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Abstract
Post-hoc explanation methods are an important tool for increasing model transparency for users. Unfortunately, the
currently used methods for attributing token importance often yield diverging patterns. In this work, we study potential
sources of disagreement across methods from a linguistic perspective. We find that different methods systematically
select different classes of words and that methods that agree most with other methods and with humans display
similar linguistic preferences. Token-level differences between methods are smoothed out if we compare them on
the syntactic span level. We also find higher agreement across methods by estimating the most important spans
dynamically instead of relying on a fixed subset of size k. We systematically investigate the interaction between k
and spans and propose an improved configuration for selecting important tokens.

Keywords: interpretability, spans, agreement

1. Introduction

Transformer-based models learn to map features
in the input to some output. When training an NLP
system, the model learns to identify the most im-
portant features (in our case tokens) for the final
prediction. Post-hoc explanation methods such as
LIME (Ribeiro et al., 2016) and Integrated Gradient
(Sundararajan et al., 2017) aim to attribute an im-
portance score to the individual features to interpret
the model’s decisions. Generally, these methods
tend to disagree with each other when ranking to-
ken importance on a set of top-k tokens based on
attribution scores (Neely et al., 2022). Given their
disagreement, and assuming that explanations that
are faithful to the transformer’s inner mechanisms
should be agreeable (Jain and Wallace, 2019), the
faithfulness of these methods comes under ques-
tion. However, methods might agree more than
initially appears. For example, Figure 1 shows that
none of the methods selects the same top-4 tokens
and that 12 of the 13 tokens appear in at least one
top-4 selection, indicating a high variance across
methods. Intuitively though, methods seem to tar-
get the verb phrases are standing and are unload-
ing to a high degree as the vast majority highlights
at least one of the tokens in each of these phrases.
Similarly, some methods tend to agree on the noun
phrases shipyard workers (first occurrence) and the
ships, and even more so on different tokenised sub-
words of the same word, namely un and ##loading.
This leads us to hypothesise that agreement be-
tween methods is systematically higher when we
look at the linguistic spans they are targeting: the
constituents to which tokens syntactically belong.

Figure 1: Top-k highlights (light background) per
attribution method and human preference for k = 4.
The syntactic spans are given underneath.

This example shows that a single method may
have a specific preference for one word class over
another, e.g. noun over adjective, auxiliary over
inflected verb form or modifier over head. For ex-
ample, Ramnath et al. (2020) report part-of-speech
(POS) preference statistics for the different layers
of BERT (Devlin et al., 2019) for the Integrated Gra-
dient method. However, the extent to which prefer-
ences differ across methods remains unclear, as
well as its impact on method–method agreement.

A methodological aspect that directly affects
agreement is the selection of the top-k most im-
portant tokens for each method to compare. k is a
relatively under-explored parameter and is defined
as the number of features that are assigned highest
scores by the attribution method, relative to all the
features in the input example. A common way of
picking k is by selecting a fixed number, generally in
the range [1, 10]. Intuitively, a k that is fixed across
instances (e.g. 4) is suboptimal, and the selection
process of k is often overlooked (Jesus et al., 2021;
Camburu et al., 2019) or obtained by an approxima-
tion (Krishna et al., 2022). As an alternative, k can
be estimated dynamically across instances (Pruthi
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et al., 2022; Kamp et al., 2023), but different con-
ceptual settings for this approach and their effect on
agreement have not been investigated yet. Instead
of ranking tokens by attribution score and manually
setting a k, Kamp et al. (2023) propose to auto-
matically detect tokens that are signal peaks in the
input. Hypothesising that spans are better suited
for agreement than tokens conceptually overlaps
with this dynamic k approach. Precisely, the latter
suggests that solely focusing on token-level attri-
bution scores, semi-arbitrary importance cut-offs
and the consequent agreement measurements be-
tween k tokens may be undesirable for interpreting
model behaviour.

In this paper, we aim to disentangle the interde-
pendencies between word class preference, span-
level agreement, and the determination of k. We
show that methods systematically select different
word classes and that methods that agree most
with other methods and with humans exhibit similar
word class preferences. We also find that dynamic
k and spans work well in combination, and that an
adapted threshold for dynamically selecting the k
most important tokens passes our baseline tests
for both token- and span-level k estimation. Our
main contributions are: i) a linguistic analysis of dis-
agreement on the token-level and on the span-level
and ii) an improvement to the dynamic-k estimation
algorithm.1

2. Related Work

In this section, we place our work in the context of
prior work on interpretability (§2.1), the patterns of
linguistic information that attribution methods reveal
(§2.2) and top-k estimation (§2.3).

2.1. Model Interpretation
Tracing the decision processes in neural models
poses difficulties due to various factors, including
their non-linear nature and the absence of explicit
human-defined rules to link patterns in the input
features with output labels. Different research lines
exist to interpret different aspects of the model
(Choudhary et al., 2022; Räuker et al., 2023), such
as the linguistic information that might implicitly be
learned by the model, or the importance that single
input features might have had towards the model’s
decision (Madsen et al., 2022).

