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Abstract
Massively multilingual models can process text in several languages relying on a shared set of parameters; however,
little is known about the encoding of multilingual information in single network units. In this work, we study how two
semantic variables, namely valence and arousal, are processed in the latent dimensions of mBERT and XLM-R
across 13 languages. We report a significant cross-lingual overlap in the individual neurons processing affective
information, which is more pronounced when considering XLM-R vis-à-vis mBERT. Furthermore, we uncover a
positive relationship between cross-lingual alignment and performance, where the languages that rely more heavily
on a shared cross-lingual neural substrate achieve higher performance scores in semantic encoding.
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1. Introduction

Recently, NLP research has seen a rapid surge
of massively multilingual models (MMMs) such as
mBERT (Devlin et al., 2019), XLM (Lample and
Conneau, 2019), XLM-R (Conneau et al., 2020a),
XGLM (Lin et al., 2021), BLOOM (Scao et al., 2022),
and mGPT (Shliazhko et al., 2022). MMMs are
usually derived from monolingual models based on
the Transformer architecture (Vaswani et al., 2017),
trained with a (masked) language modelling ob-
jective on non-aligned multilingual text in several
languages (up to 104 in mBERT), without being
exposed to any cross-lingual signal during train-
ing. MMMs reach impressive performance levels in
zero-shot cross-lingual transfer, enabling the train-
ing of a model on supervised data in a source lan-
guage and its application to a different target lan-
guage, with no additional training. Crucially, cross-
lingual transfer has been documented across a
range of languages and tasks (Pires et al., 2019;
Wu and Dredze, 2019; Dufter and Schütze, 2020;
Liu et al., 2020; Lauscher et al., 2020; Winata et al.,
2022; see Doddapaneni et al., 2021 for a review),
even when source and target language share very
few (Karthikeyan et al., 2020) or no (Karthikeyan
et al., 2019; Conneau et al., 2020b) items in their
vocabulary.

From a practical perspective, MMMs show sev-
eral desirable properties: they require less resource
and maintenance with respect to multiple mono-
lingual models (Dufter and Schütze, 2020), and
provide reasonably good representations for low-
resource languages, for which it would be impossi-
ble to construct well-performing monolingual mod-
els due to data scarcity. From a theoretical perspec-
tive, MMMs open the way for a promising research
question: Is it possible to develop an interlingua
from text data alone, where both syntactic and se-

mantic representations are encoded in a shared
format across languages?

2. Related work

A rather limited body of findings is contributing
to the question of whether MMMs develop cross-
lingual internal representations, showing that repre-
sentational similarity between matching sentences
in different languages increases in the intermedi-
ate layers of the networks (Del and Fishel, 2021;
Muller et al., 2021, but see Singh et al., 2019). Sim-
ilar conclusions have been reached with different
approaches, such as employing the network’s in-
termediate subspaces to perform machine trans-
lation (Pires et al., 2019; Libovický et al., 2020),
word alignment (Libovický et al., 2020), or to recon-
struct cross-lingual syntactic trees (Chi et al., 2020).
These studies, however, considered layer-wise rep-
resentations as a whole, overlooking the role played
by the individual neural units in the embeddings.
There have been, however, other research efforts
with a greater degree of granularity, which analyzed
the cross-lingual consistency in the individual units
processing linguistic properties in MMMs. In a fine-
grained neuron-level study, Antverg and Belinkov
(2021) reported that mBERT and XLM-R encode
morphosyntactic features such as number, tense,
and gender in an overlapping set of dimensions
across languages (see also Stanczak et al., 2022).
Similar results were obtained in a strictly syntactic
probing setting, showing that the processes under-
pinning number agreement computations across
languages could be ascribed to an overlapping set
of latent dimensions in the structural embeddings
of the models (de Varda and Marelli, 2023).

While most of the experiments centered at
the layer-wise representational level considered
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sentence representations as a whole, conflating
semantic and syntactic properties (Singh et al.,
2019; Del and Fishel, 2021), the more fine-grained
neuron-level studies focused on morphological and
syntactic features (Antverg and Belinkov, 2021;
Stanczak et al., 2022). Thus, to our knowledge,
no study has studied whether MMMs respond to
purely semantic features in the same neural units
across languages. This leaves the broad question
of this study – i.e., whether MMMs develop an inter-
lingua from text data alone – partially unanswered.

3. Aims

In this paper, we investigate the processes that sup-
port the generation of lexical meaning representa-
tions in mBERT and XLM-R across 13 languages.
Instead of considering lexical representations as a
whole, we increase the experimental control over
our analyses by focusing on two specific lexical
semantic features related to the emotional content
of a word. The emotional connotation of a word
plays a fundamental role in its processing, influenc-
ing recognition times (Kousta et al., 2009; Larsen
et al., 2006), neurophysiological responses (Kissler
et al., 2007; Kuchinke et al., 2005; Citron, 2012),
and bodily responses such as facial muscular ac-
tivity and heartbeat (Vergallito et al., 2019). The
paramount importance of affective information in
language processing is well motivated from an evo-
lutionary perspective, given that emotion process-
ing relies upon a phylogenetically ancient system
aimed at survival (see for instance Van Berkum,
2010). Given the broad recognition of the foun-
dational role played by emotion-related informa-
tion in language, we considered affective content
as a natural candidate feature that should be en-
coded in a consistent way in the MMMs parameters.
The emotional content of a word (Kuperman et al.,
2014) and emotions in general (Russell, 2003; Rus-
sell and Barrett, 1999) are typically operationalized
along two axes, namely valence and arousal1. The
former dimension reflects the degree to which a
word is pleasant (e.g. friendship) or unpleasant
(nausea), whereas the latter indicates the extent
to which it is calming (slumber) or exciting (fight)2.
In this study, we tested whether semantic knowl-
edge about the affective properties of a word spon-

1A third semantic dimension, dominance, is some-
times considered when operationalizing emotional con-
tent. However, we did not include it in our analyses due
to data scarcity, since many of the affective norms we
employed in our study did not include it.

