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Abstract
We present the SAMER Corpus, the first manually annotated Arabic parallel corpus for text simplification targeting
school-aged learners. Our corpus comprises texts of 159K words selected from 15 publicly available Arabic fiction
novels most of which were published between 1865 and 1955. Our corpus includes readability level annotations at
both the document and word levels, as well as two simplified parallel versions for each text targeting learners at two
different readability levels. We describe the corpus selection process, and outline the guidelines we followed to
create the annotations and ensure their quality. Our corpus is publicly available to support and encourage research
on Arabic text simplification, Arabic automatic readability assessment, and the development of Arabic pedagogical
language technologies.
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1. Introduction

Text simplification aims to reduce the complexity of
a text while maintaining the overall grammaticality
and core content. This is achieved through a series
of different rewriting transformations at both the lex-
ical and syntactic levels. Having simplified versions
of texts has many benefits to users with cognitive
and reading disorders (Carroll et al., 1998; Rello
et al., 2013; Evans et al., 2014), second language
learners (Paetzold and Specia, 2016b), and native
speakers with low literacy levels (Candido et al.,
2009; Watanabe et al., 2009). Text simplification
can also be used as a preprocessing step to im-
prove performance on other downstream NLP tasks
such as machine translation (Štajner and Popovic,
2016; Hasler et al., 2017) and summarization (Sil-
veira and Branco, 2012). Simplifying text can be
achieved in multiple ways, depending on the target
audience: for example, second-language learners
and school-aged learners might struggle with texts
containing different vocabulary items that go be-
yond their respective language proficiency levels.
Yet, research in text simplification has mostly fo-
cused on developing models that produce a single
simplification for a given input without the possibil-
ity of adapting to different users’ needs. Moreover,
studies on text simplification are heavily focused
on English due to the availability of large parallel
simplification corpora (Alva-Manchego et al., 2020).
For other languages, data is limited in terms of size
and domain. And when it comes to morphologi-
cally rich languages, particularly Arabic, we are not
aware of any manually annotated publicly available
datasets for text simplification.

In this paper, we present the SAMER Corpus,
the first manually annotated Arabic parallel corpus

for text simplification targeting school-aged learn-
ers. Our corpus comprises texts of 159K words
selected from 15 publicly available Arabic fiction
novels, 14 of which were published between 1865
and 1955, and one famous philosophical novel writ-
ten in the 12th century. We focus on lexical simplifi-
cation, i.e., replacing complex words in a given text
with simpler alternatives of equivalent meaning. We
define the text simplification task as paraphrasing
into a controlled language with a vocabulary that is
anchored in a readability-leveled lexicon. Our cor-
pus includes readability level annotations at both
the document and word levels, as well as two sim-
plified parallels for each text, targeting school-aged
learners at two different readability levels. We de-
scribe the corpus selection process and outline the
guidelines we followed to create the annotations
and ensure their quality. Our corpus is publicly
available to support and encourage research on
Arabic text simplification and automatic readability
assessment, as well as the development of peda-
gogical language technologies. Table 1 presents
an example from our simplification corpus.

This work is one of the publicly available re-
sources created by the Simplification of Arabic
Masterpieces for Extensive Reading (SAMER)
project (Al Khalil et al., 2017),1 which includes a
readability leveled lexicon (Al Khalil et al., 2018;
Jiang et al., 2020), and a Google Doc add-on
(Hazim et al., 2022).

Next, we discuss related work and basic Ara-
bic linguistic facts. In Section 4, we introduce our
corpus, and describe its selection and annotation
process. Section 5 presents the corpus statistics
and discusses its simplification patterns.

1http://samer.camel-lab.com/

http://samer.camel-lab.com/
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ولیس جمیع الحوادث والأحوال تساوي الدم
الإنساني الذي لا یوجد أثمن منھ، ولا یجب

 أولئك الشعوب الذین یبادرون إلى
 الغارات وفتك بعضھم بعضا على أقل

   بھ، أو أدنى خرافة لا بیت لھا في
رقعة التمدن؛

ولیس جمیع الحوادث والأحوال تساوي الدم
الإنساني الذي لا یوجد أثمن منھ، ولا یجب 
 أولئك الشعوب الذین  إلى 

  بعضھم بعضا على أقل 
  بھ، أو أدنى خرافة لا بیت لھا في

؛

ولیس جمیع الحوادث والأحوال تساوي الدم
الإنساني الذي لا یوجد أثمن منھ، ولا یجب أن
نشبھ أولئك الشعوب الذین  إلى بدء