To address the latter, post-hoc attribution meth-
ods in NLP have been developed to assign a score
to each token in the input, creating an attribution
profile over the tokens. While these methods are
often being used in error analyses (Bongard et al.,
2022, i.a.), their reliability is questionable. In fact,

1All analyses are available at:
https://github.com/jbkamp/repo-Span-Pref

attribution profiles obtained from different methods
can differ strongly even on the same input. This
leads to an overall low inter-method agreement
(Neely et al., 2022), which has also been found
for domains outside of NLP (Krishna et al., 2022).
Diverging experimental results of such methods on
different models, datasets and tasks provide addi-
tional evidence on their inconsistency. For exam-
ple, when trying to identify the attribution methods
that best align with human preferences–the most
plausible (Jacovi and Goldberg, 2020) methods–,
Atanasova et al. (2020) and Attanasio et al. (2022)
come to fundamentally opposing conclusions. Roy
et al. (2022) characterise disagreement between
methods in a software defect prediction task as
being highest in terms of top-k feature importance,
followed by rank, then sign. Similarly to Pirie et al.
(2023), they propose aggregation schemes for dif-
ferent explanation methods that aim to tackle dis-
agreement in real-world use cases.

One question that, to our knowledge, remains
under-explored, is why attribution methods in NLP
disagree. A key to answering this would be compar-
ing methods on their faithfulness, i.e. the degree
to which methods are reflecting the model’s deci-
sion making process, as recent work (Atanasova
et al., 2023, i.a.) aims to assess. However, directly
measuring faithfulness might only find glimpses of
the model’s inner workings rather than providing
a conclusive answer (Jacovi and Goldberg, 2020).
Therefore, we think that the first step should be ex-
plaining disagreement by the observable output of
the methods, i.e. the attribution profiles. We aim to
provide a linguistic comparison by quantifying the
kind of features that are targeted, expecting differ-
ent methods to consistently target different classes
of words.

2.2. Linguistic Patterns in Attributions
Identifying the linguistic preferences of models is
important in order to pinpoint the cues upon which
models depend during inference time. Only a hand-
ful of studies have explored POS preference. Es-
pecially in a feature attribution setting, there is little
evidence that shows certain preferences by differ-
ent attribution methods and how these preferences
differ. Lai et al. (2019) find that different models
(i.e. LSTM, XGBoost and SVM) have different POS
preferences on the same data and task, but they
do not explore preferences for different attribution
methods. Ramnath et al. (2020) examine the top-5
most important tokens in each layer and find that
BERT (Devlin et al., 2019) primarily focuses on
nouns in all 12 layers, followed by verbs and ad-
jectives. Interestingly, both punctuation tokens and
stop words each correspond to 10% in the top-5
selections. However, only Integrated Gradient (Sun-
dararajan et al., 2017) was used in this experiment,

https://github.com/jbkamp/repo-Span-Pref
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limiting the generalisability of their findings. Our
analyses differ from theirs in that we compare differ-
ent methods and investigate the overlap between
agreement and linguistic preference.

Language (and model behavior) can often not be
explained by merely highlighting individual tokens.
Rather, we would ideally observe how features act
in combination with each other and, for example, if
they do so hierarchically. As an alternative way of
analysing the attributions of tokens in isolation, we
find a growing line of research on feature interac-
tions. Jumelet and Zuidema (2023) find evidence
of attribution methods faithfully reflecting linguistic
structure in language models. Sikdar et al. (2021)
combine token-wise attribution scores into scores
assigned to syntactic parent constituents. Similarly,
Babiker et al. (2023) train a model on intermedi-
ate representations in a hierarchical fashion. Song
et al. (2023) aim to capture the causal effect of word
group combinations on the prediction but limit their
scope to the Integrated Gradient method. Pruthi
et al. (2022) anticipate that certain spans of tokens
should be highlighted by attribution methods in a
sentiment analysis task. While their intuition is on
point, the relatively broad expectations found in the
latter underscore the relevance of a clear definition
of token spans and their role in demonstrating how
neighboring features are grouped.

As far as we know, there is no prior work that
covers a linguistic analysis of the token selections
targeted by different attribution methods. To the
best of our knowledge, we are also the first to in-
vestigate the relation between disagreement on the
linguistic level to overall disagreement among meth-
ods. We provide a linguistic analysis in terms of
individual tokens, and also in terms of spans that
have a clear syntactic definition. In particular, we
link disagreement to linguistic preference on the
token level and within spans.

2.3. Top-k Estimation
We analyse the factors of disagreement through
an additional scope, namely top-k estimation. k
represents the number of most important tokens in
the attribution profile. Studies reporting on consis-
tent disagreement between methods do not take
the impact of the k number of selected tokens into
account (Pruthi et al., 2022; Krishna et al., 2022;
Neely et al., 2022). A common way of selecting k is
approximating it to a low value, e.g. 1 or 2 (Bastings
et al., 2022), 5 (Ramnath et al., 2020), 5 or 10 (Cam-
buru et al., 2019), 25% of the average input length
(Krishna et al., 2022). However, a k that is fixed
does not account for variability among instances.
A k that is too low can exclude important tokens
from the comparison, whereas a k that is too high
will include non-important tokens while artificially
boosting agreement between methods. Keeping k

relatively low also helps users to more easily digest
the explanations in a real-world scenario.

The value of k has also been estimated dynami-
cally. Pruthi et al. (2022) set k to 10% of the input
length, assuming that longer inputs have a higher
number of important features than shorter inputs.
Kamp et al. (2023) propose a k that varies dynami-
cally based on properties of the attribution profile
of each instance, aiming to include features that
display above average importance and that focus
more on the targeted region of the input instead of
the specific token. While their method estimates
a value for k that is close to human preference,
we find that their algorithm necessitates further ex-
periments and refinement. Different importance
thresholds are possible and need baseline bench-
marking. Also, as of now, prior methods for de-
termining dynamic k do not explicitly account for
negative attribution scores.