2These two dimensions are theoretically orthogonal
(Carver and Scheier, 1990; Feldman Barrett and Russell,
1998), although different accounts of their empirical rela-
tionship have been proposed (see Kuppens et al., 2013,
for an overview).

taneously emerged in the networks we consider.
We approached the analysis with an atomistic per-
spective, aimed at identifying sub-layer clusters of
neurons that are associated with the two affective
variables we study. With respect to this first objec-
tive, Radford et al. (2017) have provided evidence
that a single neuron in a multiplicative LSTM-based
language model spontaneously learned to respond
to sentiment and affective content, exemplifying a
case of symbol emergence. The authors took this
result as an indication that sentiment might serve as
a high-level conditioning feature with strong predic-
tive capability for language modelling. This obser-
vation, in conjunction with the psychological and
neuroscientific evidence presented above, hints
at the possibility that affective dimensions might
be suitable candidate features to be considered in
the search for an interlingua in MMMs. This ratio-
nale motivated the second objective of our study,
namely the assessment of the cross-lingual con-
gruence in the processing of affective information
in MMMs. If single units encode emotional informa-
tion in multilingual transformer models as they do in
monolingual mLSTMs, are the units involved in this
process coherent across languages? In this paper,
we tested whether the encoding of these lexical
properties taxed the same components within the
networks’ layers.

4. Methods and materials

In this study, we trained different probes on the
mBERT (Devlin et al., 2019) and XLM-R (Conneau
et al., 2020a) representations to predict a lexical
affective variable (valence and arousal) from the
internal activation of the models across a sample
of 13 languages. We then employed the learned
weights of the probes to evaluate the relevance of
the networks’ individual units in encoding the af-
fective variable, and ultimately assessed the cross-
lingual consistency of such encoding.

The code is publicly available on GitHub3.

4.1. Data
We considered all the human-annotated affective
norms available at the time of writing, except for
the Finnish norms released by Eilola and Havelka
(2010), which only include ratings for 210 items.
Our language sample is summarized in Table 1; it
includes 13 languages, covering 4 language fam-
ilies and 3 scripts (Latin in all cases but Greek
and Chinese). For each word in our datasets, we
scraped the Wikipedia data of the corresponding
language to search for 15 sentences that contained
that word. We chose not to present the models with

3https://github.com/Andrea-de-Varda/
affective-interlingua

https://github.com/Andrea-de-Varda/affective-interlingua
https://github.com/Andrea-de-Varda/affective-interlingua
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Figure 1: Graphical summary of the experimental pipeline. First, we extract the network activation in
response to a contextualized target word (1a). Then, we train a linear probe to predict the value of the
affective variable (either valence or arousal) from the network activation (1b). We employ the absolute
weights of the probe to sort the network units according to their relevance in detecting valence and arousal,
and truncate the ranks at the 100th position (1c). Lastly, we assess the cross-lingual overlap in the neural
units encoding affective information (1d).

Authors Language Family Items Raters
Montefinese et al. (2013) Italian ine 1,121 684
Warriner et al. (2013) English ine 13,915 1,827
Moors et al. (2013) Dutch ine 4,300 224
Redondo et al. (2007) Spanish ine 1,034 720
Imbir (2016) Polish ine 4,900 400
Ćoso et al. (2019) Croatian ine 3,022 933
Monnier and Syssau (2014) French ine 1,031 469
Palogiannidi et al. (2016) Greek ine 1,034 105
Schmidtke et al. (2014) German ine 1,003 65
Soares et al. (2011) Portuguese ine 1,034 958
Kapucu et al. (2021) Turkish trk 2,031 1,527
Yao et al. (2017) Chinese sit 1,100 960
Sianipar et al. (2016) Indonesian map 1,402 1,490

Table 1: Affective norms. The language family is
indicated with the respective ISO 639-5 code (ine:
Indoeuropean; trk: Turkic; sit: Sino-Tibetan; map:
Austronesian).

single words without context since single words
are an unnatural input to the pre-trained encoders,
which rarely encountered them in isolation (Bom-
masani et al., 2020). In order to license meaningful
comparisons across languages, all the data were
downsampled to match the smallest dataset avail-
able, i.e., the Greek norms, for which we were able

to find 15 sentences from Wikipedia data only for
520 words (7,800 sentences). Since the psycholin-
guistic norms were evaluated on different Likert
scales, we min-max normalized them before train-
ing the probes.

4.2. Models
We carried out our analyses employing the original
releases of mBERT and XLM-R. The networks were
employed as out-of-the-box masked language mod-
els and did not undergo any fine-tuning or adapta-
tion process. In particular, we relied on mBERTBASE
(cased) and on XLM-RBASE. The two models have
a similar configuration (L = 12, H = 768, A = 12),
but while mBERT is jointly trained with a masked
language modeling (MLM) and a next sentence pre-
diction (NSP) objective, XLM-R is optimized only
for MLM on more training data. We did not mask
any words throughout this work.

4.3. Methods
Our procedure is divided into four steps (see Figure
1), described in the following subsections.
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4.3.1. Extracting activations

As a first step, we extracted the internal activation
of the networks in response to the contextualized
presentation of each word in our dataset (Figure
1a). In the case of multi-token words, we aver-
aged the network activation for the various tokens,
following Dalvi et al. (2019a). We standardized unit-
wise the activation matrix, so that the activations of
each neuron across sentences had x = 0 and s = 1.
Standardization was performed to favor the inter-
pretability of the probe, so that the learned weights
were not affected by the activation variance.

