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Abstract
This work explores the intrinsic limitations of the popular one-hot encoding method in classification of intents when
detection of out-of-scope (OOS) inputs is required. Although recent work has shown that there can be significant
improvements in OOS detection when the intent classes are represented as dense-vectors based on domain-specific
knowledge, we argue in this paper that such gains are more likely due to advantages of the much richer topologies
that can be created with dense vectors compared to the equidistant class representation assumed by one-hot
encodings. We start by demonstrating how dense-vector encodings are able to create OOS spaces with much
richer topologies. Then, we show empirically, using four standard intent classification datasets, that knowledge-free,
randomly generated dense-vector encodings of intent classes can yield over 20% gains over one-hot encodings,
producing better systems for open-world classification tasks, mostly from improvements in OOS detection.

Keywords: Intent Classification, One-hot Encoding, Out-of-scope Detection, Open-World Classification

1. Introduction

Dense representations of inputs to machine learn-
ing (ML) models, often referred to as input embed-
dings, have been one of the key drivers of the mas-
sive improvements of performance of most NLP ap-
plications in the last 10 years. However, the use of
similar dense-vector representations for the output
classes, or output embeddings (Yu and Aloimonos,
2010; Rohrbach et al., 2011; Kankuekul et al., 2012;
Akata et al., 2015a), is quite uncommon, except in
scenarios of zero-shot learning (Romera-Paredes
and Torr, 2015) where embeddings are used to
encode non-observed latent classes.

The most used method to represent c > 0 differ-
ent intent classes is still to encode them as one-hot
vectors , i.e. c-dimensional vectors which are all
filled with 0s (zeros) except in the position corre-
sponding to the class of the intent label, which is
filled with 1 (one). Therefore, classes are repre-
sented as equally-distant points in a c-dimensional
space and classification is performed by comput-
ing the distance to the closest one-hot vector, often
using the softmax function to normalize the output.

Recent works (Cavalin et al., 2020; Pinhanez
et al., 2021a) have shown that dense-vector repre-
sentations of intent classes based on domain knowl-
edge can improve intent classification accuracy. In
particular, such representations have shown to pro-
duce impressive gains in the detection of the inputs
to the machine learning system which are outside
of the scope of the intent classes, often referred
to as out-of-scope (OOS) or out-of-domain (OOD)
samples (Lee et al., 2018b; Vyas et al., 2018; Lee
et al., 2018a; Chen et al., 2020). Notice that a
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classification task without OOS detection in fact
assumes a closed-world scenario, while the full
version, which detects both the correct class for in-
scope (IS) samples or whether they are OOS sam-
ples, corresponds to the open-world case. Here we
consider only the case where no examples of the
OOS class are provided for training, although some
are available for testing. Notice also that almost
every real, practical use of ML classifiers, such as
for intent classification, is in open-world contexts.

The main argument of this paper is that such
large accuracy gains in OOS detection are more
likely due to advantages of dense-vector to one-
hot encoding of intent classes than to the use of
domain knowledge. We start by showing that, in
open worlds, the complexity of the spaces repre-
sentable by one-hot encodings is quite limited when
compared to dense-vector ones. This argument
is made based on the number of different topo-
logical spaces enabled by each type of encoding.
We show that one-hot encodings of c classes can
create only c types of topologically-distinct spaces,
while the number of different spaces enabled by
dense-vector encodings is larger than c2.

We follow by presenting the results of some
experiments in four intent classification public
datasets, a classical open-world scenario, where
randomly-generated dense-vectors yielded 8%
to 21% improvements in equal error rate (EER),
a fundamental metric to compute accuracy in
open-world classification, showing that better class
topologies can indeed be defined. We observe that
better EER values generally came together with de-
creased false acceptance rates (FAR) but usually
lower IS error rates (ISER), indicating that dense-
vector encodings present a way to find a balanced
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trade-off between OSS detection and IS accuracy.
In summary, the main contribution of this work

is to show that using more powerful representation
systems of the output space, i.e., dense-vectors,
may have formidable performance impacts in open-
world classification tasks and that a likely expla-
nation for this success is their ability to represent
more complex topological spaces.

2. Related Work

This paper focuses on text classification tasks
which include what is known as out-of-domain sam-
ple detection (Tan et al., 2019) or out-of-distribution
sample detection (Lee et al., 2018b; Vyas et al.,
2018; Lee et al., 2018a; Chen et al., 2020). A
good survey can be found in (Yang et al., 2021).
Many of the existing approaches for OOS detection
rely on adapting the training algorithm by chang-
ing the loss function of a neural network (Lee
et al., 2018a); by generating ensembles of clas-
sifiers (Vyas et al., 2018; Shalev et al., 2018); by
exposing the model to adversarial, crafted inlier
and outlier examples (Chen et al., 2020; Li et al.,
2021); or by including additional OOS examples ei-
ther in an unsupervised way (Yu and Aizawa, 2019;
Tan et al., 2019) or by generating them (Vernekar
et al., 2019). Another approach is to apply some
transformation on top the softmax outputs to handle
better OOS inputs (Hendrycks and Gimpel, 2017;
Liang et al., 2018; Techapanurak and Okatani,
2019); or to generate an additional classifier to mea-
sure the confidence of the ML classifier, assuming
that processing OOS samples have low-confidence
scores (Ryu et al., 2017, 2018; DeVries and Taylor,
2018; Lee et al., 2018b).

Instead, our approach focuses on changing the
representation of the output layer to try to match
it better with the characteristics of the space of
intent classes. In many ways, we explore in the
output layer one of the most important advances in
machine learning, which is the use of input embed-
dings (Turian et al., 2010; Mikolov et al., 2013; Pen-
nington et al., 2014; Dos Santos and Gatti, 2014).
In particular, we look into a new use for output or
class embeddings which have been explored be-
fore in other contexts. In particular, in zero-shot
learning (Romera-Paredes and Torr, 2015), class
embeddings have been used as a tool which makes
it possible building a solution for the problem. Zero-
shot learning is based on the identification and ad-
dition of new classes to a classifier with no reliance
in input samples. With class embeddings, new
classes can be added to the system by simply gen-
erating an embedding with the proper configuration
of an unseen class, to encapsulate the knowledge
of the new concepts (Palatucci et al., 2009; Socher
et al., 2013; Akata et al., 2015b,a). Zero-shot learn-

ing is a problem closely related to OOS detection
but it differs on the criterion of success: in the for-
mer, the accuracy of assigning inputs to the previ-
ously unknown classes; in the latter, the accuracy
of identifying inputs which do not belong to any of
the known classes. We believe that some of our
arguments may also be valid for zero-shot learning
but that is beyond the scope of this work. Here
we focus solely in the OOS detection problem and
how the utilization of dense encodings affects the
classification task.

Recent research has focused on using class em-
beddings to enhance an ML classifier by encap-
sulating additional high-level knowledge related to
the classes. In Cavalin et al. (2020) the classes
were represented by keywords extracted from the
class training examples followed by the embedding
of the corresponding word graph. However, word
graphs tend to repeat the class examples with a
different structure, thus are far from ideal to pro-
duce proper class embeddings. In (Pinhanez et al.,
2021a) the hierarchical taxonomy of the classes, as
understood by the system developers’, was mined
from the documentation of the system and used to
create class embeddings. Although the latter ap-
proach seems promising, such taxonomies might
not be available in many cases, limiting the ap-
plicability of the method. Notice that those two
approaches excelled particularly in OOS detection.