We adopt and improve the dynamic k estimation
by Kamp et al. (2023) throughout §4, when mea-
suring agreement at the span level compared to
the token level. Formally, this dynamic approach
defines a strong signal in the attribution profile as
a score that is higher than its neighboring scores
according to two principles: local importance and
global importance. Local importance requires that
a score must be higher than its strict neighbors
(±1 window) to reduce redundancy of tokens be-
longing to the same signal. In other words, a set
of adjacent tokens with relatively high scores is
converted to a single important signal and the high-
est attribution in the set is kept as the peak of the
signal. Similarly, the global importance principle
requires important signals to be minimally above
average signal strength, i.e. > µap, where ap is
the attribution profile. By only adopting the global
importance threshold, the inclusion of groups of (re-
dundant) neighboring tokens with high attribution
scores is expected to increase k, unnecessarily
boosting the agreement scores. Therefore, the
addition of a local importance setting, which we
keep unaltered for our remaining experiments, is
necessary to estimate signal peaks. As for global
importance, we keep the threshold constant in §4.2
to compare span-level agreement to token-level
agreement in previous work, and explore different
settings in §4.3.

3. Linguistic Analysis

We hypothesize that one of the reasons attribution
methods disagree is that different methods have
different preferences for the classes of words they
target. Following from this, we expect that differ-
ences in word class preferences are put under a
different light when we look at the syntactic spans
they are assigned to.
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3.1. Setup
To analyse the disagreement problem, we consider
six different attribution methods on a natural lan-
guage inference task. For the sake of testing our
hypothesis against the agreement results from prior
work, we follow Kamp et al. (2023) for the exper-
imental setup. For the backbone model, we use
the default training split (549,361 instances) of the
e-SNLI dataset (Camburu et al., 2018) to finetune
DistilBERT (Sanh et al., 2019) 10 times on 10 dif-
ferent random seeds. We then use the model (0.89
F1) with the least variation in attribution profiles
on the default test split (9,842 instances) for analy-
sis. One instance in the dataset corresponds to the
concatenation of a premise followed by a hypoth-
esis. The possible output labels are contradiction,
entailment and neutral, making it a multi-class prob-
lem. Classes are balanced and indicate the relation
between premise and hypothesis.

The words in every instance are also annotated
as being important or not important towards the
output label (3 annotators per instance, 4±3 im-
portant words on average), producing so-called
human rationales (Carton et al., 2020). From these
human rationales, we derive word-level aggrega-
tion scores comprised in the interval [0, 1] indicating
the proportion of annotators that found the word
important. These scores are used to compare attri-
bution scores to human preference when consid-
ering a top-k selection (see Human in Figures 1, 2
and 3). As for the attribution methods, we use both
gradient-based approaches by including Vanilla
Gradient (Simonyan et al., 2014), Integrated Gradi-
ent (Sundararajan et al., 2017), and both versions
multiplied with the input (Shrikumar et al., 2017),
as well as perturbation-based approaches, by in-
cluding Partition SHAP (Lundberg and Lee, 2017)
and LIME (Ribeiro et al., 2016).2

3.2. Preference for a Word Class
The first step in our analysis compares word class
preference of different attribution methods on top-k
tokens. We set k to 4 which corresponds to the
average number of tokens that were highlighted
by humans in e-SNLI. This value is reflected by
a comparable value of averaged dynamic k and
comparable method–method agreement levels as
found by Kamp et al. (2023). Figure 2 illustrates
the occurrence of different word classes among
the tokens with the highest attribution values (i.e.
important tokens) for each method and for human
aggregated annotations. We compare the ratio
of important stop words (Figure 2a), punctuation
tokens (2b), and the distribution of the five most pre-
ferred POS tags by humans: noun, verb, adj, adp,

2Ferret package v0.4.1 (Attanasio et al., 2023).

det (Figure 2c). Interestingly, with regards to In-
tegrated Gradient, Gradient × Input and Integrated
Gradient × Input, roughly 10% in each top-4 selec-
tion on average consists of punctuation. Despite
question answering and natural language inference
being different tasks, we replicate the findings on
punctuation preference for Integrated Gradient by
Ramnath et al. (2020). Notably, these findings do
not generalise to the other methods.

Intuitively, this preference seems to be inherent
to the method and not to the underlying model, as
each instance normally is a concatenation of two
sentences tailed by a full stop each; hence, it is
very unlikely that the model is using punctuation
as shortcut signals to the output labels. This might
suggest that some methods pick up information
about the approximate location of a signal in the
sentence (locality information), rather than the pre-
cise token (lexical information). While punctuation
may be a simple symptom of locality, it is important
to further examine this phenomenon in the broader
context of spans. We do so through a linguistic
analysis of spans of locally adjacent tokens, the
use of dynamic k, and their intersection in §4.

Stop words on the other hand do not display
a similar preference as found by Ramnath et al.
(2020) (40% versus 10% for Integrated Gradient),
indicating that this difference might be task-related.
For the other POS tag preferences, we do not ob-
serve a clear overlap with prior research for Inte-
grated Gradient (noun: no overlap; verb: overlap;
adj: no overlap; adp: cannot compare; det: cannot
compare). What we do observe from Figure 2, is
the systematic different preference for stop words,
punctuation and most frequent POS tags by Inte-
grated Gradient, Gradient × Input and Integrated
Gradient × Input (Group 1), compared to the other
methods and to humans (Group 2). Hence, this
intuitively leaves us with two groups displaying dif-
ferent word class preferences.