4.3.2. Training the probe

In a subsequent step, we trained language-specific
linear probes to predict arousal and valence values
from the internal activation of the networks in re-
sponse to the target token (Figure 1b). The probes
were trained independently in each language, and
there was no inherent bias towards learning cross-
lingual patterns. Probing studies tend to consider
categorical labels as outputs, and thus are gener-
ally based on probing classifiers (see for instance
Belinkov et al., 2017; Dalvi et al., 2019a; Pires et al.,
2019). However, since the affective variables we
consider in this article are continuous in nature, we
adopted a linear regression approach. The probes
were trained with mean squared error loss and elas-
tic net regularisation as additional loss term (Zou
and Hastie, 2005), with λ1 = λ2 = 0.001. The
probes were thus trained to minimize the following
loss function:

Lθ =
1

m

m∑
i=1

(y − ŷ)2 + λ1

n∑
j=1

|wj |+ λ2

n∑
j=1

w2
j (1)

Where m is the number of observations and n
the number of weights in θ. The terms λ1

∑n
j=1 |wj |

and λ2

∑n
j=1 w

2
j correspond to L1 and L2 regular-

ization, respectively. Their combination in elastic-
net regularization balances the tendencies to iden-
tify few localized features (L1 in Lasso regression)
versus distributed neurons (L2 in Ridge regression;
Durrani et al., 2020). The probes were trained and
tested on two subsets of the original data (80%
train, N = 6,240; 20% test, N = 1,560). The training
was performed with the NeuroX toolkit (Dalvi et al.,
2019b), a Python package to perform interpreta-
tion and analysis of deep neural networks. In this
step, we also identified the layers that displayed
the strongest response to the affective variables
we considered to restrict the following analyses to
a relevant population of neural units4.

4Note that if we had not restricted our analyses to a
pre-specified layer, our estimates of cross-lingual overlap
might have been overestimated, since similar processes

4.3.3. Ranking neurons

The learned weights of the probe associated with
the relevant layer were then employed to rank the
neurons with respect to the task as a measure of the
relevance of the corresponding units with respect to
the linguistic property being investigated (namely,
the semantic notions of valence and arousal). More
precisely, neurons were ranked according to their
absolute weight. The 100 units5 with the highest
absolute weight were independently selected for
each language and affective variable (Figure 1c).

4.3.4. Testing intersections

Once the neuron ranking was obtained, we em-
pirically assessed the cross-lingual overlap of the
sets of neurons responding to valence and arousal
across languages in the pre-specified layer (Fig-
ure 1d). The Fold Enrichment (FE, i.e., the ratio
between observed and expected overlap) and the
statistical significance of the resulting intersections
were calculated with the super exact test (Wang
et al., 2015), a procedure for computing the distri-
butions of multi-set intersections6. We considered
the cross-lingual unit-level converge of information
as quantified by the super-exact test as our opera-
tional definition of the theoretical construct of the
interlingua.

5. Results

We hereby report the results obtained by the linear
probes in each of the 13 languages considered in
this study. As can be seen in Figure 2, the per-
formance of the probes tends to be higher with
XLM-R (Figures 2c, 2d) than with mBERT (Figures
2a, 2b), and when considering valence (Figures

with similar degrees of abstraction are likely to be pro-
cessed in certain layers of the networks (e.g. semantic
features in deeper layers, see Jawahar et al., 2019).

5We considered 100 units as Antverg and Belinkov
(2021) and de Varda and Marelli (2023).

6The super exact test computes the probability of ob-
taining a number of elements that overlap between two or
more sets (i.e. intersection size) that is equal to or higher
than the one observed. This probability (one-tailed) in
binary intersections can be calculated by integrating over
a hypergeometric function from the observed value to
the maximum possible overlap size. The super exact
test extends this analysis to multi-set intersections; how-
ever, since an analogous calculation of the probabilities
of multi-set intersections would involve integrations over
all possible hierarchical intersections across all the sets
(thus with exponential growth of the operations), the su-
per exact test optimizes the procedure through a forward
algorithm which produces the same results with oper-
ation complexity O(m2), where m is the smallest set
size.
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(a) mBERT, valence (b) mBERT, arousal

(c) XLM-R, valence (d) XLM-R, arousal

Figure 2: Whole-network-based probe perfor-
mances divided by model, affective variable, and
language.

2a, 2c) compared to arousal (Figures 2b, 2d). Non-
Indoeuropean languages – in particular Chinese
and Turkish – and languages written in non-Latin
script – Greek and Chinese – tend to be associated
with lower performance levels.

The results of our layer-wise probes are summa-
rized in Figure 3. The peak performance, measured
as the Pearson correlation between probe predic-
tions and target affective ratings, is reached across
model types in the intermediate layers of the net-
works. More precisely, the highest performance
scores are obtained in layer 7 by mBERT both in
the case of valence and arousal and in the layers
[[5, 6]] by XLM-R for valence and arousal, respec-
tively. We also note that a second local maximum
seems to be obtained in the deepest layers, and in
particular in layer 11, across model types. Regard-
ing model and measure differences, the layer-wise
trends reveal higher performance scores for XLM-R
with respect to mBERT and when employing va-
lence as the dependent variable as opposed to
arousal.

In light of the layer-wise patterns identified above,
we restricted our multi-set intersection analyses to
layer 7 for mBERT and layers [[5, 6]] for XLM-R. The
pairwise intersection patterns document a general
overrepresentation of units in the set intersections
relative to what would be expected by chance7. In
the case of mBERT, out of C(13, 2) = 78 combi-
nations, 62 have more units than what would be
expected assuming independence (79.49%), both
when considering arousal and valence. This over-
representation is significant with p < .05 in 13 cases

7Note that the expected intersection size (i.e. FE = 1)
under the assumption of independence is 13.02.

when considering valence (16.67%) and 16 when
considering arousal (20.51%). Overall, affective in-
formation displays a greater degree of cross-lingual
convergence when considering XLM-R. The over-
lap in valence-responding units has FE > 1 in 77
combinations (98.71%), and the overlap in arousal-
sensitive neurons has FE > 1 in all 78 pairs; in the
case of valence, the results are significant with p
< .05 in 66 cases (84.62%), while in the case of
valence the number raises up to 74 (94.87%).

