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Abstract
Web-crawled corpora are essential resources for linguistic and NLP research, offering far more data than is available
from curated corpora. However, they often contain a great deal of low-quality texts which can complicate research
and degrade the quality of pre-trained language models. Therefore, they are typically filtered, e.g. by applying rules
or classifiers. In this paper, we compare the effectiveness of various text filtering classifiers and measure their
impact on language model performance for three medium-resource languages. We present TQ-IS, an Icelandic
text quality dataset consisting of 2,000 web-crawled documents, in which spans of low-quality text have been
manually identified and labeled. We then evaluate a perplexity-based classifier, a supervised classifier trained
on TQ-IS, and a self-supervised classifier trained to discern between documents from curated and web-crawled
corpora on Icelandic, Estonian and Basque. We find that these classifiers obtain F1 scores of 94.48%, 99.01%
and 93.40%, respectively, when evaluated on the TQ-IS dataset. Furthermore, our results show that while
adding filtered web-crawled text to a pre-training corpus can improve downstream performance for pre-trained lan-
guage models, any improvement is likely to remain modest unless the web-crawled corpus is significantly larger in size.

Keywords: Text quality, text filtering, language modeling

1. Introduction

Early Transformer-based language models, such
as GPT (Radford et al., 2018) and BERT (Devlin
et al., 2019), were typically pre-trained on curated
corpora consisting of up to several billion words. It
is now well established that increasing the size of
pre-training corpora can significantly improve the
downstream performance of such models (Liu et al.,
2019). For this reason, it has become common
practice to supplement high-quality pre-training cor-
pora with, or even to rely exclusively on, documents
scraped from online sources (Brown et al., 2020;
Raffel et al., 2020; Xue et al., 2021b; Wu et al.,
2021). Online texts are often obtained from large
datasets, such as those published by Common
Crawl (CC).1 The GPT-3 model was pre-trained on
499B tokens, 410B of which were obtained from
CC (Brown et al., 2020), while the T5 model was
pre-trained on one trillion tokens from CC (Raffel
et al., 2020).

While web-crawled corpora offer researchers the
chance to dramatically increase the size of their
datasets, such texts are typically quite noisy, often
containing significant amounts of low-quality text,
such as HTML tags, JavaScript code, navigation
menus, headers, footers, boilerplate text, text in
unwanted languages, or text that is otherwise inco-
herent or incomplete. An audit of 205 web-crawled
corpora revealed that the ratio of usable text was
below 50% in 87 of them, while 15 corpora con-
tained no usable text at all (Kreutzer et al., 2022).

1https://commoncrawl.org/about/

Due to the inherent quality issues in many web-
crawled corpora, an initial filtering step is often per-
formed to minimize the amount of low-quality text
(i.e., noise) they contain. This often involves dedu-
plication (i.e., the removal of duplicate text seg-
ments), applying rule-based filters (e.g., discarding
documents with a high proportion of non-alphabetic
characters), and using classifiers to identify and re-
move low-quality text. Several studies have demon-
strated that text filtering can significantly improve
the quality of pre-trained embeddings as well as the
downstream performance of pre-trained language
models (Wenzek et al., 2020; Brown et al., 2020;
Raffel et al., 2020; Muennighoff et al., 2023).

Although text filtering is standard practice when
relying on web-crawled text, there have been few
in-depth experiments that include a fine-grained
evaluation of the impact of individual filters. When
evaluations are performed, they are frequently lim-
ited to measuring the overall impact of the text filters,
which often comprise multiple heuristic rules, some-
times combined with text quality classifiers (e.g.,
the work by Raffel et al. (2020); Rae et al. (2022)),
as opposed to evaluating the impact of each indi-
vidual filter. Furthermore, detailed information on
training data and experimental settings for text qual-
ity classifiers is sometimes omitted (e.g., the work
by Wu et al. (2021)).

In this paper, we describe TQ-IS, a new, man-
ually annotated text quality dataset for Icelandic.
We describe three text quality classifiers, based
on previously described approaches, and evaluate
them on the TQ-IS dataset. We also use these
classifiers to filter Icelandic, Estonian and Basque

https://commoncrawl.org/about/
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web-crawled corpora and evaluate how the filter-
ing step impacts the downstream performance of
pre-trained language models for those languages.
Our evaluations show that all three classifiers are
well suited for the task of text quality classification.
Furthermore, we find that while supplementing a
high-quality corpus with filtered web-crawled text
can yield statistically significant improvements for
downstream performance on some tasks, the ben-
efit is often modest, even when the web-crawled
corpus is several times larger in size.