 بعضھم بعضا على أقل ھدف
لا یؤخذ بھ، أو أدنى خرافة لا بیت لھا في

؛

مضارعة
شن

یعتد لا أرب

أن
بدء نشبھ
ھدف

یؤخذ لا

یبادرون
وفتك الغارات

رقعة التمدن

یسرعون
وقتل الھجمات

منطقة التطور

 

Original
Level 5

Level 4  

Level 3

1

2

4 3

1

2

4 3

2 1

3

4

1

2

4 3

Not all events and conditions are worth human
blood, for there is nothing more valuable than that
blood. Nor should one those people who
take to  raids and slaughtering each
other for the triflest most of ,
or for the weakest of superstitions that has no
refuge in civilization’s domain.
Not all events and conditions are worth human
blood, for there is nothing more valuable than that
blood. Nor should one those people who

 each
other for the triflest most  of , or
for the weakest of superstitions that has no refuge
in .
Not all events and conditions are worth human
blood, for there is nothing more valuable than that
blood. Nor should one imitate those people who

 starting  each other
for the triflest most negligible of aims, or for the
weakest of superstitions that has no refuge in the

.

emulate
 launching

dismissible wants

imitate
starting

negligible aims

 

 

 
 

5

7 6

9 8

5 6 7

9 8

5

7 6

9 8

5 6 7

8 9

take to raids  and slaughtering

civilization’s  domain

rush to attacks  and killing

range  of progress

 

Table 1: An example consisting of two sentences (in three punctuated fragments) and its simplified
parallels from the Arabic novel “The Forest of Truth” (Marrash, 1865). Level 4 is the simplified version of
the original text where all level 5 words (in red) are simplified to level 4 or lower according to Al Khalil et al.
(2018)’s readability lexicon. Level 3 is the simplified version of the Level 4 text where all level 4 words (in
blue) are simplified to level 3 or lower. The words that change during the simplification are co-indexed
with subscript numbers and carry the same color marking of the level they changed from.

2. Related Work

We first provide an overview of existing work re-
lated to general text simplification approaches and
datasets, before zooming in on Arabic text simplifi-
cation specifically.

2.1. Text Simplification Approaches
When simplifying text, different rewriting transforma-
tions are performed. Such transformations range
from lexical simplification, which is the process of re-
placing complex words or phrases with simpler syn-
onyms, to syntactic simplification, which includes
splitting or reordering sentences. Most research
on text simplification has focused on simplifying in-
dividual sentences. This allows for easier curation
of data and reduces the complexity of modeling.
Several modeling approaches for text simplifica-
tion have been explored. This includes syntactic
simplification, lexical simplification, and end-to-end
models that can learn and induce both syntactic
and lexical transformations.

Efforts on lexical simplification often involve four
subtasks: Complex Word Identification, Substitu-
tion Generation, Substitution Selection, and Substi-
tution Ranking (Shardlow, 2014) with approaches
ranging from lexicon-based lookups (Elhadad and

Sutaria, 2007; Kajiwara et al., 2013) to statistical
machine learning systems (Paetzold and Specia,
2016a; Gooding and Kochmar, 2018, 2019), and
more recently, deep learning models (De Hertog
and Tack, 2018; Maddela and Xu, 2018; Qiang
et al., 2020, 2021; Sheang et al., 2022).

In contrast, efforts for syntactic simplification fo-
cused on rule-based systems (Chandrasekar et al.,
1996; Gasperin et al., 2009) and statistical ma-
chine learning techniques by drawing inspirations
from phrase- and tree-based statistical machine
translation models (Specia, 2010; Zhu et al., 2010;
Wubben et al., 2012).

Finally, end-to-end text simplification approaches
are the dominant paradigm in the literature. End-
to-end models can perform multiple simplification
transformations simultaneously, while learning very
specific and complex rewriting patterns. The ma-
jority of approaches treat text simplification as a
monolingual machine translation task, where both
statistical (Coster and Kauchak, 2011a; Wubben
et al., 2012; Xu et al., 2016) and neural machine
translation models (Nisioi et al., 2017; Zhang and
Lapata, 2017; Štajner and Nisioi, 2018; Vu et al.,
2018; Guo et al., 2018; Zhao et al., 2018; Surya
et al., 2019; Martin et al., 2020; Maddela et al.,
2021) were explored. These models require large
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amounts of parallel training data and provide little
control or adaptability to different aspects of simpli-
fication, which inhibits interpretability and explain-
ability. Moreover, these models are typically slow
as they employ autoregressive decoders, i.e., out-
put texts are generated in a sequential, non-parallel
fashion. To address some of these limitations, se-
quence labeling and edit-based models were ex-
plored (Alva-Manchego et al., 2017; Omelianchuk
et al., 2021).