While we cannot comment exhaustively all the
N2 . . . 13-way intersections, we report the highest
degree intersections obtained for each combination
of model and affective variable. Four neurons in
mBERT occupied a position in the top 100 units
responding to arousal in 7 languages, i.e. (1) Id8

∩ It ∩ Pt ∩ Hr ∩ Es ∩ Pl ∩ Tr; (2) En ∩ Pt ∩ Fr ∩
Hr ∩ Zh ∩ Es ∩ Pl; (3) En ∩ Nl ∩ Fr ∩ Hr ∩ Zh
∩ Es ∩ El; (4) Id ∩ En ∩ It ∩ Nl ∩ Pt ∩ Es ∩ De
(FE = 2,051.95, p = 0.0004). When considering
arousal, a singleton eighth-degree intersection was
found in Pt ∩ Id ∩ El ∩ Hr ∩ Tr ∩ Pl ∩ It ∩ En (FE =
15,758.99, p = 6.34 · 10-5). When considering the
XLM-R model, we found two neurons involved in
processing valence in 11 languages (Pt ∩ De ∩ Nl
∩ Id ∩ El ∩ Tr ∩ Hr ∩ Zh ∩ Es ∩ En ∩ It; Pt ∩ De
∩ Nl ∩ Fr ∩ Id ∩ El ∩ Hr ∩ Zh ∩ Pl ∩ Es ∩ It, with
FE = 7,138,586, p = 1.40 · 10-7), and one neuron
involved in processing arousal in 10 languages (Pt
∩ De ∩ Nl ∩ Fr ∩ Id ∩ Tr ∩ Hr ∩ Pl ∩ Es ∩ It, FE
= 929,503.4, p = 1.08 · 10-6). In summary, we
found several neurons responding to valence and
arousal in most of the languages considered in
the study; the language coverage of those units
was generally bigger when considering XLM-R as
opposed to mBERT, in accordance with what we
found with the pairwise intersection analyses.

6. Generalization to an unseen
language

In §5, we identified some units that encoded af-
fective information across several languages (up
to 11 in XLM-R). We considered those units as
the implementational substrate that performs af-
fective semantic computations across languages.
In this section, we studied whether their individual
activation patterns alone were sufficient to encode
a significant amount of affective information. To
increase the generalizability of our findings and
further assess the cross-lingual generalizations of

8To increase readability, the set of the top 100 units
selected for a given language is reported with the ISO
639-1 code of that language (Italian: It, Spanish: Es,
Greek: El, Dutch: Nl, French: Fr, Turkish: Tr, German:
De, English: En, Chinese: Zh, Polish: Pl, Croatian: Hr,
Indonesian: Id, Portuguese: Pt).
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(a) mBERT, valence (b) mBERT, arousal (c) XLM-R, valence (d) XLM-R, arousal

Figure 3: Layer-wise results of the linear probes for each language, divided by model (XLM-R and mBERT)
and affective variable (valence, arousal). The layer 0 includes the embedding layer representations. The
layer-wise scores are fit as 8th degree polynomials for readability purposes. The thick black/gray line
indicates the scores averaged across languages (without polynomial fit).

those units, we tested the units in Finnish, a lan-
guage that did not concur in the unit selection pro-
cess. Note that Finnish belongs to the Uralic lan-
guage family, and thus is typologically distant from
all the languages considered in the previous experi-
ments and on which the unit selection process was
based (see Table 1).

The Finnish dataset comprised 210 words (Eilola
and Havelka, 2010); following the same procedure
as in §4.1, we searched for 15 sentences for each
word in the Finnish Wikipedia; only 123 words had
a sufficient number of occurrences, resulting in a
corpus of 1,845 sentences. We then employed
the output of each of the neurons identified in §5
taken singularly as a predictor in a linear regression
model, with Eilola and Havelka’s affective norms
as dependent variables. As an additional baseline
beyond chance level, we also randomly sampled
100 neural units from the corresponding layers in
the two models (layer 7 for mBERT, and layers 5
and 6 for XLM-R), and compared their results with
the ones obtained by the target neurons.

The results of the single-unit analyses in Finnish
are summarized in Table 2. Overall, the units sin-
gled out in §5 were able to significantly predict
arousal and valence values in Finnish in the major-
ity of the cases (75%, i.e., six out of eight neurons),
and to do so better than the randomized baseline
(62.5%). A notable exception to this trend are the
units u5665 and u6077 in the case of mBERT, and
u4313 in the case of XLM-R, which perform worse
than randomly sampled units from the same layers.
Predictably, the stronger results were obtained from
the units that had been identified in higher-degree
intersections (u4324 and u4747), and thus were en-
coding semantic content in more languages. These
results show that some of the neural units that were
responsible for encoding valence and arousal in
a set of languages can successfully capture the
same properties in Finnish, a different language
that did not concur in the unit selection.

While the units identified in §5 outperformed the
randomized baseline in most of the cases, it should

Target Baseline

Model Var ui B̂ t p B̂b tb pb
mBERT v 6078 -0.027 -4.066 <.001 0.021 3.222 <.001
mBERT v 5665 -0.001 -0.111 0.911 0.021 3.222 <.001
mBERT v 6077 -0.002 -0.268 0.789 0.021 3.222 <.001
mBERT v 5685 0.028 4.189 <.001 0.021 3.222 <.001
mBERT a 6038 -0.045 -6.733 <.001 0.030 4.417 <.001
XLM-R v 4324 0.076 11.881 <.001 0.030 4.538 <.001
XLM-R v 4313 0.015 2.175 0.030 0.030 4.538 <.001
XLM-R a 4747 0.083 12.780 <.001 0.031 4.649 <.001

Table 2: Results of the single neurons ui identified
in §5 on the Finnish dataset grouped by model and
affective variable (Var). The results of the target
neurons (B̂, t, p) are paired with a baseline that
averages the results obtained from 100 randomly
sampled units (B̂b, tb, pb).

be noted that, on average, the network units of
the relevant layers achieve above-chance perfor-
mance in the regression. This suggests that while
some units have a preferential association with spe-
cific semantic content, the computation of affec-
tive meaning is not bounded to a small cluster of
specialized units, but is instead processed with
redundancy across the intermediate layers of the
networks.