Assuming that methods (including human ratio-
nales) are independent, we apply Chi-Square tests
to method–method (and human–method) pairs’
preference distributions.3 For each pair, we mea-
sure whether there is a significant difference be-
tween stop word distributions, between punctua-
tion distributions and between POS tag distribu-
tions. The tests confirm our initial observations
that most distributions from one group are signifi-
cantly different from the other group (25/36 pairs,4
with p < .05) and that no significant differences are
found within groups. Most of the exceptions arise
for pairs involving Integrated Gradient × Input, with
3 out of 3 non-significant differences found in com-

3The full Chi-Square tests are given in Appendix A.
4A total of twelve Group 1 – Group 2 comparisons are

possible for each of the three word classes (stop words,
punctuation and POS), resulting in 36 pairs.
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bination with Partition SHAP,5 2 out of 3 with LIME
and 1 out of 3 with human rationales. Hence, Inte-
grated Gradient × Input explains half (6/11) of the
non-significant differences found and can roughly
be placed in between the two groups. Addition-
ally, punctuation preferences account for half (6/11)
of the non-significant differences between groups.
This might be due to the small numbers of the punc-
tuation frequencies, which may have affected the
Chi-Square statistics.

Primarily Integrated Gradient and Gradi-
ent × Input, followed by Integrated Gradient × Input,
are indeed the methods for which Kamp et al.
(2023) find that method–method and human–
method agreement are lowest. This shows that the
high similarity in terms of word class preference
for the methods in Group 1 results in consistently
lower agreement. Simultaneously, the similar
preference for methods in Group 2, which happens
to be close to human preference, correlates with
higher agreement. From the opposite perspective:
methods that are similar in terms of agreement
scores exhibit similar word class preferences.

3.3. Span Definition
We obtain syntactic spans by shallow parsing the
data with Flair chunker (Akbik et al., 2018), similarly
to Zhou et al. (2020) who use parsed constituents
as pre-processed spans for a parsing experiment.
Chunking is commonly adopted in Named Entity
Recognition where usually noun phrases or verb
phrases are the focus of interest (Taufiq et al., 2023).
For our task, the advantage of this method over full
constituency parsing (Kitaev et al., 2019, e.g.) or
dependency parsing (Chen and Manning, 2014,
e.g.) is that the chunker output of discrete non-
overlapping units facilitates direct alignment with
attribution values. Punctuation tokens are ignored
by the parser; we treat them as separate spans.

Sikdar et al. (2021) use constituency parsing
(Mrini et al., 2020) as a basis for hierarchically at-
tributing feature importance scores from tokens to
phrases (including any subphrases). However, dif-
ferent methods can have different word class prefer-
ences (e.g. a noun modifier may systematically be
attributed more importance over its head) and it is
therefore questionable whether score aggregation
of any kind is a sensible approach. Having clearly
defined, non-overlapping phrases is instead crucial
to our initial hypothesis.

In our dataset, each sentence contains on av-
erage 24.4 tokens (6–73), which are grouped into
15.3 spans (3–45). The average ratio of spans
over tokens is 0.63 (0.23–1.0). A targeted span is

5For each pair of methods, there are three word
classes for which significance can be tested. We there-
fore compute the ratio ’i out of 3’.

(a) Relative frequency for important stop words, k = 4.

(b) Relative frequency for important punctuation, k = 4.

(c) Relative frequency for important POS, k = 4. We
consider the 5 most preferred POS tags by humans.

Figure 2: Preference for different word classes per
attribution method.

a span that contains at least one token included
in the top-k selection by the attribution method.
During agreement evaluation we treat spans as
atomic units, meaning that a span is assigned 1
if targeted, otherwise 0 (similarly to tokens in top-
k selection). For a fixed k set to 4, the average
number of targeted spans in a sentence is slightly
lower: Partition SHAP 3.5, LIME 3.6, Vanilla Grad
3.5, Grad × Input 3.6, Integrated Gradient 3.7, Inte-
grated Gradient × Input 3.5, Human 3.3. The aver-
age over methods is 3.5.

3.4. Head vs. Modifier Preference
We have seen that Gradient × Input and Vanilla Gra-
dient exhibit complementary linguistic preferences
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for noun tokens (the lowest versus highest ratio of
noun tokens in the top-4). We zoom in on this phe-
nomenon and investigate the attribution patterns
in noun phrases (NPs), focussing on methods that
select the head over its modifier and vice versa.

We examine a subset of noun phrase spans
that are grouped according to k = 4 by Gradi-
ent × Input and Vanilla Gradient. The NPs must
span a minimum of two tokens to make the pref-
erence analysis for different word classes possi-
ble. To add some consensus stability to this sub-
set, the spans under question should also be tar-
geted by highly agreeing methods Partition SHAP
and LIME. We compare the attribution profiles of
Gradient × Input and Vanilla Gradient on the token
and the span level for the specific [det, noun] con-
struction, the most prevalent among length-2 noun
phrases (73%, 1,963). Interestingly, of the cases
where Vanilla Gradient targeted noun (99%, 1,951),
Gradient × Input targeted det half of the times (899).
This example clearly illustrates how methods do
not only target different word classes in absolute
terms, but also how that translates to systematic,
alternating differences within syntactic spans.

