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Abstract
Evaluating Text Style Transfer (TST) is a complex task due to its multi-faceted nature. The quality of the generated
text is measured based on challenging factors, such as style transfer accuracy, content preservation, and overall
fluency. While human evaluation is considered to be the gold standard in TST assessment, it is costly and often
hard to reproduce. Therefore, automated metrics are prevalent in these domains. Nonetheless, it is uncertain
whether and to what extent these automated metrics correlate with human evaluations. Recent strides in Large
Language Models (LLMs) have showcased their capacity to match and even exceed average human performance
across diverse, unseen tasks. This suggests that LLMs could be a viable alternative to human evaluation and other
automated metrics in TST evaluation. We compare the results of different LLMs in TST evaluation using multiple
input prompts. Our findings highlight a strong correlation between (even zero-shot) prompting and human evaluation,
showing that LLMs often outperform traditional automated metrics. Furthermore, we introduce the concept of prompt
ensembling, demonstrating its ability to enhance the robustness of TST evaluation. This research contributes to the on-
going efforts for more robust and diverse evaluation methods by standardizing and validating TST evaluation with LLMs.
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1. Introduction

Text Style Transfer (TST) aims to change the style
of a text while retaining its content (Jin et al., 2022).
Examples of different TST tasks include sentiment
transfer (Shen et al., 2017), politeness transfer (Niu
and Bansal, 2018), and formality transfer (Rao and
Tetreault, 2018), to name just a few. TST is usually
evaluated in terms of multiple aspects, foremost
style transfer accuracy, content preservation, and
fluency of the text (Mir et al., 2019). Style trans-
fer accuracy assesses how closely the generated
style matches the target style, content preserva-
tion evaluates how well the original content has
been preserved, and fluency measures the over-
all naturalness of the text. However, separating
these aspects is a challenging task (Jafaritazehjani
et al., 2020), given the wide variety of text styles.
For example, a text’s sentiment can be considered
both a style aspect or an integral part of the con-
tent. Therefore, TST evaluation is a field of ongoing
research.

Human evaluation is widely regarded as the most
reliable evaluation method in many NLP tasks, in-
cluding natural language generation and TST (Bri-
akou et al., 2021b). However, human evaluation
does have limitations, especially when the evalu-
ators are not domain experts in the specific task
being evaluated (Clark et al., 2021). Additionally,
there are severe concerns regarding underspecifi-
cation, availability, reliability, lack of standardization,
and reproducibility of human evaluation (Howcroft
et al., 2020; Belz et al., 2021; Briakou et al., 2021b).
Lastly, human evaluation can be costly and time-
consuming. As a result, many studies rely on auto-
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Figure 1: Shown is our approach to TST evalua-
tion by replacing the multitude of (non-)validated
metrics by LLM evaluation for a standardized TST
evaluation. In our approach, an LLM measures
all three aspects of TST evaluation: style transfer
accuracy, content preservation, and fluency.

mated metrics as a substitute for human evaluation.
For many automated evaluation metrics, the de-

gree of correlation with human-assigned scores
has not been measured or shown to be low, rais-
ing questions about their validity (Novikova et al.,
2017; von Däniken et al., 2022). Several studies
have specifically focused on finding reliable met-
rics for automated TST evaluation (Mir et al., 2019;
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Pang and Gimpel, 2019; Briakou et al., 2021a;
Yamshchikov et al., 2021). Nevertheless, in many
cases the degree of correlation between automated
TST evaluation metrics and human evaluations re-
mains uncertain. Because of this, numerous pub-
lications use non-validated or inferior metrics (Os-
theimer et al., 2023). Furthermore, there is a lack
of standardization due to the plethora of methods
with unclear utility (Ostheimer et al., 2023).

We propose the use of Large Language Models
(LLMs) to evaluate TST. LLMs have demonstrated
remarkable few-shot and zero-shot performance in
various NLP tasks (Brown et al., 2020; Liu et al.,
2023) and have recently proven effective as NLP
task evaluators (Chiang and Lee, 2023). Our study
aims to explore the potential of LLMs in replacing
automated metrics across all three aspects of TST
evaluation (see Fig. 1), thereby standardizing the
evaluation practices. Our contributions can be out-
lined as follows:

1. We propose using LLMs as a standardized
and validated evaluation method for TST, cov-
ering all three essential aspects: style transfer
accuracy, content preservation, and fluency.

2. We experiment with multiple LLMs using zero-
shot prompting. The results indicate that,
across various settings, LLMs correlate better
with human evaluations than previous auto-
mated metrics of TST quality.

3. We demonstrate that the robustness of LLM
evaluation can be improved by ensembling
multiple prompts, mitigating the need for ex-
tensive prompt engineering.

2. Related Work

In this section, we first discuss existing work on
automated TST evaluation. This includes previous
standardization and validation efforts and existing
metrics. In the second part, we give an overview of
different LLMs. In the last part, we introduce related
work on using LLMs for unseen tasks, including
evaluation.

2.1. Standardization and Validation of
Automated TST Evaluation

Several previous studies aim to standardize and val-
idate the automated TST evaluation. Notably, Mir
et al. (2019) examine automated evaluation metrics
to assess style transfer accuracy, content preser-
vation, and fluency. Pang and Gimpel (2019) study
the correlation between automated metrics and hu-
man evaluations for all three aspects. Yamshchikov
et al. (2021) conduct a comprehensive large-scale
study to identify the most effective automated metric

specifically for content preservation. While we fo-
cus solely on TST in English, Briakou et al. (2021a)
investigate various automated metrics for all three
aspects in a multilingual setting, aiming to identify
those with the highest correlation to human evalua-
tions. So far, none of these efforts has resulted in
a standardized evaluation procedure for any TST
(sub-)task (Ostheimer et al., 2023). Due to this
lack of standardization, there exists a wide range
of automated metrics for each evaluation aspect.

2.1.1. Style Transfer Accuracy

The prevalent method for measuring style trans-
fer accuracy involves using a sentence-level style
classifier, as established in previous works (Mir
et al., 2019; Pang and Gimpel, 2019; Ostheimer
et al., 2023). Notably, automated metrics such as
TextCNN (Kim, 2014), fastText (Joulin et al., 2017),
and BERT (Devlin et al., 2019), fine-tuned for style
classification, have gained popularity for this pur-
pose (Ostheimer et al., 2023).

2.1.2. Content Preservation

When evaluating content preservation, it is custom-
ary to draw on count-based metrics used in the
machine translation domain, such as BLEU (Pa-
pineni et al., 2002) and METEOR (Banerjee and
Lavie, 2005). Additionally, embedding-based met-
rics, including the embedding average (Mir et al.,
2019), greedy matching (Rus and Lintean, 2012),
vector extrema (Forgues et al., 2014), and word
mover’s distance (WMD) (Kusner et al., 2015), are
commonly used.

2.1.3. Fluency

Fluency in TST is often evaluated by calculating the
perplexity of a pre-trained or fine-tuned language
model (Mir et al., 2019; Pang and Gimpel, 2019).
However, it is important to note that there exists a
wide variety of language model architectures and
training methods (Ostheimer et al., 2023).

In previous studies (Mir et al., 2019; Pang and
Gimpel, 2019), which explore the suitability of lan-
guage models for TST evaluation, the focus is pri-
marily on measuring fluency. Perplexity is used
as the metric for assessing fluency, yielding mixed
results. While Mir et al. (2019) report a limited cor-
relation, Pang and Gimpel (2019) find a high cor-
relation. In contrast, our approach involves using
language models to evaluate all three TST aspects.