This work explores further the use of class em-
beddings by looking into the properties of dense-
vectors themselves, independent of the presence of
knowledge. Our key baseline for comparison is the
traditional one-hot encoding methods. Some pre-
vious works have explored the difference between
one-hot and dense-vectors, such as (Rodríguez
et al., 2018), which found higher rates of conver-
gence for the latter. Output embeddings have also
been explored in the context of multi-class classifi-
cation problems (Amit et al., 2007; Weinberger and
Chapelle, 2009; Weston et al., 2010; Akata et al.,
2015a) and large-scale recognition (Srivastava and
Salakhutdinov, 2013; Deng et al., 2014; Xiao et al.,
2014; Yan et al., 2015; Lin et al., 2015). We are not
aware of works focusing on OOS detection using
knowledge-free class embeddings as described in
this paper.

3. Class Encoding for OOS Detection

Following the notation of (Cavalin et al., 2020),
an intent classification method is a function D
which maps a set of sentences (potentially infi-
nite) S = {s1, s2, ...} into a finite set of classes
Ω = {ω1, ω2, ..., ωc}:

D : S → Ω D(s) = ωi (1)

In many practical situations of intent classifica-
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tion, it is also necessary to determine whether a
sentence s does not belong to any of the classes,
what is often referred to as out-of-scope (OOS) de-
tection or out-of-domain (OOD) detection. This
can be represented by expanding Ω to the set
Ω̄ = Ω ∪ {o} where o represent the class OOS
of samples. Following, an intent classification with
OOS detection method D̄ : S → Ω̄ is defined by:

D̄(s) =

{
D(s) = ωi if in-scope
o if out-of-scope (2)

An input embedding ξ : S → Rn is often used,
mapping the space of sentences S into a vector
space Rn, and defining a classification function
Ē : Rn → Ω̄ such as D̄(s) = Ē(ξ(s)). In typical in-
tent classifiers, Ē is usually composed of a function
M which computes the z = (z1, z2, ..., zc) likelihood
of s being in each class ωi, typically in a finite range
such as [−1, 1], followed by a class encoding func-
tion C̄ which maps the likelihood results into the
classes in Ω̄.

S
ξ→ Rn M→ [−1, 1]c

C̄→ Ω̄ (3)

A common way to implement C̄, denoted here
as C̄max, is to verify whether any coordinate zi is
greater than a threshold 0 ≤ θ < 1 and, if so, to
map it into the ωi associated with the maximum zi
value; otherwise, C̄max maps it into o.

C̄max(z, θ) =

{
argmax zi if max zi > θ
o otherwise (4)

Probably the most common method for class
encoding is to use the softmax function where
the likelihood components are normalized with the
exponential funcion, denoted here as C̄softmax.

σ(z)i =
ezi∑c
j=1 e

zj
thus

c∑
i=1

σ(z)i = 1 (5)

C̄softmax(z, θ) =

{
argmax σ(z)i ifmaxσ(z)i > θ
o otherwise

(6)
Notice that C̄max and C̄softmax can be seen

as computing the min-based distance dmin of
z = (z1, z2, ...zc) to one-hot vectors hi =
(0, 0, ...., 1, ..., 0, 0) where the 1 value is in the i-th
position of hi. In this paper we compare those meth-
ods with approaches based on Euclidean distance.
If instead of min we use the Euclidean distance
d to the one-hot vectors hi, we obtain a function
which we call C̄d:

C̄d(z, θ) =

{
argmin d(z, hi) if min d(z, hi) ≤ θ
o otherwise

(7)

Since all previous methods consider which in-
tent class is closer, for a particular distance, to
the one-hot vectors, we refer to them as one-hot
class encoding methods. An alternative approach
is to consider each class ωi as represented by
the points closer to a given dense-vector ri =
(ri1, ri2, ...ric) ∈ [−1, 1]c. We call this function C̄r,
defining a typical dense-vector encoding method.

C̄r(z, θ) =

{
argmin d(z, ri) if min d(z, ri) ≤ θ
o otherwise

(8)
The use of dense-vector encoding opens up

the exploration of different dimensions beyond c-
dimensional encodings as the output of the likeli-
hood function M . In fact, any dimension p > 0 can
be used, and in this case each class ωi is repre-
sented by the points closer to rpi = (rpi1, r

p
i2, ...r

p
ic) ∈

[−1, 1]p, defining the function C̄p
r .

C̄p
r (z

p, θ) =

{
argmin d(zp, rpi ) if min d(zp, rpi ) ≤ θ
o otherwise

(9)
Dense-vector encoding methods can use a vari-

ety of ways to generate the rpi points to represent
the intent classes. We compare experimentally in
this paper both random methods to generate such
points and the knowledge-informed method based
on word graphs described in (Cavalin et al., 2020).
But to better understand the differences between
using one-hot and dense-vector encodings, we first
discuss the different representational expressive-
ness of each method to handle different cases of
component connectiveness of the OOS space.

4. Class Encoding Topologies

We are now ready to demonstrate one of the main
contributions of the paper, that is, for any number of
classes c ≥ 2, the one-hot encoding function C̄max

defines only one topology, while both C̄softmax and
C̄d define exactly c different topologies. However,
for dense-vector encoding methods such as C̄r, the
number of different topologies increases at least
quadratically with c.

The proof first examines the differences of the
class encoding methods in a simplified 2D scenario
where the goal is to determine whether a sentence s
belongs to one of two classes, ω1 or ω2, or is out-of-
scope (o). The generalization to high-dimensional
spaces is detailed afterwards.

4.1. Class Encoding Topologies in 2D
To simplify the analysis we do not consider here
special, limit cases where the intersection of two
components degenerates to a single point or to a



16003

Figure 1: The same topology is generated by C̄max,
C̄softmax, C̄d, and C̄r in 2D when there is no OOS
detection (θ = 0).

Figure 2: The only C̄max topology and the two
topologies of C̄softmax in 2D.

tangent line. Considering this, let us start by ex-
amining the simplest situations where there are
no OOS detection. This corresponds to the case
where θ = 0 in the previous formulas. Figure 1
shows that, in those cases, all the different func-
tions C̄ described before can only generate the
same topology in which the ω1 and the ω2 com-
ponents are connected, that is, have a non-trivial
boundary.

However, when there is OOS detection, that is,
θ > 0, a different topological landscape emerges.
The leftmost 2D space of fig. 2 illustrates the case
of the C̄max function where the class ω1 maps into
a trapezium positioned between θ ≤ z1 ≤ 1, bound
by the main diagonal of the first quadrant as shown.
The class ω2 similarly maps into a reflected trapez-
ium and the OOS class o1 occupies a square de-
fined by −1 ≤ z1 < θ and −1 ≤ z2 < θ. We
represent schematically the topology of the con-
nected components defined by C̄max as the left-
most bottom diagram of fig. 2. It shows that the
three components are pair-wise connected, for any
non-zero value of the threshold θ.

Although quite similar to C̄max, the C̄softmax func-
tion can represent two distinct topologies, as shown
in the central and rightmost parts of fig. 2. This is
an effect of the normalization process which maps
all points into a triangle in the first quadrant. The
first topology is identical to the case of C̄max, and
it happens if 0 < θ ≤ 1/2. However, if θ > 1/2,
the square of the OOS component o1 divides the
two intent classes into two non-connected triangles,
yielding a new configuration where ω1 and ω2 are
not connected as shown in fig. 2.

Continuing the exploration of one-hot class en-
codings, fig. 3 shows the effects of substituting max

Figure 3: The topologies of C̄d in 2D. The rightmost
topology is not allowed because θ ≤ 1.