2. Related Work

As mentioned earlier, it has been conclusively
demonstrated that noisy text in pre-training corpora
can degrade the quality of pre-trained language
models. However, there is no clear definition of
what exactly constitutes noisy or low-quality text,
or how noisy a document must be in order to neg-
atively impact downstream performance. For ex-
ample, JavaScript code is often considered to be
undesirable and is specifically targeted with rule-
based filters for some corpora (Raffel et al., 2020).
On the other hand, Muennighoff et al. (2023) find
that augmenting a monolingual pre-training cor-
pus with Python code, thereby doubling the size of
the corpus, can lead to improved results on down-
stream tasks. Furthermore, noisy, web-crawled pre-
training corpora can sometimes outperform high-
quality, curated corpora of a similar size, as demon-
strated by Artetxe et al. (2022b). Even though web-
crawled corpora tend to be noisy, they may still
be more balanced and representative than curated
corpora with regard to downstream datasets. Ad-
ditionally, some level of noise in the training data
can have a regularizing effect during pre-training,
which may improve the quality of the model.

Various metrics have been used to estimate the
quality and readability of texts for tasks such as
automated essay scoring and evaluating the output
of generative language models (Attali and Burstein,
2006; Mathias and Bhattacharyya, 2018; Zhang
et al., 2020b). One common metric is perplexity,
which measures how well a probabilistic model can
predict a given text segment (the lower the per-
plexity, the higher the probability of the segment).
Perplexity has often been used in intrinsic evalua-
tion of language models, for example by calculating
the perplexity of a held-out portion of a pre-training
corpus (Devlin et al., 2019; Radford et al., 2019;
Zhang et al., 2020a).

Wenzek et al. (2020) propose classifying the
quality of web-crawled documents based on their
perplexity. They train a 5-gram model on a curated
corpus that has been processed with a subword
tokenizer and use this model to compute the per-
plexity of all documents within a web-crawled cor-

pus. Next, they divide the corpus into three parts by
perplexity, i.e., creating low, medium and high per-
plexity segments. For English and Polish, they train
word embeddings on each segment and compare
them on a selection of NLP tasks, finding that the
quality of the embeddings degrades as the perplex-
ity of the training data increases. The authors use
this method to filter monolingual web-crawled cor-
pora for English, Russian, Chinese and Urdu. For
each of these languages, they find that a language
model that has been pre-trained on a filtered web-
crawled corpus obtains better downstream results
than a language model pre-trained on a smaller, cu-
rated corpus. Their results suggest that this method
generalizes well across different languages. Muen-
nighoff et al. (2023) use the same approach to filter
two English-language corpora that were derived
from CC, and find that it improves downstream re-
sults by a statistically significant margin.

Wu et al. (2021) describe a pre-trained language
model which has been fine-tuned on a dataset
comprising articles that have been labeled as high-
quality, low-quality, or advertisements. The model
is then used to filter out low-quality documents and
advertisements from a large web-crawled corpus.
After manually reviewing a sample of documents
labeled as advertisements (which account for half
of the discarded documents), the authors report
that less than 2% are false positives.

Brown et al. (2020) describe a logistic regression
classifier with bag-of-word representations to distin-
guish between documents from curated corpora, on
the one hand, and noisy web-crawled corpora, on
the other. For each document in the web-crawled
corpus, the authors use the classifier to estimate
the probability that it originated from a curated cor-
pus. This approach builds on the assumption that
the lower the probability, the more likely it is that the
document contains low-quality text. The authors
select which documents to keep using a probability
distribution that favors documents with high proba-
bilities, but also includes some out-of-distribution
documents. However, the authors do not evaluate
the effectiveness of this classifier or its impact on
downstream performance.

3. Icelandic Text Quality Dataset

In this section, we describe TQ-IS, a new text
quality dataset for Icelandic, consisting of docu-
ments from a number of different web-crawled cor-
pora. We performed a fine-grained analysis of the
dataset, identifying and labeling low-quality text
spans within each document. We then assigned
each document an overall label of “low-quality” if
low-quality text spans account for more than a third
of the characters in the document, or “high-quality”
if they account for less than 10%. Our annotation
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guidelines are described in detail in Section 3.2. We
release the TQ-IS dataset with an open license.2

3.1. Source Corpora
The documents in TQ-IS were obtained by sam-
pling from the three corpora described in Sections
3.1.1–3.1.3, until a total of 1,000 documents of each
category had been annotated. We limit the length
of each document to 50 to 500 space-delimited
tokens.

3.1.1. The Icelandic Crawled Corpus

The Icelandic Crawled Corpus (ICC) (Daðason,
2021) was created by scraping documents from a
selection of Icelandic websites. The ICC consists of
approximately 930M tokens, mostly from online fo-
rum posts, sports and municipal news articles, and
adjudications from various governmental agencies.
The websites were scraped using ad-hoc crawlers,
specifically targeting items of interest while avoid-
ing or discarding boilerplate text, headers, footers,
metadata and other unrelated elements. Duplicate
documents were discarded from the corpus, but no
filtering was performed otherwise.

