
graphs, and the high level of clustering confirms
the initial hypothesis that researchers co-author
papers within similar topics. The Subject Area re-
lationships, include many edges formed between
shared generic keywords, e.g. “computer science,”
leading to rather average homophily. The Source
subgraphs consist of isolated fully-connected clus-
ters per unique source, with no inter-cluster connec-
tions, as each paper belongs to only one journal or
venue. As with the Subject Area relationships, the
research scope covered by a given publication con-
ference or journal can be quite broad with respect
to the paper labels.

Figure 2 shows the degree distribution of all edge
type subgraphs in both datasets, which gives a
clear view of the subgraphs’ structures when inter-
preted with the above metrics. The high frequency
of large node degrees in the PubMed Source sub-
graph corresponds to large journals; the size of
the LCC (2,213) is the number of papers in the
largest journal. While not visible for the OGBN-
arXiv Source subgraph due to the aforementioned
sampling in Section 2.2, a similar distribution would
occur for large venues if all possible edges had
been included. In contrast, the lower occurrence of
high degree nodes and low clustering in the Refer-
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Edge Types OGBN-arXiv PubMed

Refs. Auth. Srce. Subj. Default SimTG TAPE Default SimTG TAPE
✓ - - - 69.55 ± 0.31 74.07 ± 0.03 73.97 ± 0.01 87.72 ± 0.29 93.21 ± 0.24 93.04 ± 0.01
- ✓ - - 61.51 ± 0.15 67.29 ± 0.23 67.50 ± 0.09 79.99 ± 0.29 82.93 ± 0.09 83.28 ± 0.03
- - ✓ - 53.78 ± 0.26 73.30 ± 0.08 73.05 ± 0.02 48.99 ± 6.82* 61.97 ± 0.44 62.23 ± 1.37
- - - ✓ 49.87 ± 0.11 55.54 ± 0.31 56.07 ± 0.32 73.57 ± 0.42 74.96 ± 1.90 75.78 ± 0.12

✓ ✓ - - 71.40 ± 0.19 75.80 ± 0.11 75.98 ± 0.06 88.91 ± 0.18 93.62 ± 0.01 93.45 ± 0.17
✓ - ✓ - 68.72 ± 0.30 76.05 ± 0.02 75.85 ± 0.10 87.97 ± 0.25 93.14 ± 0.05 93.05 ± 0.20
✓ - - ✓ 70.01 ± 0.05 74.42 ± 0.08 74.45 ± 0.05 88.14 ± 0.06 92.79 ± 0.29 93.30 ± 0.11
✓ ✓ ✓ - 70.97 ± 0.19 77.26 ± 0.04 77.14 ± 0.10 88.86 ± 0.10 93.54 ± 0.10 92.89 ± 0.24
✓ ✓ - ✓ 71.81 ± 0.06 75.94 ± 0.07 76.15 ± 0.12 89.22 ± 0.15 93.11 ± 0.32 93.23 ± 0.15
✓ - ✓ ✓ 69.30 ± 0.14 76.08 ± 0.05 75.97 ± 0.05 88.35 ± 0.17 92.84 ± 0.16 92.73 ± 0.50
✓ ✓ ✓ ✓ 71.30 ± 0.08 77.17 ± 0.02 77.07 ± 0.11 88.47 ± 0.28 93.16 ± 0.29 93.12 ± 0.16

Table 2: References, Authorship, Source (venue or journal), and Subject Area (fields of study or MeSH)
subgraph ablation study for both datasets, 3-run average test accuracy with a 2-layer GCN and consistent
hyperparameter values per dataset. The best results for each column are highlighted in bold. Asterisk
indicates (significant) overfitting and instability.

ences subgraphs of both datasets indicates greater
average distance across the LCC compared to the
other subgraphs; such a structure stands to benefit
the most from the multi-hop neighborhood feature
aggregation performed by GNNs. Relative to the
References, the Authorship and Subject Area sub-
graphs exhibit increased skewness in the distribu-
tion and higher average clustering, which indicates
the presence of more (near-)cliques, i.e. subsec-
tions of the graph wherein (almost) any two papers
share an author or topic. Hence, these subgraphs
bear the closest structural resemblance to small-
world networks (Watts and Strogatz, 1998). The im-
pact of these degree distributions on classification
performance is further investigated in Section 3.1.