Figure 4: The twelve topologies of C̄r in 2D.

with the Euclidean distance d, which basically maps
w1 and w2 into circles of 1−θ radius centered on the
one-hot vectors (1, 0) and (0, 1). If 1−1/

√
2 < θ < 1

we obtain the case depicted on the center of fig. 3,
a topology similar to the second case of C̄softmax

where the two intent classes are disconnected and
connected to a common OOS component o1. How-
ever, when 0 < θ ≤ 1 − 1/

√
2 a new topological

configuration is enabled, created by a new uncon-
nected OOS component o2 corresponding to points
with high values of both z1 and z2, as seen in the
leftmost part of fig. 3. Also, as seen in the rightmost
part of fig. 3, it is not possible to have this case a
topological configuration where the two classes are
pair-wise connected but the OOS space is not split
into two components. That would require that the
threshold θ to be greater than 1 what is not possible.
Notice that although the sofmax and Euclidean dis-
tance d in one-hot encoding representations allow
for different topologies of OOS spaces, both afford
just two different topologies which depend on the
value of θ.

Figure 4 shows how the use of dense-vector en-
coding enables many more and richer representa-
tions of the output space than the one-hot methods.
As depicted, dense-vectors in 2D allow 12 different
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topological configurations and the split of the OSS
space into 2, 3, and even 4 disconnected compo-
nents. Also, dense-vector encoding allows for sit-
uations where one OOS component is connected
to just one of the intent classes, such as in the
6 cases of the two central columns of fig. 4. Notice
that each pair corresponds to distinct topologies,
since mirroring requires an extra dimension.

This analysis of the 2D scenario shows how po-
tentially limiting is the use of one-hot encoding meth-
ods, especially in their ability to represent more
complex topological configurations of the OOS
space. More important, such analysis holds for
higher dimensions of c as we see next.

4.2. Class Encoding Topologies in
Higher Dimensions

In this section we show how those results extend
to greater dimensions, that is, c > 2. As before, we
do not consider here special, limit cases where the
intersection of two components degenerates to a
single point or to a tangent line, and only the cases
where OOS detection is needed, that is, θ > 0.

Topologies of C̄max: let us consider the C̄max

function, with c > 2 classes ω1, ω2, ...ωc being rec-
ognized, or the symbol o of a OOS input being
produced. It is easy to see that the OOS class oc-
cupies a c-dimensinal hypercube and each class ωi

a c-dimensional hyper-trapezium. Moreover, each
pair of components corresponding to the ωi and
ωj classes are in contact through the diagonal of
the plane defined by the axis of the coordinates zi
and zj . Similarly, each triad ωi, ωj , and ωk classes
share the diagonal of the hyper-cube defined by the
coordinates zi, zj , and zk. And the same is valid
for every subset {ωi1 , ωi2 , ...ωit} of Ω, 2 ≤ t ≤ c.
Therefore, all pair of classes are connected to each
other, and so all triads of classes, and so on, in a
c-dimensional complete hypergraph, and thus, like
in the 2D case, the C̄max function defines only 1
topology for any number of classes c ≥ 2.

Topologies of C̄softmax: let us consider the
case of the C̄softmax function. In the 2D case,
there were two possible topologies, defined by
0 < θ ≤ 1/2 and 1/2 < θ ≤ 1. We show here
that, for any c, the C̄softmax defines exactly c dif-
ferent topologies, corresponding to the intervals
0 < θ ≤ 1/c, 1/c < θ ≤ 1/(c− 1), ... , 1/2 < θ ≤ 1.
We showed in section 4 that in the case where
c = 2, there are exactly two topologies, one where
all classes are connected when 0 < θ ≤ 1/2
and one where all classes are disconnected when
1/2 < θ ≤ 1. Using induction, let us assume that
it is true that the number of topologies in the case
of c > 2 classes is exactly c, defined by the in-
tervals 0 < θ ≤ 1/c, 1/c < θ ≤ 1/(c − 1), ... ,
1/2 < θ ≤ 1. Let us consider the case of c + 1.

First, let us observe that the 1/2 < θ ≤ 1 in the
c case generates a topology where all c classes
are disconnected. It is easy to see that this holds
in the c + 1-dimensional space, and so it goes
to all intervals until 1/c < θ ≤ 1/(c − 1). While
the interval 0 < θ ≤ 1/c in the c case gener-
ated a topology where all classes are fully con-
nected, that is not true in the case in c + 1. It is
necessary to split the interval 0 < θ ≤ 1/c into
0 < θ ≤ 1/(c + 1) and 1/(c + 1) < θ ≤ 1/c. In
the interval 1/(c + 1) < θ ≤ 1/c all subsets of c
components or less are hyperconnected, but only
when 0 < θ ≤ 1/(c+1), all c+1 classes have points
in common, corresponding to the additional topol-
ogy. Since each of the c+ 1 intervals is associated
to a different topology, there are c+ 1 topologies,
completing the induction. Therefore, the C̄softmax

function defines c different topologies when the
number of classes is c.

To better visualize what is happening in this case,
let us examine what happens when c = 3. Here O
is a cube inscribed in a triangular pyramid where
three sides are orthogonal to each other of length
1 and the other face is defined by x + y + z = 1.
If θ > 1/2 three edges of the cube are outside
the x+ y + z = 1 plane, so the three classes are
disconnected. If θ < 1/3, the whole cube is below
the x + y + z = 1 face, and therefore there are
points which belong to the three classes. However,
when 1/3 < θ < 1/2, exactly one vertex of the
cube is outside of the x+ y + z = 1 plane, so the
intersection of the three classes degenerates to a
2D triangle on the x+y+z = 1 plane, and therefore
there is no 3-class intersection.

Topologies of C̄d: The case of the one-hot soft-
max is analogous to the one-hot encoding using the
Euclidian distance. While in the former the intervals
are defined by 1/c, in the latter they are defined by
1/

√
c, or

√
c/c. The same reasoning used in the

case of C̄softmax can show that C̄d defines exactly
c different topologies, corresponding to the inter-
vals 0 < θ ≤ 1/

√
c, 1/

√
c < θ ≤ 1/

√
c− 1, ... ,

1/
√
2 < θ ≤ 1. Therefore, the C̄d function defines

c different topologies when the number of classes
is c.

Topologies of C̄r: In section 4 we showed
that the C̄r affords 12 different topologies when
c = 2. For the sake of the argument of this paper,
that is, that dense-vector class encodings enable
richer representations of the space of classes, it
is not necessary to provide an exact estimation
of the topologies defined by C̄r in the case of c
classes. We here simply shows that the number of
different topologies in this case grows quadratically
with the number of classes by demonstrating that
the number of different topologies Mc is equal or
greater than the sum

∑c
m=1 m = m(m+ 1)/2. We

have shown that this is true in the case of c = 2,
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which defines 12 topologies, clearly greater than∑2
m=1 m = 1 + 2 = 3. Using again induction, let

us assume that if the inequality holds for c, that
is, if C̄r defines at least Mc ≥