2.2. Text Simplification Datasets

Most of the recent advancements in text simplifica-
tion have focused on English, which is attributed
to the availability of large parallel datasets. Most
of the English datasets (Zhu et al., 2010; Coster
and Kauchak, 2011b; Woodsend and Lapata, 2011;
Kauchak, 2013; Hwang et al., 2015; Kajiwara and
Komachi, 2016; Zhang and Lapata, 2017) were
created by automatically aligning sentences from
English Wikipedia and Simple English Wikipedia,
a simplified version of English Wikipedia that is pri-
marily aimed at English learners, but which can
also be beneficial for students, children, and adults
with learning difficulties.

Although the large scale and availability of
Wikipedia-based corpora is a strong asset to build
simplification models, studies have shown that
Wikipedia-based text simplification corpora are lim-
ited in various ways, including the presence of noisy
instances caused by misalignments and a lack of
variety in simplification transformations (Yasseri
et al., 2012). To address these limitations, several
manually annotated datasets were introduced such
as the Newsela Corpus (Xu et al., 2015), TurkCor-
pus (Xu et al., 2016), HSplit (Sulem et al., 2018),
SimPA (Scarton et al., 2018), and OneStopEnglish
(Vajjala and Lučić, 2018).

While the most popular (and generally larger)
resources available for simplification are in En-
glish, there are some resources that have
been built for other languages such as Basque
(Gonzalez-Dios et al., 2014), Brazilian-Portuguese
(de Medeiros Caseli et al., 2009; Aluísio and
Gasperin, 2010), Danish (Klerke and Søgaard,
2012), French (Grabar and Cardon, 2018; Gala
et al., 2020; Cardon and Grabar, 2020), German
(Klaper et al., 2013; Battisti et al., 2020; Aumiller
and Gertz, 2022), Italian (Brunato et al., 2015;
Tonelli et al., 2016; Miliani et al., 2022), Japanese
(Goto et al., 2015; Hayakawa et al., 2022), Spanish
(Bott et al., 2012; Xu et al., 2015; Saggion et al.,
2015), Russian (Dmitrieva and Tiedemann, 2021;
Sakhovskiy et al., 2021), and Urdu (Qasmi et al.,
2020).

بَیْت، شَجَرَة، صَنَعَ، لكِن

جَزیرة، داكِن، خَدَعَ، إذا

مُتْحَف، رِئة، لَدى، كَيْ

اِقْتِصاد، طُمَأنینة، راقِي، نَكَثَ

قَسْطَرة، ھَیْضة، لَوْذَع، شُعَبيّ

Level Grade Age Examples

L1 1 6

L2 2-3 7-8

L3 4-5 9-10

L4 6-8 11-14

L5 9+ 15+

house, tree, to make, but

island, dark, to cheat, if

museum, lung, with, for

economy, tranquility,
sophisticated, to breach

catheterization, cholera, witty,
bronchial

Table 2: The five readability levels, their grade
equivalencies, and lemma and English gloss exam-
ples, abridged from Al Khalil et al. (2020).

2.3. Arabic Text Simplification
While there are some limited efforts to publishing
simplified and abridged texts in Arabic, the only
simplification resource that was used in NLP, to
our knowledge, is the simplified version of “Saaq
al-Bambuu (The Bamboo Stalk)” (Sanusi, 2012),
an internationally acclaimed Arabic novel, that has
been rewritten for Arabic-as-a-second-language
learners (Familiar and Assaf, 2017). Khallaf et al.
(2022) automatically aligned sentences from “Saaq
al-Bambuu” and sampled 2,980 parallel sentences
from the original and simplified books at two differ-
ent literacy levels. Unfortunately, due to copyright
restrictions, the corpus is not publicly available.