3. Experiments and Results

We evaluate model performance on the task of fully
supervised transductive node classification. The
metric is multi-class accuracy on the test set. The
proposed data preparation scheme is tested with
several GNN architectures commonly deployed in
benchmarks. We consider two GCN setups (base
one and with a jumping knowledge module using
max-pooling as the aggregation scheme), as well
as GraphSAGE (Kipf and Welling, 2017; Xu et al.,
2018; Hamilton et al., 2017). We also run experi-
ments with the simplified graph convolutional oper-
ator (SGC) (Wu et al., 2019a). The increased graph
footprint can lead to scalability concerns, hence the
performance of such lightweight and parameter-
efficient methods is of interest.

For OGBN-arXiv, the provided time-based split
is used: train on papers published until 2017, val-
idate on those published in 2018, test on those

published since 2019. For PubMed, nodes of each
class are randomly split into 60% - 20% - 20%
for training - validation - and testing. Ablation ex-
periments are also performed to examine the im-
pact of the different edge types (averaged across
3 runs) and to identify the optimal edge type con-
figuration for both datasets, on which we then re-
port final results (averaged across 10 runs). Ex-
periments were conducted on a g4dn.2xlarge
EC2 instance (32 GB RAM, 1 NVIDIA Tesla T4
16 GB VRAM). Models are trained with negative
log-likelihood loss, early stopping based on vali-
dation accuracy (patience of 20 epochs, with an
upper limit of 500 epochs), and linear learning rate
scheduling.

3.1. Ablation Study
Ablation results for both datasets are presented in
Table 2, separated by node embedding method.
First, all possible homogeneous subgraphs are
inspected, as this is the conventional input data
for this task (see the first 4 rows). The best per-
formance is consistently achieved on the Refer-
ences graphs. Then we build upon the References
graph by adding different combinations of other
subgraphs. The results demonstrate that transition-
ing to multi-graphs can yield up to 3.19% perfor-
mance improvement on OGBN-arXiv and 1.50%
on PubMed (see differences between References-
only and bold configurations). These results were
obtained with a 2-layer GCN base, using an initial
learning rate of 0.001 and hidden feature dimen-
sionality of 128. For PubMed, we add an optimizer
weight decay of 0.005.

Cross-checking with the metrics in Table 1 im-
plies improvements from multi-graphs roughly cor-
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Dataset GNN Default Graph Multi-graph
Default SimTG TAPE Default ∆ SimTG ∆ TAPE ∆

OGBN-arXiv

GCN 69.67 ± 0.17 73.98 ± 0.11 74.08 ± 0.10 71.88 ± 0.06 +2.21% 77.30 ± 0.09 +3.32% 77.10 ± 0.10 +3.02%

GCN+JK 70.24 ± 0.17 75.01 ± 0.15 75.15 ± 0.16 71.56 ± 0.21 +1.32% 77.05 ± 0.10 +2.04% 76.66 ± 0.10 +1.51%

SAGE 68.99 ± 0.18 75.65 ± 0.11 75.41 ± 0.13 71.37 ± 0.21 +2.38% 77.39 ± 0.15 +1.74% 76.68 ± 0.06 +1.27%

SGC 68.73 ± 0.14 73.95 ± 0.03 73.65 ± 0.25 70.24 ± 0.05 +1.51% 77.24 ± 0.01 +3.29% 75.93 ± 0.17 +2.28%

PubMed

GCN 87.67 ± 0.25 92.92 ± 0.12 92.92 ± 0.17 89.15 ± 0.14 +1.48% 93.49 ± 0.16 +0.57% 93.59 ± 0.26 +0.67%

GCN+JK 87.13 ± 0.28 93.68 ± 0.18 93.49 ± 0.36 87.53 ± 0.62 +0.40% 94.11 ± 0.18 +0.43% 94.17 ± 0.13 +0.68%

SAGE 88.30 ± 0.10 95.46 ± 0.07 94.87 ± 0.10 89.75 ± 0.09 +1.45% 95.51 ± 0.10 +0.05% 94.93 ± 0.13 +0.06%

SGC 86.87 ± 0.16 90.31 ± 0.30 90.57 ± 0.32 86.56 ± 0.57 -0.31% 91.41 ± 0.13 +1.10% 91.20 ± 0.21 +0.63%

Table 3: Results with a variety of GNN backbones on the best multi-graph configuration per embedding
method, based on the ablation study in Table 2, so e.g. the multi-graph for OGBN-arXiv GCN with
SimTG embeddings consists of the References, Authorship, and Source graphs; the same multi-graph
configuration is re-used for all other GNNs trained on OGBN-arXiv with SimTG embeddings. The
baseline results on the default graph and the accuracy difference over the baseline are also displayed
per embedding method. Green, gray, and red indicate increase, insignificant increase, and decrease,
respectively.