2.2. Large Language Models
Large Language Models (LLMs) are characterized
by their large number of parameters, often reach-
ing billions. These models are typically pre-trained
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on vast datasets. Prominent examples of LLMs in-
clude GPT3 (Brown et al., 2020), OPT (Zhang et al.,
2022), BLOOM (Scao et al., 2022), and more re-
cently Falcon (Almazrouei et al., 2023) and Llama2
(Touvron et al., 2023). What sets LLMs apart is their
ability to generalize to unseen tasks, even without
fine-tuning, showcasing their zero- and few-shot
capabilities (Liu et al., 2023). Nevertheless, align-
ing these models with user intent through Super-
vised Fine-Tuning (SFT) and Reinforcement Learn-
ing from Human Feedback (RLHF) can significantly
enhance their performance (Ouyang et al., 2022).

The emergence of LLMs led to a new paradigm
known as prompting (Liu et al., 2023). Prompting
allows solving prediction tasks without the need for
fine-tuning or additional training. Solving an unseen
task involves modifying an input x using a template
to create a textual string x′, called a prompt, where
x′ contains an empty slot to be filled by the LLM.
Previous work (Liu et al., 2023) distinguishes be-
tween cloze prompts, where the empty slot can
be anywhere in the prompt, and prefix prompts,
where the slot to be filled is at the end. The LLM
is then used to fill in the prompt, resulting in an
answer x̂, which is then parsed to extract the de-
sired result. We use the terms prompt and prompt
template interchangeably since it is clear from the
context whether we refer to the actual template or
the template filled with the input x′.

There is a long history of combining multiple mod-
els into ensembles to improve the performance of
machine learning systems (Wolpert, 1992; Zhou
et al., 2002). For LLMs, multi-prompt learning com-
bines multiple prompts to make prompting more
effective. A notable approach within multi-prompt
learning is prompt ensembling, a technique where
answers from multiple prompts can be averaged.
Prompt ensembling leverages the benefits of using
multiple prompts while mitigating the challenges
of prompt engineering, ultimately leading to poten-
tially more robust downstream performance (Liu
et al., 2023).

2.3. LLM Evaluation
Chiang and Lee (2023) introduce the term “LLM
evaluation” to refer to the evaluation of NLP tasks
using LLMs. They specifically focus on evaluat-
ing open-ended text generation and adversarial
attacks across various evaluation aspects. Their
study reveals that LLMs can distinguish between
human-written and machine-generated text, and
they report varying correlations for different evalua-
tion aspects, ranging from weak to strong.

Furthermore, preliminary work conducted by Gi-
lardi et al. (2023) and Huang et al. (2023) suggests
that LLM evaluation outperforms human evaluation
in tasks such as text classification and explanation
of implicit hate speech, showcasing the superior

performance of LLMs in these domains. However,
so far, no one has studied the use of LLMs for eval-
uating TST.

3. Method

Standardizing TST Evaluation Our approach
is illustrated in Figure 1. We propose a standard-
ized methodology to replace the extensive array
of existing automated metrics. Unlike previous ap-
proaches that rely on a language model only for
fluency assessment, our method uses LLMs to eval-
uate all three aspects. For each aspect, we use
different prompts.

Prompting In Figure 2, we show one example
prompt per evaluation aspect (the complete list of
prompts can be found in Appendix F) . The prompt
templates are filled in with an input/output example.
The result is expected to be a score within a given
range parsed using a simple regular expression.
This means that any score returned by the model
that is outside the allowed range is ignored, and we
exclude the respective data point from the reported
results.

The prompts are designed as prefix prompts
such that the result (in our case, a numerical score)
can be easily parsed using regular expressions.
We experimented with 11 prompts per aspect with
different scales, including continuous scales from
zero to one and continuous and discrete scales
from one to five (similar to a Likert scale). The
prompts are zero-shot prompts that directly ask for
the evaluation of a particular aspect of TST evalua-
tion. Previous human evaluations and their ques-
tionnaire design inspire the design of the prompts
(Briakou et al., 2021b). We restrict the numerical
scores to be within the given score scale.

Prompt Ensembling To increase the robustness
against different prompt formulations of our ap-
proach, we use an ensemble of multiple prompts.
We normalize the scores and uniformly average
them across the prompts per aspect. This en-
semble approach mitigates the impact of individual
prompt variations and allows a more reliable as-
sessment.

4. Experimental Setup

4.1. TST Models
To evaluate the TST evaluation capabilities of LLMs,
we consider three well-known TST models for which
human evaluation results are publicly available.
Namely, we experiment with outputs of the Cross-
Aligned Autoencoder (CAAE) (Shen et al., 2017),
Adversarially Regularized Autoencoder (ARAE)
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Here is sentence S1: {Overall, it was horrible.} and sentence S2: {Overall, it was
great.}. How different is sentence S2 compared to S1 on a continuous scale from 1
(completely identical styles) to 5 (completely different styles)? Result =
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Here is S1: {Overall, it was horrible.} and sentence S2: {Overall, it was great.}.
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(completely different topic) to 1 (identical topic)? Result =
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How natural is this sentence S1 {Overall, it was great.} on a scale from 1 to 5
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Figure 2: Shown is our method for TST evaluation using LLMs. We present one prompt for one example
input and output and its parsed answer, a score limited by the given range. The shown prompts are the
ones exhibiting the highest correlation with human evaluations.

(Zhao et al., 2018), and delete-and-retrieve (DAR)
(Li et al., 2018). We evaluate the TST models’ out-
put with the LLMs and compute the correlations
with human evaluations to compare their perfor-
mance with existing automated metrics. We report
Spearman’s rank correlation coefficient, which is
suitable for evaluating natural language generation
(Callison-Burch et al., 2007; Novikova et al., 2018).
For each model, we evaluate the available human-
annotated sentences, comprising an equal number
of positive and negative examples, from the test set
(244), totaling 732 sentences provided by Mir et al.
(2019) for the Yelp dataset (Shen et al., 2017). The
maximum sentence length is 15, while the mean
length is 9.0.

4.2. LLMs

We experiment with six LLMs: OPT (Zhang et al.,
2022), BLOOM (Scao et al., 2022), GPT3 (Brown
et al., 2020), InstructGPT (Ouyang et al., 2022), Fal-
con (Almazrouei et al., 2023), and Llama2 (Touvron
et al., 2023). The LLMs can be grouped into two
groups. Pre-trained LLMs: OPT, BLOOM, GPT3,
Falcon, and Llama2 (pre-trained with the ordinary
autoregressive language modeling objective) and
the LLMs fine-tuned (with RLHF/SFT) to follow the
user intent: InstructGPT, Falcon, and Llama2 (Fal-
con and Llama2 were used in their pre-trained and
fine-tuned versions). As we observed limited re-
liability of the pre-trained LLMs in our zero-shot
setting with instruction-like prompts (refer to Ap-
pendix D for further information), we focus on the
LLMs fine-tuned to follow instructions.

In particular, we experiment with InstructGPT (in
the version text-davinci-003 with 175 billion param-
eters), accessed through the API provided by Ope-

nAI1, Falcon in the “instruct” version with 7b and
40b parameters, and Llama2 in the “chat” version
with 7b, 13b, and 70b parameters.

5. Correlations of LLM Evaluations
with Human Evaluations

This section first examines the effects of ensem-
bling, showcasing the increased reliability as the
ensembled prompts are afterward used to compare
LLM evaluation to existing automated metrics. We
measure the correlation between the evaluations
generated by LLMs and the corresponding human
evaluations for each aspect to determine how ef-
fective LLMs are for the task of TST evaluation.

5.1. Effect of Ensembling
This section shows how ensembling improves the
robustness of our zero-shot prompting approach
for TST evaluation. Figure 3 shows style transfer
accuracy on the left, content preservation in the
middle, and fluency on the right. The correlations
between the returned scores from each prompt and
the human evaluations are represented as bars. In
contrast, the correlation of the ensembled prompts
is depicted as a horizontal dashed line.