Furthermore, the ratio of targeted tokens in the
[det, noun] NPs is comparable: 57% for Vanilla
Gradient versus 60% for Gradient × Input. This de-
tail strengthens the claim of systematic preference
in that the det–noun alternation, i.a., is usually ex-
clusive. In other words, it is uncommon for the two
described methods to target both tokens from the
NPs. This increases the prominence of the prefer-
ence phenomenon in cases where one selects the
det and the other the noun.

4. Agreement at the Span Level

We showed that different methods have different
word class preferences and that the preference can
be strong in the case of syntactic noun phrases.
A consistently strong preference by two methods
leads to a strong disagreement at the token level.
The expectation that methods should agree on the
token level might therefore be too strict. Given
these insights, we measure method–method and
human–method agreement at the span level, ex-
pecting a relative improvement compared to token-
level agreement.

4.1. Setup

The dataset, model configurations and pool of attri-
bution methods that we use are identical to those
described in the linguistic analysis (§3). In addition,
we adopt the definition for spans given in §3.3. Our
data therefore has a version where the instances
are divided into tokens and one where instances

are split into spans. The details of dynamic k cor-
respond to those described in §2.3.

4.2. The Effect of Dynamic k on Spans
We compare the effect of dynamic k on the span
level versus dynamic k on the token level. We
measure the effect as the increase in agreement i)
versus a baseline to assess overall difficulty of the
task and ii) versus fixed k = 4 to assess the ability
of the dynamic approach to detect important spans.
We expect dynamic k to be better suited than fixed
k to identify linguistic spans that the model con-
siders important in the instance. Specifically, the
local importance setting (in combination with global
importance) appears to work as a pooling opera-
tor, highlighting the distinct important parts of the
instance rather than few concentrated parts. We
assume here that for the specific NLI task, > 1
parts of the input should be considered important.

Agreement is measured as follows. We denote
an attribution method as A. A assigns an at-
tribution profile a = {a1, a2, ..., an} to the input
sequence of tokens s = {w1, w2, ..., wn} so that
each ai indicates the importance of token wi to-
wards the inferred class. The subset of k tokens
with the highest attribution values are formalized
as topkA = {t1, t2, ..., tk}. We compare m attri-
bution methods A1, ..., Am in pairs by calculating
sentence-level agreement@k. Agreement@k is
based on the relevance of a each token. Relevance
for a token wi is equal to the ratio of methods that
include the token in their respective topk subsets.
Agreement@k ignores perfect agreement on non-
important tokens (where relevance = 0) in order
not to inflate the score. For our experiments, we re-
port mean agreement@k, the averaged agreement
over instances in the dataset D = {s1, s2, . . . , sd}.

Relevance r(wi) =

m∑
Aj=1

[wi ∈ topkAj
]

m
(1)

Agreement@k(si) =

n∑
wi=1

r(wi)

n∑
wi=1

[r(wi) > 0]
(2)

Agreement@k(D) =

d∑
si=1

agreement@k(si)

d
(3)

The average pair-wise agreement (all method–
method combinations) for dynamic k is 0.61 on the
token level and 0.69 on the span level. 0.5 indicates
perfect disagreement and 1.0 perfect agreement.
While agreement seems relatively low, it might still
suggest that consistently the same, few types of
signals are identified by a pair of methods.
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(a) Mean span agreement@k = 4.

(b) Mean span agreement@k = dynamic.

Figure 3: Span agreement for fixed and dynamic k.

We compute a baseline to measure how likely
methods are to agree on the token and span level
with a pseudo-random attribution method. In other
words, we measure task difficulty of making two vec-
tors with a subset of important tokens and spans to
agree given a low value of k. For fixed k = 4, 16%
of the tokens in a sentence would be highlighted on
average; consequently, 23% of the spans would be
highlighted on average. For the token-level base-
line, we then randomly shuffle two binary vectors
of 100 elements, 16 of which 1s, and compute
pairwise agreement. We repeat the process 103

times. For the span-level baseline we adopt the
same procedure, with the exception that the 1s in
the vector are 23. The resulting baselines are 0.54
and 0.57, respectively, indicating that agreeing on
tokens and spans is similarly difficult at low values
of k. We thus observe the token-wise baseline for
fixed k being outperformed by 0.07 (0.54→0.61),
whereas the span-wise baseline is outperformed
by a relatively larger increase of 0.12 (0.57→0.69).

The comparison results between span agree-
ment on fixed k versus dynamic k are given in Fig-
ure 3. While dynamic k provided marginal boosts

(+0.00, +0.01, +0.02 compared to fixed k = 4)
on the token level for Gradient × Input and Inte-
grated Gradient (compare Kamp et al. (2023)), it
proves to have a larger positive effect on the span
level. Specifically, the span agreement for method–
method pairs that include Gradient × Input and/or
Integrated Gradient remains constant or increases
(changes from +0.00 to +0.07 compared to fixed
k). At the same time, other method–method and
human–method agreement scores remain constant
or marginally decrease (+0.01, +0.00, -0.01).