More recently, there have been grassroots ef-
forts to create Arabic text simplification resources
(Al Khalil et al., 2017, 2018, 2020; Jiang et al., 2020;
Hazim et al., 2022). As part of the SAMER Project,
Al Khalil et al. (2020) developed a 26K-lemma lexi-
con with a five-level readability scale, later extended
to 40K lemmas (Jiang et al., 2020). The levels
range from L1 (Low Difficulty/Easy Readability) to
L5 (High Difficulty/Hard Readability). See exam-
ples in Table 2. We use this lexicon as our main
reference for readability leveling when creating our
corpus to ensure that our simplified texts are ap-
propriate for the audience we are targeting. Hazim
et al. (2022) created a Google Docs add-on for
automatic Arabic word-level readability visualiza-
tion, which includes a lemmatization component
that is connected to the five-level readability lexicon
(Al Khalil et al., 2020) and Arabic WordNet-based
substitution suggestions (Black et al., 2006). The
add-on enables users to edit texts easily based on
a specific target readability level. We use the add-
on as our main annotation tool to enable human
annotators to identify text readability levels and to
simplify texts in a controlled setting.
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3. Arabic Linguistic Facts

Arabic is a morphologically rich language that in-
flects for gender, number, person, case, state, as-
pect, mood and voice, in addition to numerous at-
tachable clitics such as prepositions, particles, and
pronouns (Habash, 2010). This results in a large
number of forms for any particular word, with dif-
ferent morpho-syntactic restrictions. In addition to
its morphological richness, Arabic is orthographi-
cally ambiguous and uses diacritics to specify short
vowels and consonantal doubling. These diacrit-
ics are optional and often omitted, leaving readers
to decipher words using contextual and templatic
morphology clues. Orthographic ambiguity and
morphological richness interact heavily with each
other. For instance, the word AîD�PX drshA has differ-
ent readings with varying analyses including AîD

�
�
��P
�
X

dar∼asa+hA ‘he taught her’, AîD�� �P �X darasa+hA ‘he
studied it’, and AîD

�
� �P
�
X darsu+hA ‘her lesson’. More-

over, these different readings have three unique
lemmas (lexical entries) that abstract away from
the various inflections: �

��P
�
X dar∼as ‘taught’, ��P

�
X

daras ‘studied’, and ��P
�
X dars ‘lesson’. This issue

highlights the complexity of lexical simplification in
Arabic, which cannot be accomplished through a
simple word dictionary lookup.

The SAMER project lexicon (Al Khalil et al., 2020)
discussed above anchors readability at the lemma
representation of the words. There are publicly
available Arabic morphological disambiguation and
lemmatization tools that diacritize Arabic text and
map each word to a predicted lemma (Pasha et al.,
2014; Obeid et al., 2022).

In this paper we focus on Modern Standard Ara-
bic (MSA) and do not discuss dialectal Arabic vari-
ants, which are not typically used in high literature.

4. The SAMER Arabic Text
Simplification Corpus

4.1. Corpus Selection
In making the specific selection of texts to annotate,
we aimed to cover Arabic fiction novels from a large
historical span with high readability levels (i.e., hard
to read) targeted toward proficient Arabic readers.
But most importantly, we wanted the texts to be
publicly available (out of copyright or under open
licenses). We identified and selected 15 Arabic fic-
tion novels that match these requirements from the
online catalog of the Hindawi Foundation.2 Most
of the novels were published between 1865 and
1955 and one philosophical novel was from the 12th
century. From each novel, we extracted the first

2http://www.hindawi.org/

∼10K words based on chapter boundaries, and we
ended up with ∼159K words in total. To make the
annotation task easier, we further segmented the
chapters based on paragraph boundaries if they
consisted of more than 1,500 words. This resulted
in 4,289 paragraphs. We were restricted by an an-
notation budget that affected how many novels we
could work with. There were many interesting op-
tions that we decided to leave to future annotation
follow-up projects. Table 3 presents the list of the
selected books.

4.2. Corpus Annotation
Our goal is to simplify the Arabic fiction novels we
selected so that they can be targeted toward school-
age learners. Given Arabic morphological richness,
we consider the lexical and syntactic aspects of
text simplification to be independent and comple-
mentary to each other. In our work, we focus on
lexical simplification for a number of reasons. First,
research has shown that lexical simplification im-
proves text readability (Leroy et al., 2012), benefit-
ing those with lower literacy levels and non-expert
readers (Xu et al., 2015). Second, we want to cre-
ate our dataset in a controlled way to avoid context
inconsistencies that may result from changing the
syntactic structure of Arabic text. This process en-
sures that the simplified text is indeed of a lower
complexity while being semantically equivalent to
the original, and grammatically correct.