Style Transfer Accuracy InstructGPT has the
highest correlations for individual prompts. Instruct-
GPT’s and Falcon’s ensembled prompts’ correla-
tion surpasses that of the individual prompts. How-
ever, for Llama2, we observe greater variations in
the correlations for particular prompts. The diver-
gence between InstructGPT, Falcon, and Llama2
for prompt 2 can be attributed to slight variations in
sentence placeholders, where “S1” and “S2” were

1https://openai.com/api/

https://openai.com/api/
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Figure 3: Shown is the Spearman rank correlation of each prompt with human evaluations for InstructGPT
(IGPT with 175b parameters), Falcon (“instruct” with 40b parameters), and Llama2 (“chat” with 70b
parameters). The horizontal dashed lines indicate the correlation of the prompt ensemble. The ensemble
tends to have a higher correlation than individual prompts.

replaced with “A” and “B” respectively. Especially
Falcon returns only a few parsable answers for this
prompt. Prompt 9 explicitly asks for a rating on a
continuous scale, making it more challenging than
prompts asking for discrete ratings.

Content Preservation For all prompts, Instruct-
GPT shows the highest correlations. The ensem-
bled prompts of InstructGPT and Falcon correlate
more than the individual prompts. For Llama2, we
observe less variance in the correlations for the
individual prompts than for style transfer accuracy.
However, the ensembled correlation is still equal to
or better than most of the individual prompts. This
suggests that ensembling also makes the scores
more robust for content preservation. The slight
change in question-wording (from a quantitative
to a qualitative question) and the inversion of the
scale, which resulted in few parsable answers, may
explain the weaker performance of prompt 1.

Fluency InstructGPT has the highest correlations
for most prompts, closely followed by Llama2. In-
structGPT’s ensemble prompts perform as well as
or better than the individual prompts. The corre-
lation of the ensemble prompts exceeds most of
the correlations of the individual prompts of Llama2.
For Falcon, the ensembled prompts have the high-
est correlation. The low correlation of prompt 8
for InstructGPT can be attributed to the fact that
we do not refer to fluency or naturalness here but
only to coherence as a synonym. Prompt 6 men-
tions grammar instead of naturalness or fluency
and seems to be particularly challenging for Falcon.
Similarly, prompt 10 directly enters the sentence
to be evaluated without the task description as a
prefix.

5.2. Ensembled Prompts vs. Other
Automated Evaluations

Table 1 compares automated state-of-the-art TST
evaluation measures to our approach with LLM
evaluation. Table 1 shows style transfer accuracy
on top, content preservation in the middle, and
fluency on the bottom.

Style Transfer Accuracy We compare our ap-
proach to fastText (Joulin et al., 2017), TextCNN
(Kim, 2014), and a BERT-based (Devlin et al., 2019)
classifier fine-tuned for style classification. As can
be seen, InstructGPT (IGPT) has a higher correla-
tion with human evaluations for each TST model,
except CAAE, where it is slightly worse than fast-
Text (Joulin et al., 2017). However, when looking at
the combined model outputs, InstructGPT has the
highest correlation with human evaluations com-
pared to the other automated style transfer accu-
racy metrics. For Falcon and Llama2, the smaller
models with 7b or 13b parameters show relatively
low or statistically insignificant correlations. The
largest models with 40b and 70b parameters show
lower correlations than InstructGPT.

Content Preservation As count-based metrics,
we report the (Self-)BLEU score (Papineni et al.,
2002; Briakou et al., 2021a) between the input and
output and METEOR (Banerjee and Lavie, 2005).
Among the embedding-based metrics, we report
word embedding average (Sharma et al., 2017),
greedy matching (Rus and Lintean, 2012), vector
extrema (Forgues et al., 2014), and word mover’s
distance (WMD) (Kusner et al., 2015). InstructGPT
has slightly lower correlations with human evalua-
tions than WMD and METEOR for ARAE and DAR,
respectively. CAAE evaluations with METEOR are
very close to InstructGPT. However, when the re-
sults of all three TST models are combined, we
see a similar correlation for InstructGPT with the
best automated metric, METEOR. The smaller Fal-
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Style Transfer Accuracy
ARAE CAAE DAR All

fastText 0.498 0.550 0.332 0.473
TextCNN 0.512 0.525 0.331 0.458
BERT 0.513 0.559 0.408 0.497
IGPT 0.618 0.543 0.584 0.574
Fal-7b -0.027 -0.219 -0.118 -0.131
Fal-40b 0.206 0.389 0.313 0.307
Lla-7b 0.091 -0.128 -0.064 -0.039
Lla-13b 0.103 0.018 0.106 0.067
Lla-70b 0.347 0.075 0.077 0.178

Content Preservation
ARAE CAAE DAR All

BLEU 0.197 0.451 0.403 0.339
METEOR 0.247 0.659 0.425 0.420
EmbAvg 0.087 0.500 0.269 0.273
GrMatch 0.203 0.592 0.377 0.358
VecExtr 0.189 0.503 0.390 0.328
WMD 0.240 0.615 0.361 0.377
IGPT 0.191 0.656 0.345 0.404
Fal-7b -0.022 0.050 -0.016 0.012
Fal-40b 0.167 0.386 0.240 0.262
Lla-7b -0.035 0.052 0.120 0.061
Lla-13b -0.099 -0.064 0.157 0.040
Lla-70b 0.104 0.484 0.198 0.271

Fluency
ARAE CAAE DAR All

PPL PT 0.076 0.044 0.418 0.171
PPL FT 0.135 0.120 0.411 0.232
IGPT 0.518 0.560 0.603 0.571
Fal-7b -0.057 0.075 -0.081 -0.010
Fal-40b 0.436 0.452 0.491 0.476
Lla-7b 0.172 0.143 0.311 0.216
Lla-13b 0.184 0.200 0.459 0.290
Lla-70b 0.539 0.551 0.602 0.599

Table 1: Shown are the Spearman rank correlations
for style transfer accuracy (top), content preserva-
tion (middle), and fluency (bottom) between human
evaluations and the mentioned automated metrics,
including InstructGPT (IGPT), Falcon (Fal), and
Llama2 (Lla). All italic correlations have p>0.05.

con and Llama2 models with 7b or 13b parameters
show relatively low or statistically insignificant cor-
relations. In comparison, the largest models with
40b and 70b parameters show smaller correlations
than InstructGPT.

Fluency We compare our approach to a pre-
trained and a fine-tuned (on the Yelp dataset) GPT2
(Radford et al., 2019) measuring perplexity (PPL).
InstructGPT shows the highest correlations with
human evaluations for CAAE and DAR. At the
same time, Llama2 shows the highest correlation
for ARAE and for combining ARAE’s, CAAE’s, and

DAR’s output. For fluency, however, the largest
models, InstructGPT, Falcon with 40b parameters,
and Llama2 with 70b parameters show significantly
higher correlations than when measuring perplexity
with GPT2. Also, the smaller Llama2 models with
7b and 13b parameters correlate significantly with
human scores, and only the smallest Falcon model
with 7b parameters shows insignificant correlations.

6. LLM Responses Analysis

In this section, we summarize several qualitative
limitations of our approach.

6.1. Parsable Answers

STA CP F
IGPT 100.0% 100.0% 100.0%
Falcon-7b 100.0% 99.8% 99.9%
Falcon-40b 92.1% 90.5% 89.8%
Llama2-7b 75.6% 59.5% 98.1%
Llama2-13b 85.3% 80.8% 99.0%
Llama2-70b 69.1% 71.4% 98.9%

Table 2: Shown is the proportion of answers for the
three fine-tuned LLM evaluation models Instruct-
GPT (IGPT), Falcon, and Llama2 in different model
sizes where a score can be parsed for the aspects
of style transfer accuracy (STA), content preserva-
tion (CP), and fluency (F). InstructGPT is the most
reliable.