With regards to the largest difference observed
between dynamic and fixed k, namely Integrated
Gradient versus Gradient × Input, this can also be
explained through the concentration levels of tar-
geted tokens within spans. In fact, dynamic k scat-
ters the important tokens so that more spans are
targeted compared to selecting an average fixed
k. While k = 4 yields 3.7 and 3.6 spans on aver-
age for the two methods, dynamic k yields 6.9 and
6.5. Since it becomes easier for methods to agree
when more tokens (and therefore more spans) are
targeted, we investigate the settings of dynamic k
further (§4.3).

4.3. Adjusting Dynamic k

How can we validate or improve the dynamic k algo-
rithm? A solid global importance threshold should
meet two conditions: i) resulting values of k should
be low, preferably close to human preference aver-
age of 4±3; ii) they should outperform a baseline.

We explore multiple thresholds: different combi-
nations of µ[+,−][0, 1, 2]σ, typical distances from
the mean in a distribution; the median, which is
more robust to outliers than µ. The thresholds are
calculated for (a) all scores and (b) positive scores.
Thresholds for positive scores should ignore attribu-
tions with negative importance towards the inferred
class. These are common in methods such as Inte-
grated Gradient × Input. The influence of negative
values and peaks in the attribution profiles is not
accounted for by the current threshold set at µ.

The resulting values of k for different thresholds
are given in Table 1. We find that for different thresh-
olds, resulting ks are comparable across methods,
which might indicate that the attribution profiles
have overall similar distributions. The three thresh-
olds that yield closest ks to human preference are
µ, µ > 0 and median > 0. Closeness corresponds
to the averaged Euclidean distance between the
mean±stdev pairs and human preference of 4±3,
for each threshold column.6 Among these three,
µ had already proven to keep k low and close to
ground truth average (Kamp et al., 2023).

Even if the estimated ks by the three candidate
thresholds are relatively low, it could be, for ex-

6See Appendix A for an overview of the distances.
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Thresholds
Method µ µ+ σ µ+ 2σ µ− σ µ− 2σ median

PartSHAP 4.54±1.73 2.16±0.95 1.25±0.65 7.36± 1.89 7.37±1.89 6.19±1.62
LIME 5.34±2.35 2.24±1.05 1.23±0.65 8.31±2.86 8.32±2.87 7.13±2.48

VanGrad 4.58±1.68 2.41±1.02 1.39±0.61 7.63±2.68 7.64±2.69 6.20±2.08
all Grad×I 6.83±2.59 2.39±1.12 0.68±0.65 8.21±2.82 8.28±2.83 7.08±2.51

IntGrad 7.30±2.63 2.66±1.23 0.64±0.63 8.41±2.88 8.46±2.9 7.41±2.58
IntGrad×I 5.68±2.37 2.27±1.08 1.02±0.62 8.04±2.80 8.07±2.82 6.83±2.39

PartSHAP 3.34±1.33 1.86±0.82 1.07±0.55 7.00±2.01 7.28±1.93 5.01±1.61
LIME 3.56±1.56 1.87±0.87 1.06±0.53 7.95±2.91 8.25±2.89 5.59±2.04

VanGrad 4.58±1.68 2.41±1.02 1.39±0.61 7.63±2.68 7.64±2.69 6.20±2.08
> 0 Grad×I 3.51±1.56 1.75±0.83 0.73±0.56 6.81±2.82 7.86±2.92 4.69±1.88

IntGrad 3.47±1.60 1.67±0.81 0.62±0.55 6.60±2.81 7.81±3.05 4.54±1.86
IntGrad×I 3.83±1.69 1.91±0.90 0.98±0.53 7.57±2.74 7.99±2.81 5.38±1.96

Table 1: Values of k for different global importance thresholds. The three methods that yield values of k
closest to human preference are visually indicated with a dark background.

ample, that a method-specific k is too high, posi-
tively biasing the agreement score. A high k would
even give high agreement for a pseudo-random at-
tribution profile, which should not be possible if the
threshold is properly set. Hence, we compare each
method’s agreement scores with other methods
to the method’s agreement with a baseline. This
gives us an indication of how well a specific thresh-
old works with different attribution profiles. We do
this both on the token level and on the span level.
The baseline method operates pseudo-randomly
by assigning attribution scores to the tokens with-
out knowledge about token importance. For each
method, we randomly shuffle the scores in each
attribution profile. Each method has its own base-
line so that the different distributional properties
of the attribution profiles are preserved. We then
compute agreement@dynamic-k between original
and shuffled attribution profiles, which are conse-
quently averaged over the dataset. If the threshold
for k-estimation is strong, the agreement with the
baseline for each method should be lower than the
agreement with other methods.

Token Span
Method BL:minAgr–maxAgr

PartSHAP 0.56:0.56–0.78 0.64:0.64–0.82
LIME 0.57:0.57–0.78 0.65:0.65–0.82

VanGrad 0.56:0.58–0.68 0.64:0.66–0.73
Grad×I 0.59:0.56–0.60 0.68:0.64–0.69
IntGrad 0.60:0.58–0.59 0.69:0.66–0.68

IntGrad×I 0.58:0.58–0.64 0.66:0.66–0.70

Table 2: Token and span agr. with other methods
(range minAgr to maxAgr) versus baseline (BL), for
threshold = µ. Scores < baseline in bold.