7. Cross-lingual overlap and
performance

In a second follow-up study, we inspected the rela-
tionship between the cross-lingual alignment of the
representational subspace occupied by a language
in a model and the model performance in that lan-
guage. Theoretically, two opposite patterns may
link representational quality and alignment. First, if
the cross-lingual encoding in a multilingual network
is driven by competition for the finite parameter
space (Dufter and Schütze, 2020), one may expect
that high-resource languages, being largely repre-
sented in the training data, would occupy larger
language-specific subspaces. Consequently, low-
resource languages would tax more strongly the
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language-neutral components of the network, un-
able to seize exclusive network subspaces. Alterna-
tively, if cross-lingual alignment is not a by-product
of compression but rather an inherent tendency
in multilingual representation learning, we would
expect performance to be directly proportional to
cross-lingual alignment. To test these hypotheses,
we defined a metric of cross-lingual alignment of a
language li as the mean pairwise overlap (MPO)
of the intersection with all the other l ∈ L \ {li}
languages (see Eq. 2).

MPO(li) =
1

n− 1

n−1∑
l∈L\{li}

| l ∩ li | (2)

Where n is the number of L languages. We then
employed the MPO measure to predict the perfor-
mance obtained in encoding the affective variables
in each language, defined once again as the Pear-
son correlation coefficient between predictions and
target affective values obtained by the probes in
§5. Our choice to measure performance using the
Pearson scores from the probes (thus, focusing
specifically on encoding valence and arousal) was
deliberate: since our primary goal was to exam-
ine the overlap in how models encode these se-
mantic dimensions, we chose a measure reflecting
the encoding of such dimensions, rather than a
more general language model performance met-
ric. To account for the hierarchical nature of the
data, where observations are grouped by language,
model type (mBERT and XLM-R) and output vari-
able (valence and arousal), we fit a linear mixed-
effects regression with uncorrelated random slopes
and intercepts for model type and output variable,
and random intercepts for languages. We found
a significant, positive relationship between cross-
lingual alignment and performance (B̂ = 0.0188, SE
= 0.0047, t = 4.033, p = 0.012), which we repre-
sented graphically in Figure 4. This result empiri-
cally supports the idea that representational quality
is positively associated with MPO, challenging the
competitive account of cross-lingual alignment.

8. Discussion

Our analyses showed signs of cross-lingual con-
sistency in the encoding of affective semantic vari-
ables, both in terms of layer-wise flow of informa-
tion and within-layer organization. At the layer level,
affective information peaked in the intermediate lay-
ers of the networks in most languages, with a sec-
ond local maximum in layer 11. From a neuron-level
perspective, emotional information tended to con-
verge towards the same units within a layer across
languages. Most pairwise intersections showed an
overrepresentation with respect to their expected
size assuming independence, and some individ-

Figure 4: Relationship between mean pairwise in-
tersection size and model performance, expressed
as the Pearson correlation coefficient between pre-
dictions and targets.

ual network units were implicated in affective con-
tent processing in several languages (up to 11),
showing that multilingual training is indeed suffi-
cient to develop a relative interlingua. Interestingly,
by simply processing non-aligned text in several
languages, mBERT and XLM-R developed implicit
knowledge about specific semantic content; the
representational format of this knowledge was suf-
ficiently abstracted from the superficial features of
the input to be encoded in partially overlapping
subspaces across linguistic boundaries. Further-
more, the single units identified in our first analyses
were generally able to capture affective content in
Finnish, a language that was not considered in the
unit selection process and belonged to a different
language family. This result showed that single
units can coherently encode semantic content in a
quasi-symbolic format across a set of diverse lan-
guages. However, when the activation patterns of
those neurons were compared with randomly sam-
pled units from the same layers, it turned out that
affective information was encoded with redundancy
in the multilingual networks.

Our study also revealed a positive relationship
between cross-lingual alignment and performance.
The direction of this relationship suggests that
cross-lingual alignment is not a by-product of the
competition for a finite parameter space, but rather
the result of a synergetic process that organizes en-
coded information according to language-invariant
strategies. However, an important caveat must be
made with respect to this observation. In §7, we
reported correlational evidence that links perfor-
mance and MPO, but we did not experimentally
manipulate the two factors. Hence, it is problem-
atic to infer the direction of the causal relationship
that ties these two variables. On the one hand,
cross-lingual alignment might be directly beneficial
in terms of performance; under this account, sublex-
ical representations in a given language might take
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advantage of both within- and across-languages
statistical relationships between subword tokens
in the vocabulary. Languages that are on average
more aligned with other languages might benefit
more from the across-languages statistical infor-
mation encoded in the parameters of the model.
On the other hand, the causal relationship might
follow a reverse pattern, where performance in-
creases produce enhanced alignment. Under this
account, the target linguistic encoding to be learned
during pre-training might be a language-neutral ob-
jective, and the extent to which each language is en-
coded in accordance with this abstract, language-
independent representation might determine the
MPO of the representations produced by the net-
work in that language. Adjudicating between these
two competing accounts requires the experimental
manipulation of MPO and performance, but it is not
trivial to develop a methodology for manipulating
one of the two variables without affecting the other,
so we leave this matter for future research.

Across experiments and follow-up analyses, we
consistently observed that cross-lingual conver-
gence was more pronounced when considering
XLM-R as opposed to mBERT, in accordance with
what has been reported in the context of (mor-
pho)syntactic probing (see Antverg and Belinkov,
2021; Stanczak et al., 2022; de Varda and Marelli,
2023); this corroborates the previous observation
that the next sentence prediction objective is not a
determining factor of cross-lingual alignment, and
that the amount of pre-training data and, conse-
quently, model performance, is associated with the
development of stronger language-neutral internal
components. This result nicely mirrors the posi-
tive relationship between representational quality
and cross-lingual convergence at the highest level
of analysis of this study, i.e. model comparison,
with the best-performing model being also the one
which shows the greater representational alignment
across languages.