To ensure that the simplified texts are indeed
appropriate for our target audience throughout the
annotation process, we use the five readability lev-
els that were defined by Al Khalil et al. (2020) and
exemplified in Table 2. For the purpose of the cor-
pus annotation, we consider the document read-
ability level to be equal to the highest readability
level found among the words in the document. Our
focus is on the needed competence level to eas-
ily read a document rather than the use of docu-
ments as language-learning artifacts. Based on
this and given the nature of the documents we
selected, all documents will have a readability of
Level 5 (although some sentences in them may be
of lower/easier readability levels). We focus on pro-
ducing two simplified versions for each document
targeting Level 4 (grades 6–8) and Level 3 (grades
4-5), respectively.

4.3. Annotation Interface
Three professional female computational linguists,
all of whom are native speakers of Arabic, were
hired through a linguistic annotation firm to com-
plete the task.3 The annotators were provided with
146 Google Docs that included the chapters that

3https://www.ramitechs.com/

http://www.hindawi.org/
https://www.ramitechs.com/
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حي بن یقظان ابن طفیل

غابة الحق فرانسیس مراش

لادیاس أحمد شوقي

المحالفة الثلاثیة في المملكة الحیوانیة أمین ریحاني

الملك كورش زینب فواز

الأجنحة المتكسرة جبران خلیل جبران

زینب محمد حسین ھیكل

شجرة الدر جرجي زیدان

إبراھیم الكاتب إبراھیم عبد القادر المازني

ثورة في جھنم نقولا حداد

سارة

فارس بني حمدان علي الجارم

على باب زویلة محمد سعید العریان

نماذج بشریة أحمد رضا حوحو

ھذا التاج واصف البارودي

���س ����د ا����د

Words
Book Title Author Date Para. Frag. Original L4 L3

4,289 20,603 159,265 159,677 160,149

Hayy Ibn Yaqzan Ibn Tufail

The Forest of Truth Francis Marrash

Ladiyas Ahmed Shawqi

The Tripartite Alliance of
the Animal Kingdom

Ameen Rihani

Cyrus the Great Zaynab Fawwaz

Broken Wings Kahlil Gibran

Zaynab

The Pearl Tree Jurji Zaydan

Ibrahim Al-Katib Ibrahim Abd Al-Qadir Al-Mazini

A Revolution in Hell Niqula Haddad

Sara Abbas Mahmoud  Al-Aqqad

The Knight of Beni Hamdan Ali Al-Jarem

On Bab Ziwaila Mohammed Saeed Al-Aryan

Human Examples Ahmad Rida Huhu

This Crown Wasef Al-Baroudi

1150 213 770 9,962 9,968 10,018

1865 241 1,019 10,081 10,111 10,159

1899 300 1,481 9,846 9,914 9,951

1904 315 1,716 10,577 10,595 10,664

1905 235 1,540 9,910 9,939 9,958

1912 170 1,245 11,482 11,518 11,552

1913 138 1,094 9,861 9,855 9,848

1914 296 1,593 12,230 12,263 12,268

1931 295 1,230 10,173 10,198 10,232

1938 492 1,702 11,713 11,743 11,788

1938 300 1,057 10,079 10,111 10,135

1945 329 1,607 10,820 10,838 10,865

1951 313 1,576 11,701 11,743 11,786

1955 443 1,406 10,080 10,111 10,133

1955 209 1,567 10,750 10,770 10,792

 

Mohammed Hussein Heikal

Table 3: The 15 books we selected to create the SAMER Arabic Text Simplification Corpus. L4-Words
and L3-Words refer to the number of words in the Level 4 and Level 3 simplified versions of the books,
respectively. Para. is Paragraphs; and Frag. is Punctuated Fragments.

needed to be simplified. Every Google Doc was
equipped with the add-on developed by Hazim et al.
(2022) which served as the primary annotation in-
terface. Before sharing the documents with the
annotators, all the documents were automatically
labeled with their word-level readability using a
Python API version of the add-on developed by
Hazim et al. (2022). The Python API performs the
same functionality as the add-on, but it relies on
CAMeL Tools (Obeid et al., 2020) to tokenize and
disambiguate the words in context for each chapter.
Specifically, the API leverages the BERT unfac-
tored morphological disambiguator developed by
Inoue et al. (2022) to retrieve the most probable
lemma and part-of-speech (POS) tag for each word.
After that, the lemmas and POS tags are looked up
in the lemma-based readability lexicon developed
by Al Khalil et al. (2020) to identify the readability
levels of the words. The add-on employs two addi-
tional levels to classify proper nouns (Level 0) and