∑c
m=1 m different

topologies when there are c classes, then it is also
true for c + 1. To do so, first observe that all M
topologies can be extended to the c+ 1 dimension
by considering a value of −1 for the c+1 coordinate
of each ri dense vector, 1 ≤ i ≤ c. If we define
the rc+1 to be the one-hot vector of c + 1 dimen-
sion, it is easy to see that the c + 1 component
is disjoint with all other components, since θ < 1.
Therefore there are at least Mc different topologies
defined by the c + 1-dimensional C̄r, all of them
with the ωc+1 component disjoint from the other
components. Therefore, we just need to show that
there are c + 1 other topologies to complete this
demonstration. We first show that it is possible
to define c different vectors rc+1, denoted here as
ric+1, in such a way that its associated component is
connected to only one of the other vectors. In fact,
given ri = (ri1, ri2, ...ric), rij ∈ [−1, 1]c, we can ex-
tend all ri to the c+1 dimension by setting the c+1
coordinate to −θi, θi < 1, and for each ri, consider
a vector ric+1 such as ric+1 = (ri1, ri2, ...ric, θi). It
is easy to see that each of the c spaces combining
the original r1, r2, ...rc dense-vectors to each of the
ric+1 dense-vector has at least one new topology
where the component ωc+1 is connected to one
component ωi, i ≤ c. We can always finding a θi
which is large enough so the component ωc+1 is
connected only to the component ωi, there war-
ranting that all the c encodings constructed this
way have different topologies among themselves
and also different from any the previous Mc topolo-
gies (where the component of ωc+1 was always
not connected to any other component). We need
only to demonstrate that we can create one more
topology, different from all of the previous ones, to
finish. To do so, let us extend all ri to the c + 1
dimension by setting the c + 1 coordinate to 0. If
we define rc+1 at the center of the space, that is,
with all coordinates as 0, it is easy to notice that
there is a 0 < θ < 1 which the hyper-dimension
“ball” of radius θ centered in rc+1 intersects with
at least two other “balls” of radius θ defined by ri
and rj , 1 ≤ i, j ≤ c. Therefore the set of dense
vectors defined this way is guaranteed to define a
topology where the component ωc+1 is connected
to at least two other components, and thus is dif-
ferent from the ones we constructed before. Thus,
Mc+1 ≥ Mc+c+1, but since

∑c+1
i=1 =

∑c
i=1 +(c+1),

we obtain Mc+1 ≥
∑c+1

i=1 . As observed before,∑c+1
i=1 > (c + 1)2, yielding Mc+1 ≥ (c + 1)2, and

completing the demonstration. Therefore, the C̄r

function defines more than c2 different topologies
when the number of classes is c.

This completes the demonstration that, for any

number of classes c ≥ 2, the one-hot encoding func-
tion C̄max defines only one topology; the C̄softmax

and C̄d define exactly c different topologies; and for
dense-vector encoding methods such as C̄r, the
number of different topologies increases at least
quadratically with c, as stated in our analysis in the
2D scenario.

5. Empirical Evaluations of the
Encodings

In the previous section we established that dense-
vector encoding methods can represent much more
complex OOS components and output spaces than
one-hot encoding. We now present empirical evi-
dence that dense-vector methods can significantly
outperform one-hot encoding methods in OOS de-
tection tasks and that in tasks without OOS detec-
tion the gains are small or non-existent.

5.1. The Algorithms
We only used the Universal Sentence Embeddings
(USE) (Cer et al., 2018) as the main classifier in
our experiments. We consider the baseline in our
experiments the traditional classification methods
which represent a given class symbol in the one-hot
encoding format. For simplicity, in our experiments
we considered only the softmax function C̄softmax

for the final step of the classification. We refer to
this algorithm as one-hot softmax.

Next, we used the one-hot distance method
which implements one-hot encodings using Eu-
clidean distance, corresponding to the function C̄d.
The main idea is to evaluate the impact of switching
from min-softmax to Euclidean distance, which, as
we saw, creates different topologically OOS spaces
though not increasing the topological count.

As for dense-vector encodings, we evaluated
both knowledge-based and random methods. For
domain knowledge-based dense-vector encodings,
we used the algorithm described by (Cavalin et al.,
2020), called here word graph. Basically, the
graph embedding algorithm DeepWalk (Perozzi
et al., 2014) was used to generate the dense-vector
class embeddings based on a graph composed of
nodes to represent the classes linked to keywords
extracted from the examples in the training set. The
resulting class encodings were the graph embed-
dings associated to the class nodes.

For the dense-vector random encodings, we
employed algorithms identical to the one used in
word graph except that we used N -dimensional
random dense-vector class embeddings instead of
the word graph embeddings. Classes were repre-
sented by N -dimensional vectors filled with values
which were randomly sampled from a uniform dis-
tribution. We refer to the corresponding algorithms



16006

as R(N). For evaluation purposes, we computed a
set of random samples for each R(N) and consid-
ered both the average and minimum value of the
metrics across the samples. This method aims at
exploring different topologies that can be defined
with randomly-created representations and that can
potentially differ from the previous methods.

5.2. Evaluation Metrics
To evaluate the different methods, we used a uni-
form way to select the key θ value. We considered
the fairest way to do so is to use the equal error
rate (EER) evaluation metrics employed in (Ryu
et al., 2017, 2018; Tan et al., 2019; Cavalin et al.,
2020; Pinhanez et al., 2021a). In this evaluation
metric, the threshold θ is set based on the value
where the curves of false acceptance rate (FAR)
and false rejection rate (FRR) intersect. The for-
mer metric corresponds to the number of accepted
OOS samples divided by the total of OOS samples;
the latter represents the ratio between the number
of wrongly rejected in-scope (IS) cases and the to-
tal of IS samples. Additionally, we also took into
account in-scope error rate (ISER), which corre-
sponds to the error considering only IS samples
and no rejection, i.e. θ = 0, similar to the class
error rate in (Tan et al., 2019).

5.3. Experiments and Results
The different algorithms were evaluated in four dis-
tinct intent classification datasets, all of them con-
taining tagged OOS examples. These datasets
comprise the HINT3 intent recognition prob-
lems (Arora et al., 2020), consisting of three small
but unbalanced datasets; and the balanced dataset
known as CLINC150 (Larson et al., 2019), larger
than HINT3 both in the number of classes and ex-
amples.

5.3.1. HINT3 Datasets

The three HINT3 intent recognition problems (Arora
et al., 2020) consist of datasets with actual user
queries and real OOS examples. Each dataset
is related to a single and unique domain and the
datasets possess real-world difficulties such as
small and unbalanced training sets and a small
number of intents. For the experiments, we con-
sidered only the full version of each of the three
HINT3 datasets: SOFTMattress: with 21 intents,
328 training samples, and 231 IS and 166 OOS test
samples; Curekart: with 28 intents, 600 training
samples, and 452 IS and 539 OOS test samples;
and Powerplay11: with 59 intents, 471 training
samples, and 275 IS and 708 OOS test samples.

The neural networks were set with input size of
512, the dimension of the USE vectors; one hidden

layer with 1,000 neurons and dropout rate of 0.1;
parameters trained with the Adam optimizer for 50
epochs; and categorical cross-entropy loss function
for one-hot softmax, and the mean squared error
for the other methods. For the word graph method,
we created the graph by finding the common words
of the training examples as in (Cavalin et al., 2020),
and then used DeepWalk with the class embedding
size set to 200 and walk sizes of 20.

We evaluated 10 different implementations of
the R(N) algorithm, with nine N values ranging
from 10 to 150, and one N equal to the number of
classes c. For each R(N), we trained 500 differ-
ent randomly-generated class encodings to better
explore a relatively large set of dense topologies.
Those systems were compared to one training of
the one-hot softmax, one-hot distance, and word
graph algorithms. We are aware that differences in
results can occur since the neural networks weights
are randomly initialized but we found, in practice,
such differences negligible.