3.1.2. The Multilingual Colossal Clean
Crawled Corpus

The Multilingual Colossal Clean Crawled Corpus
(mC4), (Xue et al., 2021a), described in Xue et al.
(2021b), consists of documents that were extracted
from the entire CC dataset and classified with re-
gard to their primary language. In total, mC4 con-
tains subsets for 108 different languages, including
1.1B tokens for Icelandic. In an effort to remove
low-quality text and duplicate content, the authors
removed any duplicate occurrences of three line
spans and discarded lines that do not end with
punctuation marks.

3.1.3. The Icelandic Common Crawl Corpus

The Icelandic Common Crawl Corpus (IC3) (Snæb-
jarnarson, 2022), described in Snæbjarnarson
(2021), is derived from websites with an Icelandic
top-level domain (.is) within the CC dataset. A lan-
guage classifier was used to remove pages with a
primary language other than Icelandic. Similarly
to mC4, duplicate occurrences of three line spans
were discarded.

3.2. Annotation Guidelines
There is no precise definition of what constitutes
a high or low-quality document when it comes to
pre-training language models, beyond the impact

2https://github.com/jonfd/tq-is

(positive or negative) that it may have on the model
during training. It is impossible to know where ex-
actly the line between these two categories of doc-
uments lies. Therefore, when creating TQ-IS, we
chose to only include documents that we felt were
clear-cut examples of each category. We consid-
ered the ideal high-quality document to primarily
consist of running text in the form of sequences of
full, grammatically structured sentences that are
connected in a meaningful and coherent way. The
text should contain few errors, if any, and be prop-
erly capitalized and punctuated. Documents that
are disjointed, incoherent, error-prone, highly repet-
itive, or largely consist of foreign text, non-running
text or non-linguistic data were classified as low-
quality.

Specifically, we considered the following cate-
gories of text to be of low quality:

• Foreign text: Text where the primary lan-
guage is not Icelandic.

• Non-standard spelling: Icelandic text that
does not conform to modern standards of
spelling or grammar.

• Corrupted text: Icelandic text that contains
character encoding errors (e.g., “Reykjav??k”),
HTML character entities (e.g., “&quot;”), soft
hyphens and escaped characters (e.g., “\n”
and “\u266c”).

• Run-on text: Icelandic text that contains a
large number of run-on sentences or words.

• OCR text: Digitized Icelandic text that contains
a large number of errors and flaws caused by
the optical character recognition (OCR) pro-
cess (e.g., misrecognized characters or text
columns appearing out of order).

• Non-linguistic text: Text with no apparent
meaning (e.g., seemingly random sequences
of symbols and numbers).

• Incoherent text: An apparently meaningless
sequence of Icelandic words.

• Code: Text that consists primarily of code,
such as HTML or JavaScript.

• Non-content text: Icelandic text that doesn’t
contribute to the main subject of the document
(e.g., boilerplate text, headers, footers, meta-
data and navigational elements).

• Non-running text: Icelandic text that is rele-
vant to the main subject of the document, but
isn’t in the form of full, grammatically structured
sentences or breaks the flow of the document
(e.g., lists, bullet points, tabulated data and
image captions).
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• Fragmented text: Icelandic text that lacks flow
or continuity (e.g., a list of headlines from news
article or a sequence of short, truncated pre-
views from unrelated blog posts).

• Low-quality translations: Icelandic text that
has clearly been translated from another lan-
guage with subpar results.

• Repetitive text: Icelandic text that has oc-
curred elsewhere in the document (e.g., a
short excerpt directly from an article which ap-
pears before the article itself).

The above categories are specifically intended to
identify text that may degrade the quality of mono-
lingual pre-trained language models. However, we
intend for TQ-IS to be used for a variety of NLP
tasks that may have different definitions of what
constitutes low-quality text. Since we assigned fine-
grained labels to text spans, different categories
can be ignored depending on the task at hand.

We manually identified low-quality text spans in
each document and annotated them according to
the categories listed above. If at least a third of the
document consists of low-quality text, the document
itself was classified as being low-quality. However,
if 10% or less of a document consists of low-quality
spans, we instead labeled it as high-quality.

In general, we observe that documents in TQ-
IS either consist primarily of low-quality spans or
contain no low-quality spans at all. We find that in
80% of low-quality documents, low-quality spans
account for 90% or more of the text, whereas 93%
of high-quality documents contain no low-quality
spans whatsoever.

4. Classifiers

In this section, we describe three types of text clas-
sifiers that we use for classifying documents as
either low or high-quality.