Since we use the LLMs with their respective de-
fault settings, some answers do not contain nu-
merical scores and are, therefore, not parsable. In
general, we do not tune or restrict the sampling
procedure for word generation, except for one ex-
periment (see below) where we restrict the output
vocabulary to decimals. To parse the LLM’s prompt
completion (in our case, a numerical score), we use
simple regular expressions to extract the first inte-
ger/float score following our input prompt. Table
2 summarizes our findings. For InstructGPT, al-
most all answers are parsable (except for a few,
which are not shown in the table due to rounding).
Unparsable answers are far more common for Fal-
con and Llama2. While the smaller Falcon model
with 7b parameters has almost the same propor-
tion of parsable answers as the InstructGPT model,
the larger Falcon model with 40b parameters re-
turns fewer parsable answers for specific prompts.
For each aspect, there are 1–2 prompts where
only a small fraction of the answers is parsable.
For Llama2 we do not have a clear picture as the
13b shows more parsable answers across most
prompts for all evaluation aspects compared to the
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smaller 7b model. However, the largest 70b model
has less parsable answers than the 13b model.

The text style transfer accuracy assessment is
more reliable than content preservation in terms of
the proportion of parsable responses for Instruct-
GPT, Falcon, and Llama2 (except for its 70b model).
At the same time, fluency is the most reliable (ex-
cept for Falcon 40b).

While InstructGPT shows considerably more
parsable answers than its only pre-trained coun-
terpart, GPT3, the same does not hold for Fal-
con and Llama2 (see Appendix D.2.1 for details).
While Falcon’s smaller fine-tuned 7b model has
more parsable answers than the only pre-trained
7b model for all three evaluation aspects, the larger
fine-tuned 40b model has more parsable answers
only for content preservation. For Llama2, the fine-
tuned models have less parsable answers than the
non-fine-tuned models for style transfer accuracy
and content preservation for all sizes, while for flu-
ency, the fine-tuned models have more parsable
answers. A possible explanation for this behavior
is the observed verbosity trying to explain its rating
instead of just outputting a score (see Table 3) of
the “chat” version of Llama2, not just compared to
the other fine-tuned models but also compared to
its “normal” version.

Example LLM Outputs Interestingly, the tested
LLMs have different answering styles. We present
examples of answers for InstructGPT, Falcon (7b
and 40b), and Llama2 (7b, 13b, and 70b) in Ta-
ble 3 to showcase their characteristics. As can
be seen, InstructGPT is usually concise, returning
only a score with some explanation. Falcon usually
returns a score followed by a more detailed descrip-
tion, while Llama2 is the most verbose, making it
difficult to parse the actual score, as the score may
appear at the end of the answer or be outside the
maximum sequence length.

Restricting the Output Vocabulary We also ex-
periment with restricting the output vocabulary to
decimals, which results in parsable answers only
for all models. However, our results show that
the returned scores of the vocabulary-restricted
samples correlate less with human scores (see Ap-
pendix A for details).

6.2. In-Range Scores
We only consider outputs from which we could
parse a numerical score to count in-range scores.
As seen from Table 4, InstructGPT is again the most
reliable, with most scores in the given range. Fal-
con has slightly fewer in-range scores, and Llama2
has the least in-range scores (except for fluency).
However, apart from content preservation scores

for Llama2 with 7b parameters, the scores are usu-
ally within the given range in more than 99% of
cases. We can also observe that the LLMs fine-
tuned to follow instructions have more or equal
in-range scores across all settings compared to
their pre-trained counterparts (except Falcon-7b
for content preservation, see Appendix D.2.2 for
details).

Potential normalization bounds become unclear
if scores fall outside the given range, and outliers
may bias the results. Therefore, we disregard any
outputs with scores outside the given range. Re-
moving examples that would otherwise have sub-
optimal scores may also lead to biased results. Re-
porting statistics such as inter-annotator agreement,
usually done for human evaluations, is difficult as
scores can be outside the given range or continu-
ous. However, it is also common practice for hu-
man annotations to remove invalid responses from
further analysis (e.g. Callison-Burch, 2009).

6.3. Reliability
We calculate the reliability using Cronbach’s alpha
for the InstructGPT evaluations, where we consider
each of the 11 prompts for each dimension as a sep-
arate rater. It results in alpha=0.99 for style transfer
accuracy, content preservation, and fluency.

7. Discussion

Our results show that the LLMs that are fine-tuned
to follow instructions are a viable tool for TST eval-
uation. In particular InstructGPT proves to be a
highly effective tool for TST evaluation across vari-
ous aspects and prompts. Ensembling the scores
generated by multiple prompts further enhances the
performance of InstructGPT. The LLM evaluations
conducted with InstructGPT exhibit a notable corre-
lation with human evaluations, outperforming exist-
ing automated metrics in most scenarios related to
style transfer accuracy and fluency while remaining
on par regarding content preservation. InstructGPT
consistently produces easily interpretable scores
within the given range.

The other two fine-tuned LLMs, Falcon and
Llama2, also show considerable correlations with
human evaluations for all three evaluation aspects
when using the largest 40b model for Falcon and
the 70b model for Llama2. However, they only sur-
pass existing automated metrics reliably for fluency
evaluation. For style transfer accuracy and content
preservation, Falcon and Llama2 come close to
some existing automated metrics but are outper-
formed by most. Falcon’s and Llama’s smaller 7b
and 13b parameter variants show low or negative
correlations with human evaluations. The correla-
tions are often not statistically significant, making
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Prompt Here is sentence S1: {honestly they were down right rude .} and sentence S2: {honestly
they were down right , friendly and fast !}. How different is sentence S2 compared to S1
on a scale from 1 (identical styles) to 5 (completely different styles)? Result =

IGPT [...]5 (completely different styles)
Falcon-7b [...]" 3 S1 is 4 (more similar styles) and S2 is 5 (completely different styles)"
Falcon-40b [...]" 3 The difference between sentence S1 and S2 is a score of 3 out of 5."
Llama2-7b [...]" To compare the styles of sentences S1 and S2, we need to analyze their grammatical

structures, word choices, and tone. Here’s a detailed analysis: 1. Grammar: Sentence
S1: * Subject: They were * Verb: were * Ad"

Llama2-
13b

[...]" Sure, I can help you with that! Sentence S1: {honestly they were down right rude .}
Sentence S2: honestly they were down right, friendly and fast ! The difference between
these two sentences is a 5"

Llama2-
70b

[...]" The two sentences have different styles, but they share some similarities. S1 has a
negative tone, using the word ""rude"" to describe someone’s behavior. The sentence
structure is also simple, with a single clause expressing a complete thought. S2, on the
other hand"

Table 3: Shown are example LLM evaluations for DAR output. We omit the repetition of the prefix prompt
for the answers and denote it by [...]. Line breaks are ignored to fit table.

STA CP F
IGPT 100.0% 100.0% 100.0%
Falcon-7b 100.0% 99.9% 99.7%
Falcon-40b 100.0% 100.0% 99.0%
Llama2-7b 99.6% 96.3% 99.8%
Llama2-13b 99.5% 99.4% 99.8%
Llama2-70b 99.6% 99.0% 99.8%

Table 4: Shown is the proportion of answers for the
three instruction fine-tuned LLM evaluation models
InstructGPT (IGPT), Falcon, and Llama2 in different
model sizes where the parsed score is within the
given range in the prompt for the aspects of style
transfer accuracy (STA), content preservation (CP),
and fluency (F). InstructGPT is the most reliable.

them non-reportable due to high p-values. The reli-
ability of Falcon and Llama2 in terms of parsable
and in-range scores is also lower than for Instruct-
GPT. Since Falcon is not fine-tuned with RLHF, we
partially attribute its lower performance to this fact.
However, one must also consider its smaller size
compared to InstructGPT and Llama2. The size
is also a factor to consider when comparing the
performance of InstructGPT and Llama2. We also
attribute the higher variance in Llama2’s correla-
tions for TST evaluation to its verbosity. To sum up,
Falcon and Llama2 are viable alternatives to auto-
mated measures for fluency evaluation and show
considerable potential for evaluating style transfer
accuracy and content preservation.