Results for µ are given in Table 2. We find that for
µ, Integrated Gradient and Gradient × Input have
higher baseline agreement than the other methods.
This can be explained by the higher values of k
for this threshold (i.e. 6.83 and 7.30 in Table 1).
Importantly, both methods have method–method
agreement scores that do not beat the baseline
(which pseudo-randomly selects tokens), neither
on the token level nor on the span level. With re-
gards to median > 0,7 multiple methods do not beat
their baselines either. The threshold µ > 0 instead
does, for all methods and both on tokens and on
spans. This is an indication of the fact that the latter
might be a better threshold than µ for dynamic k es-
timation. An additional interpretation of why µ > 0
works better than µ is that negative local maxima in
the attribution profiles are hereby ignored, leading
to less but more important k tokens (and spans) to
be targeted. This baseline testing also shows that
Gradient × Input and Integrated Gradient are unreli-
able methods: they have low agreement with other
methods and often fail to beat a random baseline.

5. Discussion

Analysing disagreement from a linguistic perspec-
tive helps us to better understand the differences
between attribution methods. We briefly discuss
the implications of token- and span-level analyses
on other tasks than NLI. With an eye on the abil-
ity and reliability of these methods to reflect the
model’s decision process, we also consider the im-
plications for the faithfulness aspect in interpretabil-
ity research.

7While reporting the baseline tests for threshold = µ
in Table 2, we leave the overviews for thresholds µ > 0
and median > 0 to Appendix A.
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Generalisability of Spans Generally speaking,
an NLI task is sufficiently challenging that it avoids
sentences of different classes (e.g. contradiction,
entailment) differing by exactly one word. It is there-
fore fair to expect methods to target the same span
and not to penalise them for disagreeing on the
token level. However, targeting a modifier instead
of its syntactic head can make a big difference
for other tasks. Additionally, the span-token ratio
should determine the difficulty of assessing span-
level agreement compared to tokens. The choice of
considering spans rather than tokens should there-
fore be weighted against the type of task and data.

On a similar note, §3.2 describes the systematic
differences in punctuation preferences. We may hy-
pothesise that methods that consistently include full
stops in their top-k are actually catching the signal’s
onset (locality information) rather than the full stop
being itself a signal (lexical information). To this
end, our choice of treating punctuation as separate
spans might have influenced the span agreement
of such methods. More research is necessary to
disentangle locality from lexical information.

Agreement as a Proxy for Faithfulness Agree-
ment is linked with both plausibility and faithful-
ness. We considered plausibility when estimating
dynamic k thresholds, as we aimed for ks close to
human preference. However, a more direct way of
testing for plausibility in this context is by assess-
ing human–method agreement, which we mostly
left out of scope in this study. To that end, we did
find that agreement results are constant on both
tokens and spans, possibly suggesting that human–
method agreement reaches a ceiling already at the
token level (i.e. tokens are targeted that belong to
different signals in the sentence). This interpreta-
tion might even hold for more faithful methods. In
fact, models do often not rely on the same patterns
as humans do, instead resorting to shortcut signals.

Measuring faithfulness, on the other hand, is
less straightforward. Following Jain and Wallace
(2019), who state that faithful attention-based ex-
planations should be agreeable, we carefully ex-
tend their perspective in that agreement between
method-generic explanations can be considered as
a proxy for faithfulness. According to the principle
of reproducibility in science (Popper, 2005), a find-
ing that is confirmed through different means is, in
principle, more likely to be correct. As such, if two
attribution methods with distinct means yield similar
results, they are likely similarly (un)faithful. If one
method disagrees with the majority of the batch,
either the one, the majority, or all are unfaithful. Be-
cause of the reproducibility principle, however, it is
more likely that the majority is more faithful.

In this light, we could therefore speculate that
Gradient × Input and Integrated Gradient were two

of the less faithful methods in our study, an argu-
ment that is supported by their scarce agreement
compared to a pseudo-random baseline. Given
that some methods might highly correlate with other
methods by design, one must be careful at drawing
conclusions. Constructing a batch of methods that
is representative of different ways of interpreting
the model is, for this reason, not a simple task.

6. Conclusion and Future Directions

In this study, we approached post-hoc explanation
disagreement from a syntactic perspective. We
found that methods that agree most with other meth-
ods and with aggregated scores of human ratio-
nales have similar POS tag preferences for the
targeted tokens. We then determined that attribu-
tion methods agree more at the span level than at
the token level, which appear to be similarly difficult
tasks at low values of k. One particular reason
for disagreement is the consistent preference by
one method to target the determiners instead of
the noun head within the same noun phrase. We
showed that dynamic k works well in combination
with spans, as it seeks for non-neighboring impor-
tant signals in the sentence. Finally, we empiri-
cally tested for different thresholds of the global im-
portance setting of dynamic k, suggesting a value
(µ > 0) that accounts for both negative attribution
scores and results in low ks.

One issue that dynamic k aims to tackle is the tar-
geting of redundant tokens as signals in the same
span. To complement this, a more in-depth anal-
ysis would provide a better understanding about
the way that different methods concentrate their
targeted tokens in the same spans. Intuitively, for
a fixed k, some methods highlight tokens that are
more sparse across the instance, whereas other
more quickly concentrate targeted tokens within the
same spans. To obtain such a concentration met-
ric, one could measure how rapidly a set of tokens
belonging to the most important ground truth span
are being targeted, at increasing values of k.