unknown words (Level 6) that are not present in
the lexicon. After the word-level readability label-
ing is done, each chapter is loaded into a Google
Doc where the add-on highlights words with dif-
ferent colors according to their readability levels.
Figure 1(a) presents a visualization of using the
add-on to analyze the readability of a short seg-
ment of an Arabic novel. The interface provides a
summary of the text’s readability distribution levels
in a bar chart colored consistently with the read-
ability level word highlights. The interface also pro-
vides the option for explicit word-level readability
markup by adding a prefix (#<level>#) in front of
each word, where <level> is an Indo-Arabic digit
indicating the word readability level (see Figure 1).
Moreover, the add-on incorporates the Arabic Word-
Net (Black et al., 2006) and supports word substitu-
tion by displaying suggestions for related words and
phrases, e.g., synonyms, antonyms, hypernyms,
and hyponyms, with different readability levels. Fig-
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(a)

(b)

Figure 1: The Google Doc add-on annotation interface introduced by Hazim et al. (2022). Figure (a)
is a visualization of word-level and document-level readability. Figure (b) is an example of selecting a
specific word to identify all of its analyses and their readability levels. The add-on has multiple markup
viewing modes. We show the maximally explicit view where each word is prefixed by an Indo-Arabic digit
indicating its level.

ure 1(b) shows the result of selecting a specific
word (ÐQ¢ 	

�
�
�ð wtĎTrm ‘be inflamed’). A sidebar

appears showing the different lemma analyses by
their readability levels. If the annotators decide to
change the automatically assigned readability level,
they can either change it directly manually, or by
clicking on the Assign button to change that spe-
cific word’s readability level markup or the Assign
All button to change all of its occurrences in the
document.

4.4. Annotation Guidelines

The annotation process starts with determining the
original text readability level. To do so, the annota-
tors are instructed to check the word-level readabil-
ity levels assigned to each word using the add-on.
The annotators would then determine the readabil-

ity level of the document based on the highest read-
ability level found among the words in the document.
Since the readability levels are automatically gen-
erated, there might be cases where the predicted
levels do not reflect the true readability of the words.
This could happen either because the lemmas of
some words are not in the lexicon or due to mor-
phological tagging errors when the lemmas and
POS tags are identified. Therefore, the annotators
are asked to use the add-on to fix all of the anoma-
lies related to the readability levels of the words.
In cases where correct readability levels are not
among the add-on suggestions, the annotators are
asked to adjust the levels manually.

After making the corrections, the annotators
need to re-run the add-on analysis to determine the
document’s readability level. If the document has
a readability of Level 5, then the annotators have
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Original L4 L3
L0
L1
L2
L3
L4
L5
L6

Total

2,631 1.7% 5,212 3.3% 5,246 3.3%
83,772 52.6% 90,232 56.5% 95,898 59.9%
23,103 14.5% 26,297 16.5% 30,015 18.7%
22,517 14.1% 24,630 15.4% 28,990 18.1%
14,965 9.4% 13,306 8.3% 0 0.0%
9,463 5.9% 0 0.0% 0 0.0%
2,814 1.8% 0 0.0% 0 0.0%

159,265 100% 159,677 100% 160,149 100%

Table 4: Readability levels statistics of the words in our corpus over the original text (Original), Level 4
simplified text (L4), and Level 3 simplified text (L3).

to first simplify it to Level 4, and then to Level 3
starting from Level 4. If the original document has
a readability Level 4 then the annotators need to
simplify it to Level 3. However, if the document
has a readability Level 3 then no simplification is
needed. When simplifying text, the annotators are
allowed to perform minimal replacements, dele-
tions, and insertions that are needed to reduce the
readability level of the document. Each of these
operations might involve more than one word at a
time. However, the simplification should be done
carefully so that the original meaning of the text is
preserved, and as such no abridgement or summa-
rization should take place. Once the simplification
is done, the annotators need to re-run the add-on
to analyze the text and verify that the document
readability level has been adjusted as intended. At
the end of the annotation process, each document
will have three parallel versions: (1) The Original
text; (2) Level 4 simplified text; (3) and Level 3
simplified text. Each of the parallel versions will
also have document- and word-level readability an-
notations. Moreover, all three versions of each doc-
ument will have the same number of paragraphs
and sentences by design.