9. Conclusion

In this study, we presented the first neuron-level
analysis targeting the cross-lingual encoding of
specific semantic content in mBERT and XLM-R.
Our results confirmed the observation that MMMs
encode linguistic information in both language-
dependent and language-independent subspaces
(see also Doddapaneni et al., 2021; Gonen et al.,
2022), but crucially revealed that the reliance on
the latter is associated with enhanced performance.
While previous research on MMMs has considered
sentence representations as a whole or restricted
its focus to (morpho)syntactic information, we nar-
rowed our study to affective content in lexical rep-
resentations, showing that MMMs tend to allocate

a set of partially overlapping units to the construc-
tion of affective meaning. We additionally observed
an example case of symbol emergence (Taniguchi
et al., 2018), where semantic knowledge arose from
the activation patterns of individual units across lan-
guages. We hope that our results will set the stage
for future studies examining the behavior of sin-
gle units in MMMs in relation to other facets of the
semantic spectrum.

Limitations

In this set of studies, we showed that a relatively
specific expression of semantic content is encoded,
at least in part, by language-neutral parameters in
mBERT and XLM-R. However, we must acknowl-
edge that valence and arousal constitute only two
of the multitude of semantic dimensions that con-
tribute to lexical meaning. While narrowing our
focus to specific semantic information arguably in-
creases the internal validity of our study, it nega-
tively affects its external validity. Hence, the gen-
eralizability of our findings to other semantic di-
mensions should be assessed in future research.
Furthermore, our study focuses on lexical seman-
tic variables, but the extent to which our findings
can be extended to sentence-level semantic prop-
erties needs to be carefully evaluated. A third
shortcoming of our study consists in the language
sample considered, which is dominated by Indoeu-
ropean languages written in Latin scripts. It has
been shown that both typological similarity (Pires
et al., 2019) and script (Muller et al., 2020) are in-
tervening factors in cross-lingual alignment; hence,
it would be desirable to test our hypotheses on a
more heterogeneous language sample. However,
we also considered three non-Indoeuropean lan-
guages (Chinese, Turkish, and Indonesian), which
are very informative for the aims of our study. Ad-
ditionally, our zero-shot test presented in §6 is per-
formed in Finnish, which belongs to the Uralic fam-
ily. We believe that the results obtained on the
more typologically diverse languages are particu-
larly informative for the extent of the generalization
abilities of massively multilingual models.

10. Bibliographical References

Omer Antverg and Yonatan Belinkov. 2021. On
the pitfalls of analyzing individual neurons in lan-
guage models. In International Conference on
Learning Representations.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do
neural machine translation models learn about



15918

morphology? In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 861–
872.

Rishi Bommasani, Kelly Davis, and Claire Cardie.
2020. Interpreting Pretrained Contextualized
Representations via Reductions to Static Em-
beddings. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4758–4781, Online. Association
for Computational Linguistics.

Charles S Carver and Michael F Scheier. 1990.
Origins and functions of positive and negative
affect: A control-process view. Psychological
review, 97(1):19.

Ethan A Chi, John Hewitt, and Christopher D Man-
ning. 2020. Finding universal grammatical re-
lations in multilingual bert. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 5564–5577.

Francesca MM Citron. 2012. Neural correlates of
written emotion word processing: a review of
recent electrophysiological and hemodynamic
neuroimaging studies. Brain and language,
122(3):211–226.

Alexis Conneau, Kartikay Khandelwal, Naman
Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Édouard Grave, Myle Ott,
Luke Zettlemoyer, and Veselin Stoyanov. 2020a.
Unsupervised cross-lingual representation learn-
ing at scale. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8440–8451.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020b. Emerg-
ing cross-lingual structure in pretrained language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 6022–6034, Online. Association for
Computational Linguistics.

Bojana Ćoso, Marc Guasch, Pilar Ferré, and
José Antonio Hinojosa. 2019. Affective and
concreteness norms for 3,022 croatian words.
Quarterly Journal of Experimental Psychology,
72(9):2302–2312.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad,
Yonatan Belinkov, Anthony Bau, and James
Glass. 2019a. What is one grain of sand in the
desert? analyzing individual neurons in deep
nlp models. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages
6309–6317.

Fahim Dalvi, Avery Nortonsmith, Anthony Bau,
Yonatan Belinkov, Hassan Sajjad, Nadir Durrani,
and James Glass. 2019b. Neurox: A toolkit for
analyzing individual neurons in neural networks.
In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 33, pages 9851–9852.

Andrea Gregor de Varda and Marco Marelli. 2023.
Data-driven Cross-lingual Syntax: An Agreement
Study with Massively Multilingual Models. Com-
putational Linguistics, pages 1–39.

Maksym Del and Mark Fishel. 2021. Establish-
ing interlingua in multilingual language models.
ArXiv, abs/2109.01207.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Sumanth Doddapaneni, Gowtham Ramesh, Anoop
Kunchukuttan, Pratyush Kumar, and Mitesh M
Khapra. 2021. A primer on pretrained mul-
tilingual language models. arXiv preprint
arXiv:2107.00676.

Philipp Dufter and Hinrich Schütze. 2020. Identify-
ing necessary elements for bert’s multilinguality.
arXiv preprint arXiv:2005.00396.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and
Yonatan Belinkov. 2020. Analyzing individual
neurons in pre-trained language models. arXiv
preprint arXiv:2010.02695.

Tiina M Eilola and Jelena Havelka. 2010. Affective
norms for 210 british english and finnish nouns.
Behavior Research Methods, 42(1):134–140.

Lisa Feldman Barrett and James A Russell. 1998.
Independence and bipolarity in the structure of
current affect. Journal of personality and social
psychology, 74(4):967.

Hila Gonen, Shauli Ravfogel, and Yoav Goldberg.
2022. Analyzing gender representation in multi-
lingual models. In Proceedings of the 7th Work-
shop on Representation Learning for NLP, pages
67–77.