Table 1 shows a summary of the main results,
considering the minimum value of R(N) in each
metric. The best result for each metric is marked
in bold typeface and the best result for the R(N)
algorithms in italic. Regarding the minimum EER
values reached by the R(N) methods, the results
in table 1 show that random sampling is promising
towards finding good dense-vector encodings. For
SOFTMattress, Curekart, and Powerplay11, the
best overall EER values were 0.186, 0.344, and
0.292, respectively from R(25), R(10), and R(10).
Those correspond to improvements in EER, com-
pared to one-hot softmax, of -28%, -27%, and -23%,
respectively.

The improvements in EER seemed to be chiefly
due to improvements in the FAR metric. i.e. bet-
ter OOS detection. Table 1 shows that gains in
FAR happened in the three datasets for every N -
dimension of R(N), and in R(30), R(10), and R(10)
we obtained gains in FAR of -23%, -32%, and -26%
to one-hot softmax, respectively. The FAR metrics
of the best R(N) encodings were not only signifi-
cantly better than one-hot softmax, but also beat
easily one-hot distance and word graph in the three
datasets.

The same did not repeat for ISER, as seen in ta-
ble 1. When considering only the accuracy of clas-
sifying IS input in the intent classes, dense-vector
encodings were able to perform slightly better in
Curekart and Powerplay11, with improvements of
-5% and -4% but not in SOFTMattress.

5.3.2. CLINC150 Dataset

We also explored the publicly-available CLINC150
dataset (Larson et al., 2019), a dataset specifically
designed for the evaluation of OOS detection. Un-
like the HINT3 datasets, it contains a much larger
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Table 1: Summary of the EER, FAR, and ISER results on the HINT3 datasets showing the minimum (min)
values. For each metric, the best result is in bold typeface; and, among the dense-vector encodings
R(N), in italic.

Table 2: Summary of the EER, FAR, and ISER results on the CLINC150 dataset showing the minimum
(min) values. For each metric, the best result is in bold typeface; and, among the dense-vector encodings
R(N), in italic.

number of samples with a total of 18,000 training
samples and 5,500 test samples (4,500 IS and
1,000 OOS), and the number of examples per class
is balanced. Moreover, the number of classes in
this dataset is quite larger than in the HINT3 with
150 classes, and comprises five different domains
unlike the single-domain HINT3 datasets. Also,
the error rates reported in CLINC150 are consider-
ably lower, thus it is more challenging to achieve
improvements to one-hot softmax. Configuration-
wise, we used a slightly modified set of values for
N , starting in 10 and ending in 300, due to the
larger number of classes.

Table 2 shows a summary of the main results,
also considering the minimum value of R(N) in
each metric. In terms of EER, R(20) was the best
encoding, improving one-hot softmax by -35% and
one-hot distance and word graph by -13%. The im-
provement in FAR was even more impressive, from
0.165 of one-hot softmax to 0.095 in R(30), a mas-
sive gain of -42%, although it was only slightly better
than word graph. The ISER metric, on the other
hand, was 3% worse and for small dimensions it
was twice as bad. This indicates that explointing
randomly-defined dense encodings is very likely to
make good OOS detectors, although there is some
decrease in IS accuracy. Since that is aligned with

recent works, arguing that OOS detection and IS
accuracy are negatively correlated (Teney et al.,
2022), these results provide additional evidence
that dense-vectors comprise better topologies for
open-world classification settings. But we acknowl-
edge that considerable effort should be put in find-
ing efficiently an optimal topology for each problem,
although that is out of the scope of this paper.

6. Conclusions

In this work we provide both theoretical evidence
that dense-vector encodings allow much more com-
plex intent spaces in terms of the number of dif-
ferent topologies available to represent the OOS
space. We believe our results support the use of
dense-vector instead of one-hot encodings in intent
classification with OOS detection. Our results also
seem to question the need of knowledge-based
class encoding as argued in (Cavalin et al., 2020;
Pinhanez et al., 2021a). Of course, if such knowl-
edge is available, it may be explored and we have
shown here indications that it can be significantly
improved. But when knowledge is not present, even
the use of a basic random sampling method seems
to be a better option than one-hot encodings.

Although we show that there are dense vector
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encodings which produce better accuracy (notably
in OOS detection), we do not provide an algorithm
which actually finds encodings better than one-hot
encodings. We would love to have such an algo-
rithm, but so far it has eluded our efforts. We think
our research instigates the search for algorithms
of such improved/optimal encodings but it may be
that finding optimal dense-vector encodings is, in
fact, a hard computational problem.

More broadly, our results also suggest that
generic ML systems built using one-hot encoding
may be improved, perhaps dramatically, in practi-
cal applications that need to handle OOS samples
by switching to dense-vector encodings, with or
without domain knowledge. Investigating further
this possibility is imperative in domains other than
intent classification, as well as understanding its
underlying mechanisms.

7. Limitations

What remains an open question is the way such
better topologies can be found. We provided ini-
tial results demonstrated that a random-search can
lead to improved classifiers, but fail to find better
topologies efficiently. Additional search loss func-
tions should be proposed and investigated in the
future.

Another limitation is the lack of in-depth evalua-
tion of setting up the architecture and the parame-
ters of our approach, such as the neural architec-
ture which could be tailored to each problem, and
a proper value for the threshold θ. In this work the
EER copes with the different possibilities of values
for θ but in a practical scenario a validation dataset
containing both IS and OOS examples is required.

In addition, we acknowledge that there are other
baselines which may be stronger that one-hot soft-
max and have not been included in our empirical
evaluation. Nevertheless, they usually include addi-
tional mechanisms which affect their performance,
requiring those mechanisms to be isolated for a
fair comparison. In this work we isolated only the
class representation and showed how that impacts
the results. The impact of those additional mech-
anisms, such as the Mahalanobis distance used
in (Lee et al., 2018b), should be evaluated further
since it can possibly bring additional improvements.

Lastly, given the current ubiquity of Large Lan-
guage Models (LLMs), we believe that the findings
of this paper are applicable to such models, espe-
cially when handling classification settings. In this
work, we made use of LLMs as off-the-shelf tech-
niques, relying on USE but previous work report
comparable results with BERT (Cavalin et al., 2020).
Given the greater complexity of such models, addi-
tional work should be put on such analysis when
fine-tuning is done for new downstream tasks.

8. Bibliographical References

Zeynep Akata, Florent Perronnin, Zaid Harchaoui,
and Cordelia Schmid. 2015a. Label-embedding
for image classification. IEEE PAMI, 38(7):1425–
1438.

Zeynep Akata, Scott Reed, Daniel Walter, Honglak
Lee, and Bernt Schiele. 2015b. Evaluation of
output embeddings for fine-grained image clas-
sification. In Proceedings of the 2015 IEEE Con-
ference on Computer Vision and Pattern Recog-
nition (CVPR’15).

Yonatan Amit, Michael Fink, Nathan Srebro, and
Shimon Ullman. 2007. Uncovering shared struc-
tures in multiclass classification. In Proceedings
of the 24th International Conference on Machine
Learning (ICML’07), pages 17–24.

Gaurav Arora, Chirag Jain, Manas Chaturvedi, and
Krupal Modi. 2020. HINT3: Raising the bar for
intent detection in the wild. In Proceedings of
the First Workshop on Insights from Negative
Results in NLP, pages 100–105. Association for
Computational Linguistics.

Muhammad Nabeel Asim, Muhammad Wasim,
Muhammad Usman Ghani Khan, Waqar Mah-
mood, and Hafiza Mahnoor Abbasi. 2018. A
survey of ontology learning techniques and ap-
plications. Database, 2018.