4.1. Perplexity-Based Classifier
We implement a classifier that uses an n-gram
model to calculate the perplexity of a given doc-
ument, which is then labeled as high or low-quality
based on a predetermined threshold. Like Wenzek
et al. (2020), we train our n-gram models using the
KenLM library (Heafield, 2011). However, instead
of using a 5-gram model, we measure the effec-
tiveness of a variety of n-gram orders (2-grams,
3-grams and 4-grams). We also compare several
different vocabulary sizes (8k, 16k and 32k) for a
WordPiece tokenizer (Wu et al., 2016). In order to
determine the optimal n-gram order and vocabu-
lary size, we train one model for each combination
of these two settings on the Icelandic Gigaword

Corpus (IGC) (Steingrímsson et al., 2018). We
then create a stratified 10-fold split of the TQ-IS
dataset, ensuring that each split contains an equal
ratio of low and high-quality documents. With each
n-gram model, we calculate the perplexity of all
documents in the dataset. We then sort the values
and generate candidate thresholds from the values
between every two consecutive perplexity scores.
The threshold that yields the highest F1 score on
the training set is then evaluated on the test set.
We use the optimal threshold we find for the TQ-
IS dataset to guide our choice of threshold for the
other languages in our evaluation (see Section 5.1).

4.2. Supervised Classifier
Secondly, for Icelandic, we consider a document
classifier which is trained on the TQ-IS dataset. We
use a language model that has been pre-trained
on the IGC (see Section 5.2) and fine-tune it on
the dataset, similarly to Wu et al. (2021). Since our
experiments are performed using small language
models where the maximum sequence length is
limited, we classify each document using a sliding
window with a size of 128 tokens and a stride of 64.
Each window is labeled according to the ratio of low
quality text it contains, according to the annotated
text spans. If at least a third of the text in a given
window consists of low-quality text, that window
is labeled as low-quality, or high-quality otherwise.
In total, we extract 5,194 low-quality samples and
3,626 high-quality samples from the TQ-IS dataset.

The supervised classifier is evaluated using 10-
fold cross-validation and a hold-out test set, which
consists of 10% of the documents in the dataset.
In this stage, the model is trained and evaluated on
classifying relatively short text windows, rather than
full documents. In order to classify a document as
either low or high-quality, we first use the classifier
to calculate the ratio of high-quality windows it con-
tains. If the ratio is above a certain threshold, we
classify the document as high-quality, or low-quality
otherwise. In order to find this threshold, we first
select the model that obtained the highest F1 score
during cross-validation. We then use this model to
classify all windows within each document in the
validation set and calculate the ratio of high-quality
windows that each document contains. Next, we
find the threshold which optimizes the document-
level F1 score using the same approach as for the
perplexity-based classifier. Finally, we evaluate the
model using this threshold on the hold-out test set.

4.3. Self-Supervised Classifier
Finally, we consider the approach described by
Brown et al. (2020), where a classifier is trained
to discern between documents from a high-quality
curated corpus and a noisy web-crawled corpus.
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The major benefit of this method is that it does
not require a manually labeled dataset to train the
classifier, since the label for each document is sim-
ply derived from its source. Rather than using a
logistic regression classifier, we instead fine-tune
a language model that was pre-trained on a high-
quality corpus (see Section 5.1), similarly to the
supervised classifier. As the two classifiers share
the same model architecture, it will be easier to
compare the effectiveness of each approach.

To train the classifier, we sample 50,000 docu-
ments from a curated corpus and another 50,000
from a web-crawled corpus. We then create a hold-
out test set consisting of 10% of the sampled docu-
ments, equally split between the two corpora. Next,
we extract 100,000 windows from each corpus from
the remaining 90% of the documents, using the
same sliding window approach as for the super-
vised classifier. This gives us a total of 200,000
training samples.

Once fine-tuned, the classifier can be used to
estimate the probability that a given window origi-
nated from a web-crawled corpus. If this probability
is extremely high, the window is assumed to be
of low quality. In order to perform document-level
classification, we take the same general approach
as for the supervised classifier. For Icelandic, we
use 80% of the TQ-IS dataset to find the optimal
threshold value for classifying both windows and
documents. In both cases, we find the threshold
that optimizes the F1 score of the classifier. Finally,
we evaluate the classifier on the remaining 20% of
the dataset. For the other languages in our evalu-
ation, we use the same document-level threshold
as we obtained for TQ-IS, but adjust the window-
level threshold to match the ratio of tokens that are
discarded from the Icelandic web-crawled corpus.

5. Experimental Setup

In this section, we detail our choice of languages,
pre-training corpora, downstream tasks, datasets,
and training and evaluation settings.

5.1. Language Selection
We evaluate our classifiers on a selection of three
medium-resource languages: Icelandic, Estonian
and Basque. Due to the fact that National Lan-
guage Technology (LT) Programmes have been
established both for Icelandic (Nikulásdóttir et al.,
2020; Nikulásdóttir et al., 2022) and Estonian (Vider
et al., 2012), and the development of LT in Basque
Country has quite a long history (Alegria and Sara-
sola, 2017), we categorize these three languages
as medium-resource.