respond to the edge homophily ratio of the utilized
subgraphs, as strong homophily is implicitly as-
sumed by the neighborhood aggregation mecha-
nism of GCN-based models. Subsequently, their
performance can be erratic and unpredictable in
graphs with comparatively low homophily (Kipf and
Welling, 2017; Ma et al., 2022). Since the R-GCN
transformation collects neighborhoods from input
subgraphs with equal weighting, including a com-
paratively noisy subgraph, e.g. PubMed Source,
can worsen predictive performance. Changing the
R-GCN aggregation operator, e.g. from mean to
concatenation, does not alleviate this.

The Source subgraphs benefit substantially from
the LM-based features, as the extent of feature ag-
gregation is comparatively limited, due to the afore-
mentioned tight clustering and isolation. Hence,
the classifier relies more on the raw separability of
the textual node features. This also explains the
breakdown in performance when using the PubMed
Source subgraph in a homogeneous setting, as a
paper might possess only a few non-zero feature
dimensions when using the default word vectors.
The Subject Area subgraphs are more structurally
preferable, but noisy edges (from keywords tied to
concepts that are higher-level than the paper labels)
reduce their usefulness in classification. In addition,
the semantic information they encode is dominated
by the dense LM-based features, reflected by the
fact that they only appear in the optimal multi-graph
configuration when using the default embeddings.
Across all experimental settings, the Authorship
subgraph enables consistent gains, and can out-
perform configurations that use more subgraphs.
These trends are expected, given the characteris-
tics discussed in Section 2.3.

3.2. Optimal Configuration
Results with the optimal configuration identified
from the ablation study are listed in Table 3, for
both datasets.

In most cases, preliminary experiments indi-
cated that deeper (3 or more layers) networks ei-
ther worsen or do not benefit performance of the
tested models in multi-graph configurations (how-
ever, note that tested single-layer models underfit
and thus do not improve performance). Likely, the
additional feature averaging step from the R-GCN
transformation increases the risk of oversmoothing
even on shallow networks. These hypothesized ef-
fects are more pronounced when using graphs with
high average degree, e.g. the Source and Subject
Area subgraphs; nodes with high degree aggregate
more information from their neighbors, increasing
the likelihood of homogenization as network depth
increases (Chen et al., 2020).

The results demonstrate that the additional struc-
tural information provided by multi-graphs generally
improves final performance of a variety of hetero-
transformed GNN frameworks compared to their
homogeneous counterparts on both datasets, with
more pronounced effects on OGBN-arXiv, when
making optimal subgraph choices (though, subop-
timal choices can still situationally improve perfor-
mance). These improvements are independent of
the tested textual embedding methods, and can
occur even when the added subgraphs possess
suboptimal graph properties, e.g. lower edge ho-
mophily ratio and presence of isolated nodes, com-
pared to the starting References graph. Notably,
the best results are competitive with the SOTA,
while operating on a limited compute budget and
low level of complexity (simple 2-layer GNN model
pipelines with comparatively few trainable param-
eters). On OGBN-arXiv, we can achieve a top-5
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result (at the time of writing) deploying our multi-
graph with a GraphSAGE backbone and SimTG
embeddings.

4. Conclusions and Future Work

In this paper, we propose a data transformation
methodology leveraging metadata retrieved from
citation databases to create enriched multi-graph
representations based on various additional sig-
nals of document relatedness: co-authorship, pub-
lication source, fields of study, and subject head-
ings. We also test the substitution of default node
features with LM-based embeddings to capture
higher-dimensionality textual semantics. By nature,
the methodology is GNN- and embedding-agnostic.
Deploying optimal configurations of the transformed
multi-graph with a variety of simple GNN pipelines
leads to consistent improvements over the starting
graph, and enables results on par with the SOTA
in full-supervised node classification. Overall, re-
sults show that our methodology can be an effec-
tive strategy to achieve respectable performance
on datasets with readily-available article metadata,
without necessitating complex GNN architectures
and lengthy (pre-)training procedures.