Deborah Barreau and Bonnie A. Nardi. 1995. Find-
ing and reminding: File organization from the
desktop. SIGCHI Bulletin, 27(3):39–43.

Yoshua Bengio. 2017. The consciousness prior.
arXiv:1709.08568.

Tarek R. Besold, Artur d’Avila Garcez, Sebastian
Bader, Howard Bowman, Pedro Domingos, Pas-
cal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb,
Daniel Lowd, Priscila Machado Vieira Lima, Leo
de Penning, Gadi Pinkas, Hoifung Poon, and
Gerson Zaverucha. 2017. Neural-symbolic learn-
ing and reasoning: a survey and interpretation.
arXivpreprint arXiv:1711.03902.

Christopher M. Bishop. 2006. Pattern Recognition
and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg.

John H Boose. 1989. A survey of knowledge ac-
quisition techniques and tools. Knowledge Ac-
quisition, 1(1):3–37.

Thang D. Bui, Sujith Ravi, and Vivek Ramavajjala.
2018. Neural graph learning: Training neural
networks using graphs. In Proceedings of 11th



16009

ACM International Conference on Web Search
and Data Mining (WSDM).

HongYun Cai, Vincent W. Zheng, and Kevin Chen-
Chuan Chang. 2017. A comprehensive survey
of graph embedding: Problems, techniques and
applications. arXivpreprint arXiv:1709.07604.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Ef-
ficient intent detection with dual sentence en-
coders. arXiv preprint arXiv:2003.04807.

Paulo Cavalin, Victor Henrique Alves Ribeiro, Ana
Appel, and Claudio Pinhanez. 2020. Improving
out-of-scope detection in intent classification by
using embeddings of the word graph space of
the classes. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 3952–3961. Asso-
ciation for Computational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan,
Chris Tar, Brian Strope, and Ray Kurzweil. 2018.
Universal sentence encoder for English. In Pro-
ceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: Sys-
tem Demonstrations, pages 169–174, Brussels,
Belgium. Association for Computational Linguis-
tics.

Shi Kuo Chang. 2001. Handbook of software engi-
neering and knowledge engineering, volume 1.
World Scientific.

Jiefeng Chen, Xi Wu, Yingyu Liang, Somesh
Jha, et al. 2020. Robust out-of-distribution
detection in neural networks. arXiv preprint
arXiv:2003.09711.

Y. Chen, D. Hakkani-Tür, and X. He. 2016. Zero-
shot learning of intent embeddings for expan-
sion by convolutional deep structured semantic
models. In Proc. of the 2016 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP’16), pages 6045–6049.

Andrea Civan, William Jones, Predrag Klasnja, and
Harry Bruce. 2008. Better to organize personal
information by folders or by tags?: The devil is in
the details. Proceedings of the American Society
for Information Science and Technology, 45(1):1–
13.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. 2011. Natural language processing
(almost) from scratch. J. Mach. Learn. Res.,
12:2493–2537.

Gregory W Corder and Dale I Foreman. 2009. Non-
parametric Statistics for Non-Statisticians. USA:
John Wiley & Sons, Inc.

Ernest Davis. 2014. Representations of common-
sense knowledge. Morgan Kaufmann.

Luc De Raedt, Robin Manhaeve, Sebastijan Du-
mancic, Thomas Demeester, and Angelika Kim-
mig. 2019. Neuro-symbolic= neural+ logical+
probabilistic. In Proc. of the NeSy’19@ IJCAI, the
14th International Workshop on Neural-Symbolic
Learning and Reasoning, Macao, China.

Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome,
Kevin Murphy, Samy Bengio, Yuan Li, Hartmut
Neven, and Hartwig Adam. 2014. Large-scale
object classification using label relation graphs.
In Proc. of 2014 European Conference on Com-
puter Vision (ECCV’14), pages 48–64. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Terrance DeVries and Graham W Taylor. 2018.
Learning confidence for out-of-distribution de-
tection in neural networks. arXiv preprint
arXiv:1802.04865.

Cicero Dos Santos and Maira Gatti. 2014. Deep
convolutional neural networks for sentiment anal-
ysis of short texts. In Proceedings of the 25th
International Conference on Computational Lin-
guistics (COLING’14), pages 69–78.

Lisa Ehrlinger and Wolfram Wöß. 2016. Towards
a definition of knowledge graphs. In Proc. of
2016 SEMANTiCS (Posters, Demos, SuCCESS),
volume 48, pages 1–4.

Yueqi Feng and Jiali Lin. 2019. Enhancing out-of-
domain utterance detection with data augmenta-
tion based on word embeddings. arXiv preprint
arXiv:1911.10439.

Marco Fossati, Dimitris Kontokostas, and Jens
Lehmann. 2015. Unsupervised learning of an
extensive and usable taxonomy for dbpedia. In
Proceedings of the 11th International Conference
on Semantic Systems (SEM’15), Vienna, Austria.

Giorgio Fumera, Ignazio Pillai, and F. Roli. 2003.
Classification with reject option in text categori-
sation systems. In Proc. of the 12th International
Conference on Image Analysis and Processing
(ICIAP’03), pages 582– 587.

Artur d’Avila Garcez, Marco Gori, Luis C. Lamb,
Luciano Serafini, Michael Spranger, and Son N.
Tran. 2019. Neural-symbolic computing: An ef-
fective methodology for principled integration of



16010

machine learning and reasoning. arXiv preprint
arXiv:1905.06088.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proc.of
the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining
(KDD’16), pages 855–864.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.
Weinberger. 2017. On calibration of modern
neural networks. In Proceedings of the 34th
International Conference on Machine Learning
(ICML’17), pages 1321–1330, Sydney, Australia.
PMLR.

Jiawei Han, Jian Pei, and Micheline Kamber. 2011.
Data mining: concepts and techniques. Elsevier.

Frederick Hayes-Roth. 1984. The industrialization
of knowledge engineering. In W. Reitman, editor,
Artificial Intelligence Applications for Business,
pages 159–177. Ablex Norwood, NJ.

Dan Hendrycks and Kevin Gimpel. 2017. A
baseline for detecting misclassified and out-of-
distribution examples in neural networks. In Pro-
ceedings of the 2017 International Conference
on Learning Representations (ICLR’17).

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2015. Learning to understand
phrases by embedding the dictionary. arXiv
preprint arXiv:1504.00548.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Drew Hudson and Christopher D Manning. 2019.
Learning by abstraction: The neural state ma-
chine. In Proc. of the Advances in Neural Infor-
mation Processing Systems (NeurIPS’19), pages
5903–5916. Curran Associates, Inc.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka
Marttinen, and Philip S. Yu. 2020. A sur-
vey on knowledge graphs: Representation,
acquisition and applications. arXiv preprint
arXiv:2002.00388.

William Jones, Ammy Jiranida Phuwanartnurak,
Rajdeep Gill, and Harry Bruce. 2005. Don’t take
my folders away! organizing personal informa-
tion to get ghings done. In Proc. of CHI ’05 Ex-
tended Abstracts on Human Factors in Comput-
ing Systems (CHI EA’05), page 1505–1508, New
York, NY, USA. ACM.

Pichai Kankuekul, Aram Kawewong, Sirinart Tan-
gruamsub, and Osamu Hasegawa. 2012. Online
incremental attribute-based zero-shot learning.

In Proc. of the 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR’12),
pages 3657–3664. IEEE.