For all three languages, there exists an openly
available, high-quality curated corpus suitable for

Language HQ (tokens) LQ (tokens)
Icelandic 1.7B 1.1B
Estonian 505M 3.0B
Basque 288M 576M

Table 1: The number of space-delimited tokens in
the high and low-quality corpus for each language.

training language models. Additionally, they are
all represented in mC4, which has not been ex-
tensively filtered with regard to text quality. Us-
ing mC4 as the source for our web-crawled cor-
pora means that they will all be comparable with
regard to how the documents were collected and
processed. Finally, there are at least two openly
available and reasonably sized datasets that can
be used to evaluate pre-trained language models
for each language. For even lower resource lan-
guages than the ones we selected, we note that a
more practical approach may be to create ad-hoc
scrapers for websites and domains that contain a
significant amount of text in that language, since
their number is likely to be relatively small. This
would allow for high-quality text to be specifically tar-
geted and eliminate the need for extensive filtering.
We describe the corpora used for each language
in the following sections.

5.1.1. Icelandic

For high-quality text in Icelandic, we use the 2022
version of the IGC (Barkarson et al., 2022), de-
scribed in Steingrímsson et al. (2018). It contains
2.4B running words from genres such as news arti-
cles, parliamentary speeches, and adjudications.
The 2022 version of IGC includes a large number
of sentences that have been collected from Twit-
ter and online forums, which we discard, leaving
approximately 1.7B tokens of high-quality text. For
low-quality text, we extract documents from the
Icelandic subset of the mC4 corpus (described in
Section 3), consisting of 1.1B tokens.

5.1.2. Estonian

Our curated Estonian corpus is based on the 2021
version of the Estonian National Corpus (ENC)
(Koppel and Kallas, 2022a), described in Koppel
and Kallas (2022b). It consists of a total of 2.9B
tokens, largely composed of documents that have
been collected from the web, which we discard,
leaving 505M tokens. The remaining documents
are from a variety of genres, such as news articles,
fiction, and scientific literature. The low-quality cor-
pus consists of documents extracted from the Es-
tonian subset of the mC4 corpus, amounting to a
total of 3.0B tokens.
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5.1.3. Basque

For high-quality Basque text, we use the EusCrawl
corpus (Artetxe et al., 2022a), described in Artetxe
et al. (2022b). It contains 288 million tokens that
were collected from high-quality websites using ad-
hoc scrapers. EusCrawl consists primarily of news
articles. For the web-crawled corpus, we use the
Basque subset of the mC4 corpus, which consists
of approximately 576M tokens.

5.2. Pre-training
For each language, we pre-train a language model
on the high-quality corpus alone, the high-quality
corpus supplemented with the unfiltered web-
crawled corpus, and the the high-quality corpus
combined with the different filtered versions of the
web-crawled corpus. Each model is then evaluated
on a selection of downstream tasks.

For these experiments, we pre-train ELECTRA-
Small models, which consist of 14M parameters
and take approximately 8 hours to pre-train using a
TPU v3 accelerator (Clark et al., 2020). ELECTRA
models are pre-trained using the replaced token
detection (RTD) task, where tokens in a training
sample are randomly replaced and the model at-
tempts to determine which tokens are original and
which are not. It has been suggested that the RTD
task is highly data efficient, since it allows the model
to learn from each token in a training sample, rather
than a small portion as is often the case for other
tasks such as masked language modeling (Wu and
Dredze, 2020; Pyysalo et al., 2021).

5.3. Fine-Tuning and Downstream Tasks
We fine-tune and evaluate each pre-trained lan-
guage model on a selection of downstream tasks
in order to estimate the effectiveness of each clas-
sifier. Specifically, we evaluate each model on part-
of-speech (PoS) tagging, named entity recognition
(NER), and dependency parsing (DP). The follow-
ing sections detail the datasets that are used for
each language.

5.3.1. Icelandic

For PoS tagging, we fine-tune the models on
MIM-GOLD (Barkarson et al., 2021), which con-
sists of one million tokens that have been semi-
automatically labeled with PoS tags (Loftsson et al.,
2010). For NER, we use MIM-GOLD-NER (Ingólfs-
dóttir et al., 2022a), a version of MIM-GOLD that
has been manually annotated with named entities
(Ingólfsdóttir et al., 2020b). For DP, we fine-tune our
models on the Icelandic Parsed Historical Corpus
(IcePaHC) (Arnardóttir et al., 2023), which is a col-
lection of one million tokens from the 12th century

to modern times that have been manually anno-
tated with constituents (Rögnvaldsson et al., 2012).
Specifically, we use the Universal Dependencies
(UD) conversion of IcePaHC (Nivre et al., 2016).

5.3.2. Estonian

For PoS tagging and DP, we use the UD version of
the Estonian Dependency Treebank (EDT) (Muis-
chnek et al., 2023), which contains approximately
440 thousand tokens that have been annotated with
universal PoS tags and constituents (Muischnek
et al., 2016). For NER, we fine-tune our models on
the EstNER corpus (Sirts, 2023a), which contains
184,638 tokens that were manually annotated with
named entities (Sirts, 2023b).