We have also experimented with the non-fine-
tuned (to follow instructions) versions of Instruct-
GPT (GPT3), Falcon, and Llama2. However, de-
spite generally higher reliability regarding the num-
ber of parsable answers, they all showed less corre-

lation with human evaluations than their fine-tuned
counter part, indicating that the returned scores
are less meaningful. Since both versions have the
same architecture, we attribute the superior per-
formance to the further alignment with instructions
achieved through fine-tuning.

Compared to existing automated metrics, LLM
evaluation has the benefit of potentially more ex-
plainable results, as already demonstrated by Chi-
ang and Lee (2023). The prompt can be adapted
to ask the LLM to add an explanation to the score.
However, as discussed in Section 6.1, these ex-
planations sometimes make the results difficult to
parse, and there is no guarantee that the explana-
tion matches the returned score. In addition, it is
potentially more reproducible than human evalua-
tion. A model can be precisely specified, including
its pre-trained weights, random seeds, hyperpa-
rameters, and deployed prompts. Therefore, the
explainability and reproducibility of TST evaluation
can be improved using LLMs.

8. Conclusion & Future Work

In this paper, we propose using LLM evaluation for
standardized TST evaluation. LLM evaluation can
replace current automated TST evaluation metrics
for all three evaluation aspects: style transfer accu-
racy, content preservation, and fluency. We demon-
strate its validity in terms of correlation with human
ratings. While InstructGPT (Ouyang et al., 2022)
has the highest correlations and is the most reliable,
recently released open-source models such as Fal-
con (Almazrouei et al., 2023) and Llama2 (Touvron
et al., 2023) offer viable alternatives despite their
smaller parameter count compared to InstructGPT.
Furthermore, ensembling improves the reliability



15810

of the LLM evaluation. This is part of the ongoing
efforts to understand the capabilities and potential
shortcomings of different LLMs.

In the future, we plan to apply our approach to
other TST tasks such as formality transfer (Rao
and Tetreault, 2018) or politeness transfer (Niu and
Bansal, 2018). Multilingual LLMs such as BLOOM
(fine-tuned to follow instructions) also seem promis-
ing for a standardized multilingual TST evaluation,
such as multilingual formality transfer (Briakou et al.,
2021a).

9. Limitations

Costs For our investigation, we had to limit the
costs. Therefore, we only considered one partic-
ular type of TST, namely sentiment transfer, and
the most popular TST dataset, namely Yelp and
the human evaluations by Mir et al. (2019). To the
best of our knowledge and previous studies (Bri-
akou et al., 2021b; Ostheimer et al., 2023), this is
the largest publicly accessible dataset of human
evaluations for the monolingual sentiment transfer
setting containing outputs from multiple TST mod-
els. Limiting the costs also influenced our choice
only to use zero-shot prompting. Few-shot prompt-
ing would have increased the costs of using GPT3
and InstructGPT using the OpenAI API directly.

Resource Usage On a broader note, high re-
source usage and cost are inherent LLM problems.
On the one hand, traditional automated evalua-
tion methods such as BLEU (Papineni et al., 2002)
for measuring content preservation can be com-
puted within seconds on commodity hardware for a
dataset like Yelp. However, more advanced meth-
ods that use embeddings, such as WMD (Kusner
et al., 2015), might involve more heavy compu-
tations for training the actual embeddings. Fur-
thermore, methods for measuring style transfer ac-
curacy involve training a style classifier such as
TextCNN (Kim, 2014), and measuring fluency of-
ten involves fine-tuning a language model such
as GPT2 (Radford et al., 2019). On the other
hand, prompting one of the largest and most re-
liable LLMs, such as Falcon or Llama2, results
in using multiple GPUs entirely for several hours.
LLMs accessible through an API like GPT3 and
InstructGPT result in a direct cost per submitted
token but can also return scores within seconds.
However, LLMs do not need any fine-tuning or fur-
ther training. One major cost driver can here also
be prompt engineering (Liu et al., 2023). To alle-
viate this issue, we show how prompt ensembling
removes the burden of prompt engineering to some
extent, and just averaging multiple prompts already
results in robust results.

Choosing an LLM As pointed out by Ostheimer
et al. (2023), a wide variety of language model ar-
chitectures and training methods exist to measure
fluency in the form of perplexity automatically. The
same challenge applies to our method. However,
as mentioned, we do not view our method as limited
to a particular setup. We demonstrate a standard-
ized approach for TST evaluation. However, one
has to keep in mind that choosing a particular LLM
also influences its evaluation capabilities in terms
of the maximum sequence length to be evaluated,
which is limited by the LLM’s context size. Future
work on comparing different LLMs is needed.

Robustness of Evaluation As pointed out by De-
riu et al. (2022), trained metrics for NLG evaluation
are susceptible to adversarial attacks. As LLMs are
deep neural networks that were shown to be prone
to adversarial attacks (Goodfellow et al., 2015),
they are also at risk for TST evaluation. Future
work might investigate how robustness-improving
methods (such as the one by Wang et al., 2021)
can improve LLM evaluation for TST.

10. Ethical Considerations

Clarification of the Goals In addition to the pre-
viously discussed limitations of LLM evaluation, a
significant ethical concern exists at the core of us-
ing LLM evaluation. The question may arise: Is the
final goal to replace human evaluation with LLM
evaluation? Some may find the idea unsettling, as-
suming this paper wants to replace humans with
LLMs. However, as conscientious and ethical NLP
researchers, we want to clarify that this is not our
intention. As pointed out throughout the paper, we
propose an alternative option to standardize au-
tomated evaluation to enhance the reproducibility
and transparency of NLP research.

Human Evaluations and Experiments The hu-
man evaluations that are used in this paper are pro-
vided by Mir et al. (2019). We refer to their descrip-
tion of human evaluations. Throughout our experi-
ments, we use models and datasets strictly within
their intended usage, ensuring compliance with eth-
ical protocols. Specifically, when using GPT3 and
InstructGPT, we adhere to the OpenAI usage policy.
By maintaining a commitment to ethical considera-
tions, we aim to uphold the integrity of our research
and contribute to the responsible development and
evaluation of AI systems.
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the ensembled IGPT, Falcon, and Llama2 prompts
in Table 4.

Content Preservation We present the LLM eval-
uation distribution for content preservation for the
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Table 5.

Fluency We present the LLM evaluation distribu-
tion for fluency for the ensembled IGPT, Falcon,
and Llama2 prompts in Table 6.
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Style Transfer Accuracy
Prompt Falcon

7b
Falcon
7b
Restr.

Falcon
40b

Falcon
40b
Restr.

Llama2
7b

Llama2
7b
Restr.

Llama2
13b

Llama2
13b
Restr.

Llama2
70b

Llama2
70b
Restr.

0 -0.059 0.007 0.164 0.058 0.041 -0.001 0.058 0.048 0.225 0.095
1 -0.030 -0.027 0.133 nan -0.100 nan 0.052 nan 0.028 nan
2 -0.077 -0.014 -0.127 nan 0.020 0.013 0.161 -0.030 0.512 0.031
3 -0.063 -0.016 0.192 -0.037 0.001 0.015 -0.037 0.019 0.331 0.158
4 -0.048 0.002 0.064 0.006 -0.021 0.025 0.019 0.090 0.165 0.275
5 -0.084 -0.059 0.059 -0.013 -0.026 -0.129 -0.254 0.056 0.322 0.166
6 -0.008 -0.008 0.183 0.030 -0.188 -0.040 0.213 0.174 0.418 0.173
7 -0.007 -0.006 -0.007 -0.045 0.018 0.020 -0.019 0.013 0.158 0.090
8 0.031 0.064 0.214 0.023 0.013 0.024 -0.007 0.062 0.029 0.089
9 -0.029 0.000 0.142 0.017 0.037 -0.035 -0.018 0.127 -0.153 0.092
10 -0.020 0.009 0.070 -0.006 0.028 0.003 0.026 0.084 0.366 0.142

Content Preservation
Prompt Falcon

7b
Falcon
7b
Restr.