Future directions of research include the explo-
ration of different local importance criteria in the
dynamic k algorithm, such as different windows
(current ±1 versus ±2, ±3). Another is to exploit
(syntactic) span-based information to improve inter-
pretability accuracy at the token level, or to improve
explanation aggregation techniques. Finally, we ad-
vise future evaluation datasets based on multiple
annotators’ rationales to preserve specific instance–
annotator mappings in the metadata. This would
facilitate new directions in assessing the plausibility
of attribution methods, specifically how variations
in human subjectivity relate to agreement.
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7. Ethical Considerations

We would like to reiterate that attribution scores
cannot be blindly relied upon to precisely deter-
mine model functioning, as they can be influenced
by experimental factors such as task and model
performance. To avoid drawing generalised con-
clusions, it is advisable to employ multiple metrics
when studying feature attribution.
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A. Appendix

The baseline tests for importance thresholds µ > 0
and median > 0 described in §4.3 are given in Ta-
ble 3 and Table 4, respectively. The averaged Eu-
clidean distances that led to selecting these thresh-
olds (§4.3) are reported in Table 5. In Table 6, we
find the results of the Chi-Square tests adopted
within the linguistic analysis in §3.2.

Token Span
Method BL:minAgr–maxAgr

PartSHAP 0.55:0.55–0.81 0.60:0.61–0.83
LIME 0.55:0.55–0.81 0.60:0.61–0.83

VanGrad 0.56:0.58–0.68 0.64:0.64–0.72
Grad×I 0.55:0.55–0.58 0.60:0.60–0.65
IntGrad 0.55:0.55–0.58 0.59:0.61–0.64

IntGrad×I 0.55:0.57–0.65 0.61:0.61–0.69

Table 3: Token and span agr. with other methods
(range minAgr to maxAgr) versus baseline (BL), for
thresh. = µ > 0. Scores < baseline in bold.

Token Span
Method BL:minAgr–maxAgr

PartSHAP 0.57:0.56–0.76 0.65:0.63–0.80
LIME 0.57:0.56–0.76 0.65:0.63–0.80

VanGrad 0.59:0.58–0.68 0.69:0.66–0.74
Grad×I 0.56:0.56–0.59 0.63:0.62–0.67
IntGrad 0.56:0.56–0.58 0.62:0.62–0.66

IntGrad×I 0.57:0.57–0.64 0.65:0.66–0.74

Table 4: Token and span agr. with other methods
(range minAgr to maxAgr) vs. baseline (BL), for
thresh. = median > 0. Scores < baseline in bold.
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µ µ+ σ µ+ 2σ µ− σ µ− 2σ median
all 12.286 15.200 22.782 24.165 24.342 17.596
> 0 9.082 17.893 23.354 19.756 23.020 10.265

Table 5: The averaged Euclidean distances between the methods’ mean±stdev values for each threshold,
and human preference (4±3). We analyse further the three thresholds visually indicated with a dark
background that have nearest distance to human preference.

Stop words Punctuation POS
Comparison χ2 p df χ2 p df χ2 p df
PartSHAP vs LIME 0.0 1.0 1 0.0 1.0 1 0.0 1.0 4
PartSHAP vs VanGrad 1.247 0.264 1 0.255 0.614 1 2.580 0.630 4
PartSHAP vs Grad×I 7.642 0.006* 1 3.763 0.052 1 10.361 0.035* 4
PartSHAP vs IntGrad 6.155 0.013* 1 2.216 0.137 1 9.578 0.048* 4
PartSHAP vs IntGrad×I 3.611 0.057 1 2.962 0.085 1 5.219 0.266 4
PartSHAP vs Human 0.0 1.0 1 0.255 0.614 1 0.117 0.998 4
LIME vs VanGrad 0.886 0.347 1 0.820 0.365 1 2.580 0.630 4
LIME vs Grad×I 8.595 0.003* 1 2.595 0.107 1 10.361 0.035* 4
LIME vs IntGrad 7.018 0.008* 1 1.316 0.251 1 9.578 0.048* 4
LIME vs IntGrad×I 4.287 0.038* 1 1.920 0.166 1 5.219 0.266 4
LIME vs Human 0.0 1.0 1 0.820 0.365 1 0.117 0.998 4
VanGrad vs Grad×I 15.855 <0.001* 1 7.181 0.007* 1 20.485 <0.001* 4
VanGrad vs IntGrad 13.747 <0.001* 1 5.158 0.023* 1 19.476 <0.001* 4
VanGrad vs IntGrad×I 9.896 0.002* 1 6.157 0.013* 1 13.148 0.011* 4
VanGrad vs Human 0.886 0.347 1 0.0 1.0 1 2.635 0.621 4
Grad×I vs IntGrad 0.021 0.885 1 0.056 0.814 1 0.095 0.999 4
Grad×I vs IntGrad×I 0.536 0.464 1 0.0 1.0 1 1.544 0.819 4
Grad×I vs Human 8.595 0.003* 1 7.181 0.007* 1 10.212 0.037* 4
IntGrad vs IntGrad×I 0.195 0.659 1 0.0 1.0 1 1.242 0.871 4
IntGrad vs Human 7.018 0.008* 1 5.158 0.023* 1 9.381 0.052 4
IntGrad×I vs Human 4.287 0.038* 1 6.157 0.013* 1 4.876 0.300 4

Table 6: Chi-Square test results for comparing different methods on their preference for stop words,
punctuation and POS. Asterisk (*) indicates statistical significance at the 0.05 level. A dark background
visually highlights the hypothesised Group 1 – Group 2 comparisons.
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