5.3.3. Basque

For PoS tagging and DP, we fine-tune our models
on the UD version of the Basque Dependency Tree-
bank (BDT) (Aranzabe et al., 2023), which consists
of 121,443 tokens that were annotated with mor-
phosyntactic features and constituents (Aranzabe
et al., 2015). For NER, we use the EIEC corpus
(Alegria et al., 2004a), which contains 59,759 to-
kens which were semi-automatically labeled with
named entities (Alegria et al., 2004b).

5.3.4. Settings

When fine-tuning the language models, we gen-
erally follow the same settings as Daðason and
Loftsson (2022). For NER, we fine-tune models for
10 epochs with a learning rate of 5e-5 and a batch
size of 16 and report entity-level F1 sores. For PoS
tagging, we use the same learning rate and batch
size, but fine-tune the models for 20 epochs, and
report tagging accuracy. For both tasks, we fine-
tune models using the token classification training
scripts that are included with the Transformers li-
brary (Wolf et al., 2020). For NER and PoS datasets
that consist of fewer than 250,000 tokens (EstNER,
EIEC and BDT), we use a weight decay of 1e-2
to reduce overfitting. For PoS tagging on the EDT
dataset, we only train the model for 10 epochs,
since it is both fairly large and we are only predict-
ing the UPOS (word class) of each token.

For DP, we fine-tune models using DiaParser, a
biaffine dependency parser that can extract contex-
tual word embeddings from Transformer-based lan-
guage models (Attardi et al., 2021). We fine-tune
models for 200 epochs, otherwise using default
settings, and report the labeled attachment score
(LAS) for the model that obtained the best results
on the validation set.

For MIM-GOLD and MIM-GOLD-NER, we per-
form 10-fold cross-validation using the same splits
that were used by Daðason and Loftsson (2022).
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For IcePaHC, EDT and BDT, we use the standard
training, validation and test splits and report aver-
age results across five runs with different random
seeds. For EstNER, since it is not distributed with
any splits, we generate a 10-fold split and perform
cross-validation.

We fine-tune the supervised classifier for 5
epochs using a batch size of 32 and a learning
rate of 3e-4. We fine-tune the self-supervised clas-
sifier using the same settings, except that we find
that a slightly lower learning rate of 1e-4 yields
better results on the validation set. For both classi-
fiers, we using a warmup ratio of 0.1 and a weight
decay of 1e-2 to reduce overfitting. We perform
10-fold cross-validation, and for each fold, we use
the model that obtained the highest F1 score on
the validation set.

6. Results

In this section, we report the results of our exper-
iments. First, we evaluate each classifier on the
TQ-IS dataset. Next, we determine how filtering
noisy pre-training corpora for all three languages im-
pacts the downstream performance of pre-trained
language models.

6.1. Classifier Performance
We evaluate each of the three classifiers on TQ-IS.
An overview of the results can be seen in Table 2.

Classifier F1 score
Supervised classifier 99.01%
Perplexity-based classifier 94.48%
Self-supervised classifier 93.40%

Table 2: F1 test scores on the TQ-IS dataset for
the three classifiers.

6.1.1. Perplexity-Based Classifier

When evaluating the Icelandic n-gram models on
the TQ-IS dataset, as described in Section 4.1, we
find that the best results are obtained using a bi-
gram model with a vocabulary size of 32k. This
model outperforms all other models but one by
a statistically significant margin. The average F1

cross-validation score of each model is shown in
Table 3. Our results suggest that lower order mod-
els may be more suitable for text filtering, at least
for medium-resource languages, where available
corpora may not be large enough to sufficiently
train higher order n-gram models. Furthermore, we
find that a larger vocabulary size can improve the
capabilities of the model, especially for lower order
n-gram models.

Vocab. 2-gram 3-gram 4-gram
8k 93.18% 93.30% 92.85%

16k 93.62% 93.16% 92.44%
32k 94.48% 94.06% 92.90%

Table 3: These results show the average F1 score
for each n-gram model, obtained using 10-fold
cross validation on the TQ-IS dataset. For each fold,
we use the training set to find the optimal threshold
value and evaluate it on the validation set. Scores
in bold are statistically indistinguishable from the
best result (paired t-test; p < 0.05).

We obtain an average F1 test score of 94.48%
using a bigram model with a vocabulary size of 32k.
Proportionally, we find the greatest source of errors
to consist of low-quality documents that contain
non-running and fragmented text. This is likely due
to short context length of the n-gram model.

Based on these results, we also train bigram
models with a vocabulary size of 32k for Estonian
and Basque. For all three languages, we use these
models to calculate the perplexity of all documents
in the mC4 corpus. The distribution of perplexity
values for all three subsets of the mC4 corpus is
shown in Figure 1.
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Figure 1: The cumulative distribution of perplexity
values for documents in the Icelandic, Estonian
and Basque subsets of the mC4 corpus. Dotted
lines represent perplexity thresholds for document
classification.