Kamil K. Imbir. 2016. Affective norms for 4900
polish words reload (anpw_r): Assessments for
valence, arousal, dominance, origin, significance,
concreteness, imageability and, age of acquisi-
tion. Frontiers in Psychology, 7.

https://doi.org/10.18653/v1/2020.acl-main.431
https://doi.org/10.18653/v1/2020.acl-main.431
https://doi.org/10.18653/v1/2020.acl-main.431
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.1162/coli_a_00472
https://doi.org/10.1162/coli_a_00472
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2005.00396
http://arxiv.org/abs/2005.00396
https://doi.org/10.3389/fpsyg.2016.01081
https://doi.org/10.3389/fpsyg.2016.01081
https://doi.org/10.3389/fpsyg.2016.01081
https://doi.org/10.3389/fpsyg.2016.01081
https://doi.org/10.3389/fpsyg.2016.01081


15919

Ganesh Jawahar, Benoît Sagot, and Djamé Sed-
dah. 2019. What does bert learn about the struc-
ture of language? In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3651–3657.

Aycan Kapucu, Aslı Kılıç, Yıldız Özkılıç, and
Bengisu Sarıbaz. 2021. Turkish emotional word
norms for arousal, valence, and discrete emotion
categories. Psychological reports, 124(1):188–
209.

K Karthikeyan, Zihan Wang, Stephen Mayhew, and
Dan Roth. 2019. Cross-lingual ability of multi-
lingual bert: An empirical study. In International
Conference on Learning Representations.

K Karthikeyan, Wang Zihan, Stephen Mayhew, and
Dan Roth. 2020. Cross-lingual ability of multilin-
gual bert: An empirical study. In International
Conference on Learning Representations.

Johanna Kissler, Cornelia Herbert, Peter Peyk, and
Markus Junghofer. 2007. Buzzwords: early corti-
cal responses to emotional words during reading.
Psychological science, 18(6):475–480.

Stavroula-Thaleia Kousta, David P Vinson, and
Gabriella Vigliocco. 2009. Emotion words, re-
gardless of polarity, have a processing advan-
tage over neutral words. Cognition, 112(3):473–
481.

Lars Kuchinke, Arthur M Jacobs, Claudia Grubich,
Melissa L-H Vo, Markus Conrad, and Manfred
Herrmann. 2005. Incidental effects of emotional
valence in single word processing: an fmri study.
NeuroImage, 28(4):1022–1032.

Victor Kuperman, Zachary Estes, Marc Brysbaert,
and Amy Beth Warriner. 2014. Emotion and lan-
guage: valence and arousal affect word recogni-
tion. Journal of Experimental Psychology: Gen-
eral, 143(3):1065.

Peter Kuppens, Francis Tuerlinckx, James A Rus-
sell, and Lisa Feldman Barrett. 2013. The rela-
tion between valence and arousal in subjective
experience. Psychological bulletin, 139(4):917.

Guillaume Lample and Alexis Conneau. 2019.
Cross-lingual language model pretraining.

Randy J Larsen, Kimberly A Mercer, and David A
Balota. 2006. Lexical characteristics of words
used in emotional stroop experiments. Emotion,
6(1):62.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
Goran Glavaš. 2020. From zero to hero: On the
limitations of zero-shot language transfer with
multilingual Transformers. In Proceedings of the

2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 4483–
4499, Online. Association for Computational Lin-
guistics.

Jindřich Libovický, Rudolf Rosa, and Alexander
Fraser. 2020. On the language neutrality of pre-
trained multilingual representations. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 1663–1674, Online. Asso-
ciation for Computational Linguistics.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott,
Naman Goyal, Shruti Bhosale, Jingfei Du, et al.
2021. Few-shot learning with multilingual lan-
guage models. arXiv preprint arXiv:2112.10668.

Zihan Liu, Genta Indra Winata, Andrea Madotto,
and Pascale Fung. 2020. Exploring fine-
tuning techniques for pre-trained cross-lingual
models via continual learning. arXiv preprint
arXiv:2004.14218.

Catherine Monnier and Arielle Syssau. 2014. Af-
fective norms for french words (fan). Behavior
research methods, 46(4):1128–1137.

Maria Montefinese, Ettore Ambrosini, Beth Fairfield,
and Nicola Mammarella. 2013. The adaptation
of the affective norms for english words (anew)
for italian. Behavior Research Methods, 46.

Agnes Moors, Jan De Houwer, Dirk Hermans,
Sabine Wanmaker, Kevin Van Schie, Anne-Laura
Van Harmelen, Maarten De Schryver, Jeffrey
De Winne, and Marc Brysbaert. 2013. Norms of
valence, arousal, dominance, and age of acqui-
sition for 4,300 dutch words. Behavior research
methods, 45(1):169–177.

Benjamin Muller, Antonis Anastasopoulos, Benoît
Sagot, and Djamé Seddah. 2020. When being
unseen from mbert is just the beginning: Han-
dling new languages with multilingual language
models. arXiv preprint arXiv:2010.12858.

Benjamin Muller, Yanai Elazar, Benoît Sagot, and
Djamé Seddah. 2021. First align, then predict:
Understanding the cross-lingual ability of multi-
lingual BERT. In Proceedings of the 16th Con-
ference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume,
pages 2214–2231, Online. Association for Com-
putational Linguistics.

Elisavet Palogiannidi, Polychronis Koutsakis,
E Losif, and Alexandros Potamianos. 2016.
Affective lexicon creation for the greek language.

Telmo Pires, Eva Schlinger, and Dan Garrette.
2019. How multilingual is multilingual BERT?

https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
http://arxiv.org/abs/1901.07291
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.findings-emnlp.150
https://doi.org/10.18653/v1/2020.findings-emnlp.150
http://arxiv.org/abs/2004.14218
http://arxiv.org/abs/2004.14218
http://arxiv.org/abs/2004.14218
https://doi.org/10.3758/s13428-013-0405-3
https://doi.org/10.3758/s13428-013-0405-3
https://doi.org/10.3758/s13428-013-0405-3
https://doi.org/10.18653/v1/2021.eacl-main.189
https://doi.org/10.18653/v1/2021.eacl-main.189
https://doi.org/10.18653/v1/2021.eacl-main.189
https://doi.org/10.18653/v1/P19-1493


15920

In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4996–5001, Florence, Italy. Association for Com-
putational Linguistics.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discover-
ing sentiment. arXiv preprint arXiv:1704.01444.