Falcon
40b

Falcon
40b
Restr.

Llama2
7b

Llama2
7b
Restr.

Llama2
13b

Llama2
13b
Restr.

Llama2
70b

Llama2
70b
Restr.

0 -0.028 0.025 0.060 -0.082 -0.018 0.030 0.008 0.079 0.278 -0.001
1 -0.012 0.057 -0.058 -0.011 0.067 0.078 -0.049 -0.017 -0.029 0.059
2 0.075 0.041 0.179 0.028 -0.036 -0.055 0.051 -0.153 0.248 0.018
3 0.050 0.035 0.094 nan 0.111 0.008 0.148 0.009 0.331 -0.068
4 -0.101 -0.019 0.129 nan -0.115 -0.019 0.084 -0.086 0.191 -0.003
5 0.002 0.021 0.159 -0.071 0.039 -0.053 0.005 -0.104 0.091 -0.026
6 0.025 -0.036 0.074 0.057 -0.111 -0.030 0.093 -0.021 0.124 0.095
7 0.020 0.009 0.057 0.027 -0.001 0.024 -0.043 0.027 -0.001 0.044
8 0.010 -0.055 0.124 0.062 0.312 0.103 0.046 0.099 0.115 0.164
9 0.013 0.010 0.106 0.094 -0.022 0.078 0.064 0.055 0.270 0.065
10 -0.005 -0.065 0.202 nan -0.010 nan -0.015 nan 0.289 0.068

Fluency
Prompt Falcon

7b
Falcon
7b
Restr.

Falcon
40b

Falcon
40b
Restr.

Llama2
7b

Llama2
7b
Restr.

Llama2
13b

Llama2
13b
Restr.

Llama2
70b

Llama2
70b
Restr.

0 0.083 -0.004 0.293 0.385 0.313 0.245 -0.058 0.356 0.484 0.417
1 -0.040 0.027 0.266 0.054 0.117 -0.038 -0.100 -0.020 0.636 0.000
2 0.035 0.050 0.309 0.188 0.243 -0.017 0.248 0.182 0.557 0.333
3 0.009 0.051 0.134 nan 0.079 -0.006 0.151 0.037 0.382 nan
4 -0.023 0.030 0.223 nan 0.201 nan 0.137 -0.021 0.494 nan
5 -0.047 0.004 0.441 0.133 0.310 0.069 0.350 0.163 0.609 0.193
6 0.045 0.057 0.153 0.063 0.032 0.000 0.000 0.015 -0.018 0.023
7 -0.049 0.041 0.417 0.063 0.173 0.054 0.098 0.192 0.610 0.465
8 0.060 0.117 0.198 0.103 -0.046 0.113 0.227 0.032 0.507 0.275
9 0.038 0.033 0.393 0.215 0.100 0.103 0.115 0.154 0.587 0.283
10 -0.044 -0.001 0.098 0.060 0.193 0.055 0.127 -0.020 0.284 -0.083

Table 5: Shown are the Spearman rank correlations for style transfer accuracy (top), content preservation
(middle), and fluency (bottom) between human evaluations and the fine-tuned LLM’s evaluations for
individual prompts, comparing unrestricted sampling and sampling restricted to decimals. All italic
correlations have p>0.05.

and Llama2 we deploy the pre-trained models on
our own hardware using Alpa (Zheng et al., 2022).

To investigate the impact of different language
model sizes, we use the OPT (Zhang et al., 2022)

family of models, as well as Falcon (Almazrouei
et al., 2023) and Llama2 (Touvron et al., 2023).
The OPT models have demonstrated performance
comparable to GPT2 (Radford et al., 2019) and
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Figure 4: Shown is the distribution for LLM evaluations for InstructGPT (IGPT with 175b parameters),
Falcon (“instruct” with 40b parameters), and Llama2 (“chat” with 70b parameters) for the aspect of style
transfer accuracy. IGPT returns extreme evaluations, while Falcon and Llama2 are centered around 0.5.
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Figure 5: Shown is the distribution for LLM evaluations for InstructGPT (IGPT with 175b parameters),
Falcon (“instruct” with 40b parameters), and Llama2 (“chat” with 70b parameters) for the aspect of fluency.
IGPT returns almost uniformly distributed evaluations between 0.1 and 1.0. At the same time, Llama2 is
centered around 0.5, while Falcon is skewed towards 0.0.
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Figure 6: Shown is the Spearman rank correlation of each prompt with human evaluations for InstructGPT
(IGPT with 175b parameters), Falcon (“instruct” with 40b parameters), and Llama2 (“chat” with 70b
parameters). The horizontal dashed lines indicate the correlation of the prompt ensemble. The ensemble
tends to have a higher correlation than individual prompts.

GPT3 (Brown et al., 2020). Most OPT models are
freely available for use (except for the largest OPT-
175b, which requires a request for access). The
OPT models we use have sizes of 125m, 350m,
1.3b, 2.7b, 6.7b, 13b, 30b, 66b, and 175b param-
eters. We use the 7b and 40b models for Falcon
in the “normal” version. For Llama2, we run the
models with 7b, 13b, and 70b parameters in the
“normal” version.

D. Largest Pre-trained Models

This section presents the results for the largest
pre-trained LLMs deployed for TST evaluation.

D.1. Ensembled Prompts

The results are summarized in Table 6 (see also
Table 1 for other automated metrics).
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Style Transfer Accuracy
ARAE CAAE DAR All

OPT-175b -0.112 -0.052 0.007 -0.039
BLO-176b 0.311 -0.052 0.107 0.118
GPT-175b 0.126 -0.042 0.046 0.044
Fal-7b 0.049 -0.058 0.030 0.013
Fal-40b 0.058 0.016 0.186 0.094
Lla-7b 0.144 -0.026 -0.014 0.030
Lla-13b 0.271 0.109 0.215 0.191
Lla-70b 0.350 0.406 0.389 0.393

Content Preservation
ARAE CAAE DAR All

OPT-175b -0.013 -0.085 -0.080 -0.067
BLO-176b -0.019 -0.051 -0.050 -0.042
GPT-175b 0.028 0.008 0.090 0.042
Fal-7b -0.070 -0.026 -0.083 -0.036
Fal-40b 0.047 0.104 0.189 0.114
Lla-7b -0.009 0.000 -0.017 -0.011
Lla-13b 0.002 0.027 0.055 0.051
Lla-70b 0.083 0.464 0.025 0.212

Fluency
ARAE CAAE DAR All

OPT-175b -0.034 -0.102 0.005 -0.058
BLO-176b -0.127 -0.101 -0.044 -0.101
GPT-175b 0.030 0.053 -0.015 0.030
Fal-7b -0.019 0.079 -0.034 0.016
Fal-40b 0.218 0.170 0.194 0.200
Lla-7b 0.107 0.199 -0.011 0.093
Lla-13b 0.242 0.215 0.129 0.205
Lla-70b 0.436 0.540 0.479 0.521

Table 6: Shown are the Spearman rank correlations
for style transfer accuracy (top), content preserva-
tion (middle), and fluency (bottom) between human
evaluations and the mentioned automated metrics,
including OPT, BLOOM (BLO), GPT3 (GPT), Fal-
con (Fal), and Llama2 (Lla). All italic correlations
have p>0.05.