We next find the optimal threshold value for the
Icelandic n-gram model using the TQ-IS dataset,
as described in Section 4.1. With this threshold
(399.99), classifying documents in the Icelandic
subset of the mC4 corpus results in a total of 499M
tokens being discarded, reducing the size of the
corpus from 1.1B to 625M tokens, which is approx-
imately a 45% reduction. Lacking a manually la-
beled text quality dataset for Estonian and Basque,
we choose threshold values which discard the same
ratio of tokens as for Icelandic. We find there is a
noticeable increase in the amount of documents
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which are clearly of low quality (e.g., containing
foreign text, character encoding errors and code)
around the chosen threshold.

6.1.2. Supervised Classifier

For the supervised classifier, we first pre-train an
ELECTRA-Small model on the IGC and then fine-
tune and evaluate it on the TQ-IS dataset using
stratified 10-fold cross-validation, reserving 10% of
the documents for a hold-out test set. We find that
the fine-tuned models obtain an average F1 score
of 96.80% on the validation set.

Next, we find the optimal threshold for classifying
document-level text quality based on the ratio of
windows within each document that were predicted
to be of high quality. We take the model that ob-
tained the highest F1 score during cross-validation
(97.77%) and use it to score all windows within
each document in the appropriate validation set.
Once we have established the ratio of high-quality
windows within each document in the validation
set, we search for the optimal threshold using the
same approach as before. We find that the thresh-
old that maximizes the document-level F1 score
is 66.67%, meaning that at least two thirds of the
windows within a document must be classified as
high-quality for the document itself to also be classi-
fied as high-quality (or low-quality, otherwise). This
is consistent with our annotation guidelines, accord-
ing to which a document is considered low-quality
if at least one third of its contents are of low quality.
Using this threshold, the classifier correctly labels
all documents in the validation set and obtains an
F1 score of 99.01% on documents in the test set.

6.1.3. Self-Supervised Classifier

For each language, we sample documents and
training examples from the curated and web-
crawled corpora as described in Section 4.3. For
Icelandic, we perform 10-fold cross-validation in
the same manner as for the supervised classifier,
obtaining an average F1 score of 90.26% when pre-
dicting the origin of the text windows. The quality
of each window is then determined based on the
score returned by the classifier. For Icelandic, we
use the TQ-IS dataset to find the optimal thresholds
for both window and document-level classification.
We use 80% of the documents in TQ-IS to deter-
mine both thresholds and evaluate them on the
remaining 20%.

We select the model which obtained the highest
F1 score during cross-validation (90.48%) and use
it to score every window in the TQ-IS dataset. We
find that the optimal threshold for classifying the
quality of the windows is quite low, as expected,
with a value of 0.00113, which results in a window-
level F1 score of 88.98%. This supports the theory

that when the classifier is extremely confident that
a text segment originates from a web-crawled cor-
pus, it most likely contains low-quality text. We find
that the optimal threshold for classifying documents
based on the ratio of high to low-quality windows is
50%, meaning that at least half of the windows have
to be classified as high-quality for the document to
be labeled as high-quality as well. This results in a
document-level F1 score of 94.34%. When we use
these thresholds to classify the remaining 20% of
documents in the TQ-IS corpus, we obtain an F1

score of 93.40%.
Unlike the perplexity-based classifier, the self-

supervised classifier proves more capable when
it comes to detecting documents with fragmented
text. However, it also struggles with non-running
text. This may be due to the fact that non-running
text is represented to some degree in IGC. Addi-
tionally, we find that it does not perform as well
as the perplexity-based classifier when it comes to
identifying documents that contain a large number
of OCR errors.

Filtering the Icelandic subset of the mC4 corpus
using these thresholds results in 47% of the tokens
being discarded, which is a similar ratio to the su-
pervised classifier. For Estonian and Basque, we
also use a threshold of 50% for document-level
classifications, but tune the window-level threshold
so that the same ratio of tokens are discarded as
for Icelandic.

6.2. Language Model Performance
Our evaluation shows that pre-trained language
models appear to be surprisingly resilient to noisy
text. Only four out of the nine datasets we evalu-
ate show a statistically significant decline in perfor-
mance when a high-quality corpus is supplemented
with an unfiltered web-crawled corpus. However,
if the web-crawled corpus is first filtered using the
perplexity-based classifier, we observe that we get
identical or improved results for eight of the nine
datasets. Our results also suggest that when sup-
plementing a curated corpus with web-crawled text,
the increase in size must be substantial in order to
see a meaningful improvement in downstream per-
formance. For Icelandic and Basque, where supple-
menting a curated corpus with mC4 increases the
size of the pre-training corpus by 36% and 123%,
respectively (using perplexity filtering), we only ob-
serve a statistically significant improvement in one
out of three tasks for both languages. However, for
Estonian, where the pre-training corpus is enlarged
by 548%, we find that two out of three tasks see
a statistically significant improvement. The overall
downstream performance of the language models
that were pre-trained on filtered and unfiltered cor-
pora can be seen in Table 4.