5. Corpus Overview and Statistics

5.1. Inter-Annotator Agreement

To validate the quality of the annotations, we se-
lected ∼1300 words from each book (17 para-
graphs or ∼20K words in total) to be double an-
notated. Quantitatively, the differences between
the annotators’ texts are on par with the differences
from the original text. As such our inter-annotator
agreement check is mostly qualitative. We iterate
over the doubled-annotated files word by word to
investigate all differences. The double-annotated
data had ∼6.8% word-level mismatches when sim-
plifying the original text to Level 4. The number

of mismatches increased to 13.2% for Level 4
to Level 3 simplification. Most mismatches came
from the fact that the annotators made different lexi-
cal simplification choices throughout the annotation
process. Annotation mistakes were very infrequent
and constituted ∼10% of all mismatches.

5.2. Corpus Readability Statistics

Table 4 presents the readability levels of the words
in our corpus over the Original, Level 4, and Level 3
texts. After the annotation, the 15 original texts
(159,265 words) resulted in 159,677 Level 4 words
(0.3% increase from the original) and 160,149
Level 3 (0.3% increase from Level 4). Although
the three versions of the texts are almost identical
in size in terms of the number of words, the distri-
bution of the readability levels of the words varies
significantly. Comparing the readability levels of the
words in the original text against the ones in Level 4
(L4), there is an overall shift from higher to lower
levels in 8.8% of all original words. Specifically,
all of the unknown words in the original text that
are not present in the lemma-based readability lexi-
con (L6) were manually assigned a readability level
and further simplified in case they were of Level 5
(L5). Furthermore, all of the Level 5 (L5) words
and some of the Level 4 (L4) words in the original
text were simplified to lower levels. This highlights
that the simplification process of the original text
to Level 4 involved a mix of manual corrections to
the automatically assigned readability labels and
lexical simplification of words that have a readability
level higher than Level 4 (L4). When it comes to
simplifying Level 4 (L4) text to Level 3 (L3), there is
a comparable 8.3% change coming from simplify-
ing Level 4 (L4) words to lower levels. Lastly, when
comparing the readability levels of the words in the
original text to the ones in Level 3 (L3), there is a
17.1% decrease in the overall readability levels.
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Original-L4 L4-L3
No Change 152,214 95.5% 145,090 90.8%
1-1 6,430 4.0% 13,508 8.5%
1-m 337 0.2% 476 0.3%
m-1 120 0.1% 235 0.1%
Insert 209 0.1% 354 0.2%
Delete 40 0.0% 122 0.1%

Table 5: Lexical simplification transformation statistics in terms of replacements, insertions (Insert), and
deletions (Delete) when simplifying the original text to Level 4 (Original-L4) and Level 4 text to Level 3
(L4-L3). No Change indicates no transformations. 1-1 (one-to-one), 1-m (one-to-many), and m-1 (many-
to-one) indicate the different types of replacements. The percentages are calculated against the source,
i.e., Original for Original-L4, and L4 for L4-L3.

5.3. Transformations Statistics

To obtain the different types of lexical transforma-
tions that were applied throughout the annotation
process, we use and extend the character edit dis-
tance (CED) word alignment tool developed by
Khalifa et al. (2021). We obtain the word-level
alignments between the original text and its Level 4
simplified version (Original-L4) and between the
Level 4 text and its Level 3 simplified version (L4-
L3). Each of these two alignments produces a se-
quence of word-level edit operations representing
the lexical transformations in terms of insertions,
deletions, and replacements that were a result of
the manual simplification process. Each of these
operations could involve more than one word at
a time. Table 5 presents the statistics of the dif-
ferent lexical transformations in our corpus. The
majority of the words did not involve any transfor-
mations (No Change) when simplifying the original
text to Level 4 and the Level 4 text to Level 3. We
quantify three types of replacements: one-to-one
(1-1), one-to-many (1-m), and many-to-one (m-1)
based on the number of words involved in each
transformation. Out of the three replacement types,
1-1 replacements are the majority affecting 4% of
the words in the original text when it is simplified
to Level 4 and 8.5% of the Level 4 text when it is
simplified to Level 3. We note that many-to-many
(m-m) replacements do not occur in the corpus.
When it comes to insertions and deletions, they
represent small percentages of all transformations.

We note that the difference in the number of
changes between lexical transformations (Table 5)
and readability level shifts (Table 4) is due to cor-
rections in leveling without any word change, e.g.,
incorrectly labelled proper nouns are mapped to
Level 0 without changing them.