Jaime Redondo, Isabel Fraga, Isabel Padrón, and
Montserrat Comesaña. 2007. The spanish adap-
tation of anew (affective norms for english words).
Behavior research methods, 39(3):600–605.

James A Russell. 2003. Core affect and the psycho-
logical construction of emotion. Psychological
review, 110(1):145.

James A Russell and Lisa Feldman Barrett. 1999.
Core affect, prototypical emotional episodes, and
other things called emotion: dissecting the ele-
phant. Journal of personality and social psychol-
ogy, 76(5):805.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François
Yvon, Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language
model. arXiv preprint arXiv:2211.05100.

David S Schmidtke, Tobias Schröder, Arthur M Ja-
cobs, and Markus Conrad. 2014. Angst: Affective
norms for german sentiment terms, derived from
the affective norms for english words. Behavior
research methods, 46(4):1108–1118.

Oleh Shliazhko, Alena Fenogenova, Maria
Tikhonova, Vladislav Mikhailov, Anastasia
Kozlova, and Tatiana Shavrina. 2022. mgpt:
Few-shot learners go multilingual. arXiv preprint
arXiv:2204.07580.

Agnes Sianipar, Pieter van Groenestijn, and Ton
Dijkstra. 2016. Affective meaning, concreteness,
and subjective frequency norms for indonesian
words. Frontiers in Psychology, 7.

Jasdeep Singh, Bryan McCann, Richard Socher,
and Caiming Xiong. 2019. BERT is not an inter-
lingua and the bias of tokenization. In Proceed-
ings of the 2nd Workshop on Deep Learning Ap-
proaches for Low-Resource NLP (DeepLo 2019),
pages 47–55, Hong Kong, China. Association for
Computational Linguistics.

Ana Soares, Montserrat Comesaña, Ana Pinheiro,
Alberto Simões, and Sofia Frade. 2011. The
adaptation of the affective norms for english
words (anew) for european portuguese. Behavior
research methods, 44:256–69.

Karolina Stanczak, Edoardo Ponti, Lucas Tor-
roba Hennigen, Ryan Cotterell, and Isabelle Au-
genstein. 2022. Same neurons, different lan-
guages: Probing morphosyntax in multilingual
pre-trained models. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, pages 1589–1598,
Seattle, United States. Association for Computa-
tional Linguistics.

Tadahiro Taniguchi, Emre Ugur, Matej Hoffmann,
Lorenzo Jamone, Takayuki Nagai, Benjamin Ros-
man, Toshihiko Matsuka, Naoto Iwahashi, Erhan
Oztop, Justus Piater, et al. 2018. Symbol emer-
gence in cognitive developmental systems: a
survey. IEEE transactions on Cognitive and De-
velopmental Systems, 11(4):494–516.

Jos JA Van Berkum. 2010. The brain is a prediction
machine that cares about good and bad-any im-
plications for neuropragmatics? Italian Journal
of Linguistics, 22:181–208.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in neural
information processing systems, pages 5998–
6008.

Alessandra Vergallito, Marco Alessandro Petilli,
Luigi Cattaneo, and Marco Marelli. 2019. So-
matic and visceral effects of word valence,
arousal and concreteness in a continuum lexi-
cal space. Scientific reports, 9(1):1–10.

Minghui Wang, Yongzhong Zhao, and Bin Zhang.
2015. Efficient test and visualization of multi-set
intersections. Scientific reports, 5(1):1–12.

Amy Beth Warriner, Victor Kuperman, and Marc
Brysbaert. 2013. Norms of valence, arousal, and
dominance for 13,915 english lemmas. Behavior
research methods, 45(4):1191–1207.

Genta Winata, Shijie Wu, Mayank Kulkarni, Thamar
Solorio, and Daniel Preotiuc-Pietro. 2022. Cross-
lingual few-shot learning on unseen languages.
In Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Com-
putational Linguistics and the 12th International
Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 777–791,
Online only. Association for Computational Lin-
guistics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness
of BERT. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language

http://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1704.01444
https://doi.org/10.3389/fpsyg.2016.01907
https://doi.org/10.3389/fpsyg.2016.01907
https://doi.org/10.3389/fpsyg.2016.01907
https://doi.org/10.18653/v1/D19-6106
https://doi.org/10.18653/v1/D19-6106
https://doi.org/10.3758/s13428-011-0131-7
https://doi.org/10.3758/s13428-011-0131-7
https://doi.org/10.3758/s13428-011-0131-7
https://doi.org/10.18653/v1/2022.naacl-main.114
https://doi.org/10.18653/v1/2022.naacl-main.114
https://doi.org/10.18653/v1/2022.naacl-main.114
https://aclanthology.org/2022.aacl-main.59
https://aclanthology.org/2022.aacl-main.59
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077


15921

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 833–844, Hong Kong, China.
Association for Computational Linguistics.

Zhao Yao, Jia Wu, Yanyan Zhang, and Zhenhong
Wang. 2017. Norms of valence, arousal, con-
creteness, familiarity, imageability, and context
availability for 1,100 chinese words. Behavior
research methods, 49(4):1374–1385.

Hui Zou and Trevor Hastie. 2005. Regularization
and variable selection via the elastic net. Journal
of the royal statistical society: series B (statistical
methodology), 67(2):301–320.


	Introduction
	Related work
	Aims
	Methods and materials
	Data
	Models
	Methods
	Extracting activations
	Training the probe
	Ranking neurons
	Testing intersections


	Results
	Generalization to an unseen language
	Cross-lingual overlap and performance
	Discussion
	Conclusion
	Bibliographical References