Overall, filtering low-quality documents with the
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PoS NER DP
Corpora IS ET EU IS ET EU IS ET EU
HQ 96.95 97.93 96.88 91.30 91.36 83.16 84.79 88.38 84.31
+ mC4 96.80 97.93 96.82 91.08 91.14 81.32 84.89 88.66 85.13
+ mC4-PPL 96.90 97.95 96.84 91.39 91.70 82.66 84.75 88.75 85.27
+ mC4-SC 96.86 - - 91.42 - - 84.79 - -
+ mC4-SSC 96.85 97.96 96.92 91.27 91.04 83.01 84.82 88.44 85.03

Table 4: Downstream performance of Icelandic (IS), Estonian (ET), and Basque (EU) language models pre-
trained on the curated corpus alone (HQ), and with different versions of the web-crawled corpus: unfiltered
(mC4), filtered with the perplexity (mC4-PPL), supervised (mc4-SC) and self-supervised classifiers (mC4-
SSC). Results in bold are statistically indistinguishable from the best score for each task (paired t-test;
p < 0.05). We note that models that obtain identical average results for the same task can still be
statistically distinguishable from one another depending on the variability of the results obtained during
cross-validation.

perplexity-based classifier appears to yield the
greatest improvement in downstream performance,
with the supervised classifier obtaining similar re-
sults for Icelandic. However, while our results show
that filtering web-crawled corpora can yield better
results on downstream tasks, a substantial increase
is unlikely unless the web-crawled corpus adds a
significant amount of text.

7. Conclusions

We have presented a new text quality dataset for
Icelandic, TQ-IS, which consists of 2,000 docu-
ments that have been manually annotated, both
with regard to overall document quality as well as by
identifying and labeling low-quality text segments
within each document. We evaluated three different
text quality classifiers on three medium-resource
languages. We evaluated all three classifiers on
the TQ-IS dataset and found them all to be well
suited for the task of text quality classification. We
further evaluated the classifiers by using them to
filter low-quality documents from web-crawled cor-
pora. To measure the effectiveness of the filtering,
we compared the downstream performance of lan-
guage models that were pre-trained on filtered and
unfiltered versions of the same corpora. Our ex-
periments showed that filtering results in similar or
improved performance on all downstream tasks.

Although we did not observe a substantial im-
provement in downstream performance, we note
that filtering the web-crawled corpora reduced their
size roughly by half. This could proportionally re-
duce computational costs and training time when
pre-training for a certain number of epochs. In
general, it is reasonable to assume that removing
unhelpful or harmful pre-training examples should
improve efficiency during pre-training, whether tar-
geting a specific number of epochs or steps. Thus,
even in cases where filtering might not significantly
improve downstream performance, the potential

benefits with regard to efficiency should likely make
it worthwhile to filter noisy pre-training corpora.

In this paper, we have evaluated the capabilities
of three text quality classifiers on three medium-
resource languages. The supervised classifier
proved to be the most effective of the three when
evaluated on TQ-IS. We have shown that a very
small language model with only 14M parameters
can be fine-tuned to detect a wide range of low-
quality text categories with near perfect accuracy
when trained on a small, manually labeled sample
from the corpus that is to be filtered. Our results
also agree with previous findings that show perplex-
ity to be a highly useful proxy measure of document
quality, as long as the language model has been
trained on a high-quality, representative corpus. Fi-
nally, we find self-supervised classifiers, trained
to discern whether documents originate from high
or low-quality corpus, to perform well on the task
of text quality classification, though not quite as
effective as the other two classifiers.

In the future, we intend to experiment with other
approaches to text quality filtering, such as com-
paring the effectiveness of text quality classifiers
to commonly used rule-based filters, training a se-
quence labeling classifier on the TQ-IS dataset and
evaluating zero-shot classifiers. We plan to include
web-crawled corpora for high-resource languages,
such as English, in these experiments. Further-
more, we will investigate how the size and diversity
of the corpora used to train text quality classifiers
affect their performance.
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8. Limitations

While our evaluation extends to several languages,
we do not consider how linguistic idiosyncrasies
might affect the downstream performance of the
models, for example in relation to the size or quality
of the pre-training corpus. Furthermore, for some
languages, such as Icelandic, the amount of web-
crawled text is quite limited compared to what is
already available in existing high-quality corpora,
especially after having been filtered. In such circum-
stances, there is unlikely to be significant benefit
from supplementing a high-quality corpus with web-
crawled text. Our experiments show how much
improvement can realistically be expected for the
languages included in our evaluation, but they do
not reveal how much larger the web-crawled corpus
has to be for downstream performance to improve
by a significant margin. We leave this as a potential
avenue for future work.
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