@inproceedings{weinzierl-harabagiu-2024-impact,
title = "The Impact of Stance Object Type on the Quality of Stance Detection",
author = "Weinzierl, Maxwell A. and
Harabagiu, Sanda M.",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1385",
pages = "15942--15954",
abstract = "Stance as an expression of an author{'}s standpoint and as a means of communication has long been studied by computational linguists. Automatically identifying the stance of a subject toward an object is an active area of research in natural language processing. Significant work has employed topics and claims as the object of stance, with frames of communication becoming more recently considered as alternative objects of stance. However, little attention has been paid to finding what are the benefits and what are the drawbacks when inferring the stance of a text towards different possible stance objects. In this paper we seek to answer this question by analyzing the implied knowledge and the judgments required when deciding the stance of a text towards each stance object type. Our analysis informed experiments with models capable of inferring the stance of a text towards any of the stance object types considered, namely topics, claims, and frames of communication. Experiments clearly indicate that it is best to infer the stance of a text towards a frame of communication, rather than a claim or a topic. It is also better to infer the stance of a text towards a claim rather than a topic. Therefore we advocate that rather than continuing efforts to annotate the stance of texts towards topics, it is better to use those efforts to produce annotations towards frames of communication. These efforts will allow us to better capture the stance towards claims and topics as well.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="weinzierl-harabagiu-2024-impact">
<titleInfo>
<title>The Impact of Stance Object Type on the Quality of Stance Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maxwell</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Weinzierl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanda</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Harabagiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Stance as an expression of an author’s standpoint and as a means of communication has long been studied by computational linguists. Automatically identifying the stance of a subject toward an object is an active area of research in natural language processing. Significant work has employed topics and claims as the object of stance, with frames of communication becoming more recently considered as alternative objects of stance. However, little attention has been paid to finding what are the benefits and what are the drawbacks when inferring the stance of a text towards different possible stance objects. In this paper we seek to answer this question by analyzing the implied knowledge and the judgments required when deciding the stance of a text towards each stance object type. Our analysis informed experiments with models capable of inferring the stance of a text towards any of the stance object types considered, namely topics, claims, and frames of communication. Experiments clearly indicate that it is best to infer the stance of a text towards a frame of communication, rather than a claim or a topic. It is also better to infer the stance of a text towards a claim rather than a topic. Therefore we advocate that rather than continuing efforts to annotate the stance of texts towards topics, it is better to use those efforts to produce annotations towards frames of communication. These efforts will allow us to better capture the stance towards claims and topics as well.</abstract>
<identifier type="citekey">weinzierl-harabagiu-2024-impact</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1385</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>15942</start>
<end>15954</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Impact of Stance Object Type on the Quality of Stance Detection
%A Weinzierl, Maxwell A.
%A Harabagiu, Sanda M.
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F weinzierl-harabagiu-2024-impact
%X Stance as an expression of an author’s standpoint and as a means of communication has long been studied by computational linguists. Automatically identifying the stance of a subject toward an object is an active area of research in natural language processing. Significant work has employed topics and claims as the object of stance, with frames of communication becoming more recently considered as alternative objects of stance. However, little attention has been paid to finding what are the benefits and what are the drawbacks when inferring the stance of a text towards different possible stance objects. In this paper we seek to answer this question by analyzing the implied knowledge and the judgments required when deciding the stance of a text towards each stance object type. Our analysis informed experiments with models capable of inferring the stance of a text towards any of the stance object types considered, namely topics, claims, and frames of communication. Experiments clearly indicate that it is best to infer the stance of a text towards a frame of communication, rather than a claim or a topic. It is also better to infer the stance of a text towards a claim rather than a topic. Therefore we advocate that rather than continuing efforts to annotate the stance of texts towards topics, it is better to use those efforts to produce annotations towards frames of communication. These efforts will allow us to better capture the stance towards claims and topics as well.
%U https://aclanthology.org/2024.lrec-main.1385
%P 15942-15954
Markdown (Informal)
[The Impact of Stance Object Type on the Quality of Stance Detection](https://aclanthology.org/2024.lrec-main.1385) (Weinzierl & Harabagiu, LREC-COLING 2024)
ACL