Dimitri Kartsaklis, Mohammad Taher Pilehvar, and
Nigel Collier. 2018. Mapping text to knowledge
graph entities using multi-sense LSTMs. In Pro-
ceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing
(EMNLP’18), pages 1959–1970, Brussels, Bel-
gium. Association for Computational Linguistics.

I. Lane, T. Kawahara, T. Matsui, and S. Nakamura.
2007. Out-of-domain utterance detection us-
ing classification confidences of multiple topics.
IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 15(1):150–161.

Stefan Larson, Anish Mahendran, Joseph J.
Peper, Christopher Clarke, Andrew Lee, Parker
Hill, Jonathan K. Kummerfeld, Kevin Leach,
Michael A. Laurenzano, Lingjia Tang, and Ja-
son Mars. 2019. An evaluation dataset for intent
classification and out-of-scope prediction. In Pro-
ceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and
the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP’19),
pages 1311–1316, Hong Kong, China. Associa-
tion for Computational Linguistics.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo
Shin. 2018a. Training confidence-calibrated clas-
sifiers for detecting out-of-distribution samples.
In Proc. of the Sixth International Conference on
Learning Representations (ICLR’18).

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo
Shin. 2018b. A simple unified framework for
detecting out-of-distribution samples and ad-
versarial attacks. In Proc. of the 2018 Ad-
vances in Neural Information Processing Sys-
tems (NeurIPS’18), pages 7167–7177. Curran
Associates, Inc.

Fei-Fei Li and Pietro Perona. 2005. A bayesian
hierarchical model for learning natural scene cat-
egories. In Proceedings of the 2005 IEEE Com-
puter Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) - Volume 2,
page 524–531, USA. IEEE Computer Society.

Xiaoya Li, Jiwei Li, Xiaofei Sun, Chun Fan, Tianwei
Zhang, Fei Wu, Yuxian Meng, and Jun Zhang.
2021. kFolden: k-fold ensemble for out-of-
distribution detection. In Proceedings of the
2021 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP’21), pages
3102–3115, Online and Punta Cana, Dominican
Republic. Association for Computational Linguis-
tics.



16011

Shiyu Liang, Yixuan Li, and R. Srikant. 2018. En-
hancing the reliability of out-of-distribution image
detection in neural networks. In Proc. of the Sixth
International Conference on Learning Represen-
tations (ICLR’18).

Kevin Lin, Huei-Fang Yang, Jen-Hao Hsiao, and
Chu-Song Chen. 2015. Deep learning of bi-
nary hash codes for fast image retrieval. In Pro-
ceedings of the 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition workshops
(CVPR’15), pages 27–35.

Marcin Luckner and Władysław Homenda. 2014.
Pattern recognition with rejection: Application
to handwritten digits. In Proc. of the 4th World
Congress on Information and Communication
Technologies (WICT’14).

Robin Manhaeve, Sebastijan Dumancic, Ange-
lika Kimmig, Thomas Demeester, and Luc
De Raedt. 2018. Deepproblog: Neural proba-
bilistic logic programming. In Proc. of the 2018
Advances in Neural Information Processing Sys-
tems (NeurIPS’18), pages 3749–3759. Curran
Associates, Inc.

Christopher Manning and Hinrich Schutze. 1999.
Foundations of statistical natural language pro-
cessing. MIT Press, Cambridge, Massachusetts.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli,
Joshua B. Tenenbaum, and Jiajun Wu. 2019. The
Neuro-Symbolic Concept Learner: Interpreting
Scenes, Words, and Sentences From Natural Su-
pervision. In Proc. of the 2019 International Con-
ference on Learning Representations (ICLR’19).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Alessandro Oltramari, Jonathan Francis, Cory Hen-
son, Kaixin Ma, and Ruwan Wickramarachchi.
2020. Neuro-symbolic architectures for context
understanding. arXiv preprint arXiv:2003.04707.

Matteo Pagliardini, Prakhar Gupta, and Martin
Jaggi. 2018. Unsupervised learning of sentence
embeddings using compositional n-gram fea-
tures. In Proceedings of the 2018 Conference of
the North American Chapter of the Association
for Computational Linguistics (NAACL’18), pages
528–540, New Orleans, Louisiana. Association
for Computational Linguistics.

Mark Palatucci, Dean Pomerleau, Geoffrey E Hin-
ton, and Tom M Mitchell. 2009. Zero-shot learn-
ing with semantic output codes. In Proc. of the
2009 Advances in Neural Information Process-
ing Systems (NeurIPS’09), volume 22. Curran
Associates, Inc.

Emilio Parisotto, Abdel-Rahman Mohamed,
Rishabh Singh, Lihong Li, Dengyong Zhou,
and Pushmeet Kohli. 2017. Neuro-symbolic
program synthesis. In Proc. of the International
Conference on Learning Representations
(ICLR’17).

Jeffrey Pennington, Richard Socher, and Christo-
pher D Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of the
2014 conference on empirical methods in nat-
ural language processing (EMNLP’14), pages
1532–1543.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’14), pages 701–
710.

Claudio Pinhanez, Paulo Cavalin, Victor Henrique
Alves Ribeiro, Ana Appel, Heloisa Candello, Julio
Nogima, Mauro Pichiliani, Melina Guerra, Maira
de Bayser, Gabriel Malfatti, and Henrique Fer-
reira. 2021a. Using meta-knowledge mined from
identifiers to improve intent recognition in con-
versational systems. In Proceedings of the 59th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’21)), pages 7014–7027,
Online. Association for Computational Linguis-
tics.

Claudio Santos Pinhanez, Heloisa Candello, Paulo
Cavalin, Mauro Carlos Pichiliani, Ana Paula Ap-
pel, Victor Henrique Alves Ribeiro, Julio Nogima,
Maira de Bayser, Melina Guerra, and Henrique
Ferreira. 2021b. Integrating machine learning
data with symbolic knowledge from collaboration
practices of curators to improve conversational
systems. In Proceedings of the 2021 CHI Confer-
ence on Human Factors in Computing Systems
(CHI’21), pages 1–13.

Victor Prokhorov, Mohammad Taher Pilehvar,
and Nigel Collier. 2019. Generating knowl-
edge graph paths from textual definitions using
sequence-to-sequence models. arXiv preprint
arXiv:1904.02996.

Pau Rodríguez, Miguel A Bautista, Jordi Gonza-
lez, and Sergio Escalera. 2018. Beyond one-hot
encoding: Lower dimensional target embedding.
Image and Vision Computing, 75:21–31.

Marcus Rohrbach, Michael Stark, and Bernt
Schiele. 2011. Evaluating knowledge transfer
and zero-shot learning in a large-scale setting.
In Proc. of the 2011 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR’11),
pages 1641–1648. IEEE.



16012

Bernardino Romera-Paredes and Philip Torr. 2015.
An embarrassingly simple approach to zero-shot
learning. In Proceedings of the 32nd International
Conference on Machine Learning (ICML’15),
pages 2152–2161, Lille, France. PMLR.

Adam Rule, Amanda Birmingham, Cristal Zuniga,
Ilkay Altintas, Shih-Cheng Huang, Rob Knight,
Niema Moshiri, Mai H Nguyen, Sara Brin Rosen-
thal, Fernando Pérez, et al. 2018. Ten simple
rules for reproducible research in jupyter note-
books. arXiv preprint arXiv:1810.08055.

Seonghan Ryu, Seokhwan Kim, Junhwi Choi,
Hwanjo Yu, and Gary Geunbae Lee. 2017. Neu-
ral sentence embedding using only in-domain
sentences for out-of-domain sentence detection
in dialog systems. Pattern Recognitin Letters,
88(C):26–32.

Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and
Gary Geunbae Lee. 2018. Out-of-domain de-
tection based on generative adversarial network.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP’18), pages 714–718, Brussels, Belgium.
Association for Computational Linguistics.

Gabi Shalev, Yossi Adi, and Joseph Keshet. 2018.
Out-of-distribution detection using multiple se-
mantic label representations. In Proc. of the 2018
Advances in Neural Information Processing Sys-
tems (NeurIPS’18), pages 7375–7385. Curran
Associates, Inc.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open
mind common sense: Knowledge acquisition
from the general public. In Proc. of the OTM
Confederated International Conferences: On the
Move to Meaningful Internet Systems, pages
1223–1237. Springer.

Richard Socher, Milind Ganjoo, Christopher D Man-
ning, and Andrew Ng. 2013. Zero-shot learning
through cross-modal transfer. In Proc. of the
2013 Advances in Neural Information Process-
ing Systems (NeurIPS’13). Curran Associates,
Inc.

Nitish Srivastava and Ruslan Salakhutdinov. 2013.
Discriminative transfer learning with tree-based
priors. In Proc. of the 2013 Advances in Neural
Information Processing Systems (NIPS’13).

Rudi Studer, V Richard Benjamins, and Dieter
Fensel. 1998. Knowledge engineering: princi-
ples and methods. Data & knowledge engineer-
ing, 25(1-2):161–197.

Rudi Studer, Dieter Fensel, Stefan Decker, and
V Richard Benjamins. 1999. Knowledge engi-
neering: survey and future directions. In Proc.
of the 1999 German Conference on Knowledge-
Based Systems, pages 1–23. Springer.

Ming Tan, Yang Yu, Haoyu Wang, Dakuo Wang,
Saloni Potdar, Shiyu Chang, and Mo Yu. 2019.
Out-of-domain detection for low-resource text
classification tasks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP’19), pages 3566–3572, Hong
Kong, China. Association for Computational Lin-
guistics.

Engkarat Techapanurak and Takayuki Okatani.
2019. Hyperparameter-free out-of-distribution
detection using softmax of scaled cosine similar-
ity. arXiv:1905.10628.

Joshua B. Tenenbaum, Charles Kemp, Thomas L.
Griffiths, and Noah D. Goodman. 2011. How to
grow a mind: Statistics, structure, and abstrac-
tion. Science, 331(6022):1279–1285.

Damien Teney, Yong Lin, Seong Joon Oh,
and Ehsan Abbasnejad. 2022. Id and ood
performance are sometimes inversely corre-
lated on real-world datasets. arXiv preprint
arXiv:2209.00613.

Joseph Turian, Lev Ratinov, and Yoshua Bengio.
2010. Word representations: a simple and gen-
eral method for semi-supervised learning. In Pro-
ceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics (ACL’10),
pages 384–394.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Proc. of the 2017
Advances in Neural Information Processing Sys-
tems (NeurIPS’17), pages 5998–6008.

Sachin Vernekar, Ashish Gaurav, Vahdat Abdelzad,
Taylor Denouden, Rick Salay, and Krzysztof Czar-
necki. 2019. Out-of-distribution detection in clas-
sifiers via generation. In Proc. of the Safety and
Robustness in Decision Making Workshop of the
2019 Advances in Neural Information Processing
Systems (NeurIPS’19).

Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu,
Dipankar Das, Bharat Kaul, and Theodore L.
Willke. 2018. Out-of-distribution detection using
an ensemble of self supervised leave-out clas-
sifiers. In Proceedings of the 2018 European
Conference on Computer Vision (ECCV’18).



16013

Wei Wang, Vincent W Zheng, Han Yu, and Chun-
yan Miao. 2019. A survey of zero-shot learning:
Settings, methods, and applications. ACM Trans-
actions on Intelligent Systems and Technology
(TIST), 10(2):1–37.

Kilian Q Weinberger and Olivier Chapelle. 2009.
Large margin taxonomy embedding for docu-
ment categorization. In Proc. of the 2009 Ad-
vances in Neural Information Processing Sys-
tems (NIPS’09), pages 1737–1744.

Sholom M. Weiss, Nitin Indurkhya, and Tong Zhang.
2012. Fundamentals of Predictive Text Mining.
Springer Publishing Company, Incorporated.

Jason Weston, Samy Bengio, and Nicolas Usunier.
2010. Large scale image annotation: learning to
rank with joint word-image embeddings. Machine
Learning, 81(1):21–35.

Steve Whittaker, Tara Matthews, Julian Cerruti, Her-
nan Badenes, and John Tang. 2011. Am I wast-
ing my time organizing email? A study of email
refinding. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Sys-
tems (CHI’11), page 3449–3458, Vancouver, BC,
Canada. ACM.

Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin
Peng, and Zheng Zhang. 2014. Error-driven in-
cremental learning in deep convolutional neural
network for large-scale image classification. In
Proceedings of the 22nd ACM International Con-
ference on Multimedia (MM’14), pages 177–186.

Zhicheng Yan, Hao Zhang, Robinson Piramuthu,
Vignesh Jagadeesh, Dennis DeCoste, Wei Di,
and Yizhou Yu. 2015. Hd-cnn: hierarchical deep
convolutional neural networks for large scale vi-
sual recognition. In Proceedings of the 2015
IEEE International Conference on Computer Vi-
sion (ECCV’15), pages 2740–2748.

Bai Yang, Zhang Liping, and Zhao Fengrong. 2019.
A survey on research of code comment. In Pro-
ceedings of the 2019 3rd International Confer-
ence on Management Engineering, Software En-
gineering and Service Sciences (ICMSS 2019),
page 45–51, New York, NY, USA. ACM.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei
Liu. 2021. Generalized out-of-distribution detec-
tion: A survey. arXiv preprint arXiv:2110.11334.

Qing Yu and Kiyoharu Aizawa. 2019. Unsupervised
out-of-distribution detection by maximum classi-
fier discrepancy. In Proceedings of the 2019
IEEE/CVF International Conference on Com-
puter Vision (ICCV’19).

Xiaodong Yu and Yiannis Aloimonos. 2010.
Attribute-based transfer learning for object cate-
gorization with zero/one training example. In
Proc. of the 2010 European Conference on
Computer Vision (ECCV’10), pages 127–140.
Springer.

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun
Liu, Yanan Wu, Hong Xu, Huixing Jiang, and
Weiran Xu. 2021. Modeling discriminative repre-
sentations for out-of-domain detection with super-
vised contrastive learning. In Proceedings of the
59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Process-
ing (ACL-IJCNLP’21), pages 870–878, Online.
Association for Computational Linguistics.

Yinhe Zheng, Guanyi Chen, and Minlie Huang.
2019. Out-of-domain detection for natural lan-
guage understanding in dialog systems. arXiv
preprint arXiv:1909.03862.

Wenxuan Zhou, Fangyu Liu, and Muhao Chen.
2021. Contrastive out-of-distribution detection for
pretrained transformers. In Proceedings of the
2021 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP’21), pages
1100–1111, Online and Punta Cana, Dominican
Republic. Association for Computational Linguis-
tics.


	Introduction
	Related Work
	Class Encoding for OOS Detection
	Class Encoding Topologies
	Class Encoding Topologies in 2D
	Class Encoding Topologies in Higher Dimensions

	Empirical Evaluations of the Encodings
	The Algorithms
	Evaluation Metrics
	Experiments and Results
	HINT3 Datasets
	CLINC150 Dataset


	Conclusions
	Limitations
	Bibliographical References