D.2. LLM Limitations and Failure Modes

D.2.1. Parsable Answers

Table 7 summarizes our findings in terms of
parsable answers of the pre-trained LLMs. Most
answers are parsable for OPT and BLOOM, where
85.8-93.2% of the answers of BLOOM and about
80.8-93.6% OPT’s answers are parsable. GPT3
has considerably higher rates of parsable answers.
However, Llama2 with 70b parameters exhibits the
highest number of answers that can be parsed de-
spite having fewer parameters. In general, Fal-
con and Llama models have a greater propor-
tion of parsable answers compared to OPT and
BLOOM. Specifically, these models yield at least
90% parsable answers across all three aspects of
evaluation.

We can observe that adding the phrase “Result
=” as a suffix of the prefix prompt increases the
number of parsable answers. Overall, we can see
that evaluating text style transfer accuracy is more
reliable for OPT, BLOOM, and Llama2 than content
preservation and fluency. GPT3 and Falcon have
the worst parsing rates for content preservation.

As shown, the largest investigated language
models return a numerical score at least 80% of
the time. To see the effect of model size, we in-
vestigate all available pre-trained model sizes of
OPT in Appendix E, demonstrating the increased
reliability of bigger models in parsable answers.

STA CP F
OPT 93.6% 88.3% 80.8%
BLOOM 93.2% 89.9% 85.8%
GPT3 96.3% 94.2% 96.8%
Falcon-7b 95.3% 91.2% 97.3%
Falcon-40b 95.9% 90.0% 96.5%
Llama2-7b 96.8% 94.0% 94.6%
Llama2-13b 96.9% 93.4% 95.8%
Llama2-70b 98.1% 95.5% 98.1%

Table 7: Shown is the proportion of answers for the
three largest pre-trained LLM evaluation models
OPT, BLOOM, GPT3, Falcon, and Llama2 where
the answer is parsable to return a score for the
aspects of style transfer accuracy (STA), content
preservation (CP), and fluency (F).

D.2.2. In-Range Scores

Table 8 summarizes the results of our study on pre-
trained LLMs. Llama2-70b has the highest number
of in-range scores, closely followed by Falcon-40b,
BLOOM, and GPT3. OPT has the least in-range
scores. Generally, larger models tend to have
more in-range scores. We investigate the impact
of LLM size on the number of in-range scores for
all available pre-trained OPT models in Appendix
A, demonstrating lower in-range scores for smaller
models.

E. Smaller Pre-trained Models

This section presents the results for smaller LLM
evaluations with different OPT sizes.

E.1. Correlations with Human
Evaluations

As highlighted in Section 5.1, ensembling enhances
the robustness of our LLM evaluation. Therefore,
we exclusively report ensembled correlations in this
section. We summarize our findings regarding the
correlations of smaller LLM evaluations with human
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STA CP F
OPT 94.8% 94.1% 93.4%
BLOOM 98.8% 98.7% 97.1%
GPT3 95.7% 97.4% 97.0%
Falcon-7b 88.8% 92.1% 99.0%
Falcon-40b 99.0% 96.4% 98.9%
Llama2-7b 96.2% 96.6% 98.4%
Llama2-13b 98.8% 98.8% 99.2%
Llama2-70b 99.1% 98.5% 99.2%

Table 8: Shown is the proportion of answers for the
largest pre-trained LLM evaluation models OPT,
BLOOM, GPT3, Falcon, and Llama2 where the
parsed score is within the given range in the prompt
for the aspects of style transfer accuracy (STA),
content preservation (CP), and fluency (F).

evaluations in Table 9 for style transfer accuracy
at the top, content preservation in the middle, and
fluency at the bottom.

As mentioned earlier in Section 5, even the
largest OPT model with 175 billion parameters ex-
hibits correlations close to zero or slightly negative,
with p-values > 0.05 indicating non-reportable cor-
relations for all three evaluation aspects and all
investigated TST models (including the combina-
tion of their outputs). These results also extend
to the smaller LLMs: we also observe correlations
close to zero or slightly negative, with p-values >
0.05 for most of the reported correlations on all
three evaluation aspects across all investigated
TST models.

E.2. Parsable Answers

We summarize our findings for parsable answers
of smaller LLMs in Figure 7. Overall, we observe
a clear trend: the larger the language model, the
more parsable the answers.

For evaluating style transfer accuracy, the frac-
tion of parsable answers increases from approxi-
mately 0.75 for the smallest 125m model to 0.95 for
the 2.7b model and remains at that level. Our anal-
ysis shows that bigger models are not necessarily
more reliable.

The evaluation of content preservation exhibits
a similar trend to style transfer accuracy, with the
fraction of parsable answers increasing from 0.8
for the smallest 125m model to around 0.88 for the
2.7b model and remaining stable at that level.

For fluency, the fraction of parsable answers is
highest across almost all model sizes (except for
the 1.3b model). The fraction of parsable answers
starts at around 0.65 for the smallest 125m model
and increases to approximately 0.75 for the largest
models, although the trend is not consistent for the
30b to 175b models.

Style Transfer Accuracy
ARAE CAAE DAR All

OPT125m -0.060 -0.049 0.100 0.004
OPT350m 0.076 0.121 0.008 0.074
OPT1.3b -0.009 0.085 0.047 0.064
OPT2.7b -0.038 0.061 -0.031 0.000
OPT6.7b 0.015 0.039 0.008 0.035
OPT13b 0.018 0.011 -0.097 -0.017
OPT30b 0.094 -0.093 -0.079 -0.029
OPT66b 0.051 -0.060 -0.037 -0.016
OPT175b -0.112 -0.052 0.007 -0.039

Content Preservation
ARAE CAAE DAR All

OPT125m -0.076 -0.091 -0.028 -0.056
OPT350m -0.092 -0.040 -0.036 -0.047
OPT1.3b 0.052 -0.010 -0.014 0.006
OPT2.7b 0.043 -0.002 -0.006 0.006
OPT6.7b -0.076 -0.077 -0.129 -0.091
OPT13b -0.012 -0.005 0.019 0.002
OPT30b -0.049 0.021 0.060 -0.022
OPT66b 0.000 -0.162 0.107 -0.026
OPT175b -0.013 -0.085 -0.080 -0.067

Fluency
ARAE CAAE DAR All

OPT125m -0.020 -0.029 -0.079 0.008
OPT350m 0.064 0.068 0.023 0.051
OPT1.3b -0.006 -0.054 -0.133 -0.078
OPT2.7b 0.029 0.031 -0.018 0.019
OPT6.7b -0.034 -0.077 -0.039 -0.069
OPT13b -0.067 -0.109 -0.055 -0.084
OPT30b -0.111 -0.165 -0.053 -0.141
OPT66b 0.176 0.061 0.114 0.112
OPT175b -0.034 -0.102 0.005 -0.058

Table 9: Shown are the Spearman rank correlations
for style transfer accuracy (top), content preserva-
tion (middle), and fluency (bottom) between human
evaluations and the LLM evaluations with differ-
ent model sizes of OPT. All italic correlations have
p>0.05.

E.3. In-Range Scores

We summarize our findings for in-range scores of
smaller LLMs in Figure 8. We observe a similar
trend for in-range scores as for parsable answers:
smaller LLMs are less reliable and return less in-
range scores than larger LLMs. However, the trend
exhibits more oscillation compared to parsable an-
swers.

In evaluating style transfer accuracy, the fraction
of in-range scores inreases from approximately 0.8
for the smallest 125m model to 0.95 for the largest
175b model. Intermediate model sizes exhibit os-
cillation around this upward trend.