As the methodology is compatible with any
hetero-transformable GNN backbone and textual
node embedding technique, we expect that de-
ploying the transformed data with SOTA GNN
frameworks, e.g. RevGAT by Li et al. (2021) on
OGBN-arXiv, will lead to greater raw performance.
Though, the larger memory footprint of the graph
may complicate the application of such frameworks.

Refining the edge type definitions, e.g. connect
papers that share at least two fields of study and/or
remove “generic” fields applicable to a majority of
papers in the set, can help de-noising and improv-
ing the properties of the respective subgraphs. A
custom aggregation scheme could be implemented
for the heterogeneous transformation dependent on
individual subgraph properties, such as a weighted
average based on some metric of subgraph “qual-
ity,” e.g. homophily. To mitigate the increased
risk of oversmoothing induced by multi-graphs and
stabilize convergence behavior, additional regular-
ization techniques, e.g. DropEdge by Rong et al.
(2020), could be considered.
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Dataset GNN Metric Default Graph Multi-graph
Default SimTG TAPE Default SimTG TAPE

OGBN-arXiv

GCN Val. Acc. 70.78 ± 0.15 75.51 ± 0.15 75.41 ± 0.06 73.15 ± 0.12 78.39 ± 0.16 78.07 ± 0.08
# Params 21,928 136,616 103,848 65,272 409,336 311,032

GCN+JK Val. Acc. 71.29 ± 0.09 76.20 ± 0.12 76.10 ± 0.11 73.13 ± 0.13 78.38 ± 0.12 77.78 ± 0.07
# Params 38,686 153,384 120,616 104,744 448,808 350,504

SAGE Val. Acc. 70.16 ± 0.25 77.01 ± 0.15 76.27 ± 0.07 72.90 ± 0.10 78.69 ± 0.15 77.63 ± 0.04
# Params 43,432 272,808 207,272 129,784 817,912 621,304

SGC Val. Acc. 69.82 ± 0.12 75.04 ± 0.00 74.80 ± 0.16 71.59 ± 0.06 78.39 ± 0.00 77.11 ± 0.09
# Params 5,160 41,000 30,760 15,480 123,000 92,280

PubMed

GCN Val. Acc. 88.17 ± 0.16 93.67 ± 0.28 93.81 ± 0.09 89.39 ± 0.16 94.52 ± 0.06 94.63 ± 0.12
# Params 64,771 99,075 99,075 193,801 197,894 197,894

GCN+JK Val. Acc. 87.93 ± 0.18 94.77 ± 0.15 94.56 ± 0.27 88.74 ± 0.12 95.30 ± 0.23 95.48 ± 0.21
# Params 81,539 115,843 115,843 242,819 230,787 230,787

SAGE Val. Acc. 89.15 ± 0.24 96.36 ± 0.17 96.27 ± 0.16 90.64 ± 0.13 96.57 ± 0.13 96.59 ± 0.05
# Params 129,155 197,763 197,763 386,953 395,270 395,270

SGC Val. Acc. 87.05 ± 0.12 91.00 ± 0.17 91.59 ± 0.17 86.72 ± 0.39 92.31 ± 0.06 92.49 ± 0.17
# Params 1,503 2,307 2,307 4,509 4,614 4,614

Table 4: Validation accuracy and number of trainable GNN parameters for all results in Table 3.

Dataset Hyperparameter GCN GCN+JK SAGE SGC

OGBN-arXiv

# Layers 2 2 2 2
Hidden Channels 128 128 128 -
Dropout 0 0 0 -
Init. Learning Rate 0.001 0.001 0.001 0.1*

Weight Decay 0 0 0 0

PubMed

# Layers 2 2 2 2
Hidden Channels 128 128 128 -
Dropout 0 0.2** 0 -
Init. Learning Rate 0.001 0.001 0.001 0.1
Weight Decay 0.005 0*** 0.005 0

Table 5: Hyperparameters used for all results in Table 3. *0.01 for TAPE embeddings on multi-graph. **0.5
for default embeddings on multi-graph. ***0.001 for default embeddings on multi-graph.

C. Hyperparameters

The hyperparameters used for all results in Table 3
can be seen in Table 5. Note that these parameters
were not comprehensively tuned per (dataset, GNN,
graph type) combination, to illustrate the generality
of our methods; a more extensive hyperparameter
search can yield better results. Also, expanding
the ablation study in Table 2 for specific GNN back-
bones rather than generalizing the GCN-applicable
optimal configuration can further optimize results.
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