5.4. Fragments Statistics
After the annotation, we segmented the origi-
nal paragraphs and their annotated parallels into
smaller fragments based on punctuation. Since
punctuation did not change throughout the anno-
tation process, all of the parallel texts in our cor-
pus will have the same number of punctuated frag-
ments, and all of the fragments will be perfectly
aligned. The segmentation was done carefully to
guarantee that the fragments included a combina-
tion of both words and punctuation, rather than
consisting solely of punctuation. We refer to the
output of this segmentation process as fragments
rather than sentences. This is because Arabic sen-
tence segmentation is challenging due to the dearth
of punctuation marks and the dual use of the Ara-
bic comma (,) for phrase and clause boundaries
(Habash et al., 2022). As such these fragments
may be full sentences, subordinated clauses or
phrases. Table 6 presents the statistics of the
fragments in our corpus, with associated exam-
ples. In total, there are 20,603 fragments across all
texts (Original, Level 4, and Level 3). On average,
each fragment consisted of ∼7.5 words. Overall,
43.3% of all fragments did not have any changes,
whereas 12.7% of the fragments included changes
only when the original text was simplified to Level 4
(Change in L4 only). 30.9% of fragments included
changes only when the Level 4 text was simplified
to Level 3 (Change in L3 only). Lastly, 13.1% of
all fragments included changes in both simplified
Level 4 and Level 3 texts.

5.5. Corpus Splits
To aid reproducibility when using our corpus for var-
ious research experiments, we provide train (Train),
development (Dev), and test (Test) splits. We split
each novel based on the number of words into
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n n% Example

No Change 8,920 43.3% Original
L4 & L3

ولكنھا تعلمت في المدارس الفرنسیة أیضا،
But she studied in French school as well.

Change in L4 only 2,610 12.7%
Original

ونسمعھا تندب وتنوح كالثكلى.
And we hear her lamenting and wailing like a bereaved woman.

L4 & L3
ونسمعھا تبكي وتصرخ كفاقدة ابنھا.

And we hear her crying and screaming like one who lost her son.

Change in L3 only 6,369 30.9%

Original
L4

یجب أن یترأس الجلسة،
He must preside over the session,

L3
یجب أن یقود الجلسة،

He must lead the session,

Change in L4 & L3 2,704 13.1%

Original
أحدھما مسرج ملجم،

One of them is saddled and bridled1,

L4
أحدھما مسرج مربوط،

One of them is saddled2 and tied1,

L3 أحدھما معد مربوط،
One of them is readied2 and tied,

Total 20,603 100.0%

Table 6: Statistics of fragments in our corpus based on the changes that are made to the text when it is
simplified to Level 4 (L4) and then to Level 3 (L3). n is the number of fragments. The words in red are all
of readability level 5 and the words in blue are all of readability level 4. L4 is the simplified version of the
original sentence where all level 5 words (in red) are simplified to level 4 or lower. L3 is the simplified
version of the L4 sentence where all level 4 words (in blue) are simplified to level 3 or lower.

Train (70%), Dev (15%), and Test (15%), while re-
specting the full chapter boundaries. We follow the
recommendations of Diab et al. (2013) and select
full chapters from each novel such that the chap-
ters that are in the Dev and Test sets are taken
from well-separated regions of the novel. This en-
sures that results derived from the Dev and Test
sets are not due to mere proximity of subject matter.
Altogether, we end up with 113,476 words (71%)
for Train, 22,280 words (14%) for Dev, and 23,509
words (15%) for Test.

6. Conclusions and Future Work

We presented the first manually annotated Ara-
bic parallel corpus for text simplification targeting
school-aged learners. Our corpus comprises texts
of 159K words selected from 15 publicly available
Arabic fiction novels. Our corpus includes readabil-
ity level annotations at both the document and word
levels, as well as two simplified parallel versions for
each text targeting learners at two different read-
ability levels. We described the corpus selection
process and outlined the guidelines we followed
to create the annotations and ensure their quality.
The corpus, its parallel versions and splits, as well
as, the annotation guidelines are publicly available
on the SAMER Project website:
http://samer.camel-lab.com/.

In future work, we plan to extend our corpus to
include text from other genres and domains. We
also plan to use it in developing models for read-
ability assessment and automatic simplification for
Arabic. By building our corpus and making it pub-
licly available, we hope to encourage research on
Arabic text simplification and automatic readability
assessment, as well as development of personal-
ized Arabic pedagogical applications.
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