Content preservation evaluation follows a similar
trend as style transfer accuracy, with the fraction of
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Figure 7: Shown is the fraction of parsable an-
swers for different model sizes of OPT. There is a
clear trend that larger models return more parsable
answers for all three evaluation aspects of style
transfer accuracy (STA), content preservation (CP),
and fluency (F).

in-range scores increasing from 0.8 for the smallest
125m model to around 0.95 for the largest 175b
model. The oscillation is more pronounced com-
pared to style transfer accuracy.

Fluency evaluation shows the most in-range
scores starting from the 350m model. The trend re-
mains consistent with the other evaluation aspects:
larger models are more reliable than smaller mod-
els. The oscillation is smaller, except for the 30b
model.
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Figure 8: Shown is the fraction of answers where
the parsed score is within the given range for differ-
ent model sizes of OPT. There is a clear trend that
larger models return more in-range scores for all
three evaluation aspects of style transfer accuracy
(STA), content preservation (CP), and fluency (F).

F. Prompts

We present all deployed prompts for style transfer
accuracy in Table 10, for content preservation in
Table 11, and for fluency in Table 12.
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Index Prompt
0 Here is sentence S1: {input} and sentence S2: {transferred}. How different is

sentence S2 compared to S1 on a scale from 1 (identical styles) to 5 (completely
different styles)? Result =

1 Here is sentence S1: {input} and sentence S2: {transferred}. How different is
sentence S2 compared to S1 on a continuous scale from 0 (identical styles) to 1
(completely different styles)? Result =

2 Please evaluate the style transfer intensity between sentence A {input} and sentence
B {transferred} on a scale of 1 to 5, where 1 represents an identical style and 5
represents a completely different style.

3 How different is sentence S1 = {input} compared to S2 = {transferred} on a scale
from 1 (identical styles) to 5 (completely different styles)? Result =

4 How different is the sentence S1 = {input} compared to S2 = {transferred} for style
[positivity] on a scale from 1 (identical styles) to 5 (completely different styles)? Result
=

5 The sentence S2 = {transferred} is a style transfer of sentence S1 = {input}, on
a scale from 1 (identical styles) to 5 (completely different styles) evaluate the style
transfer intensity between S1 and S2? Result =

6 Here is sentence S1: {input}, sentence S2: {transferred} and style S3 [sentiment].
How different are S1 and S2 for S3 style on a scale from 1 (identical styles) to 5
(completely different styles)? Result =

7 Here is sentence S1: {input}, sentence S2: {transferred} and style S3 [sentiment].
How different are S1 and S2 for S3 style on a discrete scale from 1 to 5 where [1 =
completely identical styles, 2 = identical styles, 3 = not identical nor different styles, 4
= different styles, 5 = completely different styles]? Result =

8 Here is sentence S1: {input} and sentence S2: {transferred}. How different is
sentence S2 compared to S1 on a discrete scale from 1 to 5 where [1 = completely
identical styles, 2 = identical styles, 3 = not identical nor different styles, 4 = different
styles, 5 = completely different styles]? Result =

9 Here is sentence S1: {input} and sentence S2: {transferred}. How different is
sentence S2 compared to S1 on a continuous scale from 1 (completely identical
styles) to 5 (completely different styles)? Result =

10 How different is the style of sentence S1 = {input} compared to S2 = {transferred}
on a scale from 1 (identical styles) to 5 (completely different styles)? Result =

Table 10: Shown are the prompts to measure style transfer accuracy.
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Index Prompt
0 Here is sentence S1: {input} and sentence S2: {transferred}. The sentences S1

and S2 have the opposite sentiment but how much does the content change on a
scale from 1 (completely different content) to 5 (identical content) on a continuous
scale? Result =

1 Here is sentence S1: {input} and sentence S2: {transferred}. The sentences S1
and S2 have the opposite sentiment but has the content changed on a scale from 1
(completely changed) to 5 (not changed)? Result =

2 Here is sentence S1: {input} and sentence S2: {transferred}. How different is the
topic of sentence S2 compared to S1 on a continuous scale from 1 (completely different
topic) to 5 (identical topic)? Result =

3 Please rate the content preservation between the following two sentences on a scale
from 1 to 5, ignoring any differences in style or formatting: Sentence 1: {input}
Sentence 2: {transferred} To determine the content preservation between these two
sentences, consider only the information conveyed by the sentences and ignore any
differences in style or formatting. Based on your evaluation, please provide a rating
on a scale from 1 to 5, with 1 being very low content preservation and 5 being very
high content preservation.

4 Please evaluate the content preservation between sentence A {input} and sentence
B {transferred} on a scale of 1 to 5, where 1 represents identical content and 5
represents completely different content.

5 How much is the content of sentence S2 {input} changed from S1 {transferred} on a
scale from 1 (completely different content) to 5 (identical content)? Result =

6 How much is the content of sentence S2 {input} changed from S1 {transferred}
neglecting the change in style on a scale from 1 (completely different content) to 5
(identical content)? Result =

7 Here is sentence S1: {input} and sentence S2: {transferred}. The sentences S1
and S2 have the opposite [sentiment], but has the content changed on a scale from 1
to 5 where 5 (Equivalent), 4 (Roughly equivalent), 3 (Not equivalent but share some
details), 2 (Not equivalent but on the same topic) and 1 (Completely dissimilar)? Result
=

8 Here is the input sentence S1: {input} and transferred sentence S2: {transferred}.
How much does S2 preserve the content of S2 on a scale from 1 to 3 where 3 (The
transferred sentence has the same meaning as the input sentence), 2 (The transferred
sentence preserves part of the content meaning of the input sentence), and 1 (The
transferred sentence and the input sentence are irrelevant to the content)? Result =

9 Here is the input sentence S1: {input} and transferred sentence S2: {transferred}.
How much does S2 preserve the content of S2 on a scale from 1 (completely changed)
to 5 (not changed)? Result =

10 Here is S1: {input} and sentence S2: {transferred}. How much does S2 preserve the
content of S2 on a continuous scale from 0 (completely different topic) to 1 (identical
topic)? Result =

Table 11: Shown are the prompts to measure content preservation.
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Index Prompt
0 Here is sentence S1: {input} How fluent is the sentence S1 on a continuous scale

from 1 (lowest fluency) to 5 (highest fluency)? Result =
1 Please evaluate the fluency, grammar, and naturalness of the following sentence

{input} on a scale of 1 to 5, where 1 represents poor fluency, grammar, and naturalness
and 5 represents excellent fluency, grammar, and naturalness.

2 How fluent is the sentence {input} on a continuous scale from 1 (lowest fluency) to 5
(highest fluency)? Result =

3 How fluent is the sentence {input} on a continuous scale from 0 (lowest fluency) to 1
(highest fluency)? Result =

4 How fluent is the sentence {input} on a scale from 0 to 1 where 0 equals (lowest
fluency) and 1 equals (highest fluency)? Result =

5 How fluent is the sentence {input} on a scale from 1 to 5 where 5 (perfect), 4 (com-
prehensible), 3 (somewhat comprehensible), 2 (incomprehensible), and 1 (incomplete
or just a fragment)? Result =

6 How are the grammars of the sentence {input} on a scale from 1 to 5 where 1 (lowest
grammar preserving) and 5 (highest grammar preserving)? Result =

7 On a scale from 1 to 5, rate the fluency and naturalness of sentence S1 {input} where
1 (lowest rate) and 5 (highest rate)? Result =

8 On a scale from 1 to 5, how coherent is {input} where 1 (lowest coherent) and 5
(highest coherent)? Result =

9 How natural is this sentence S1 {input} on a scale from 1 to 5 where 1 (lowest
coherent) and 5 (highest coherent)? Result =

10 S1 = {input} Rate the fluency of S1 on a scale from 1 (lowest fluency) to 5 (highest
fluency).

Table 12: Shown are the prompts to measure fluency.
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