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Abstract

To better handle commonsense knowledge, which is difficult to acquire in ordinary training of language models, com-
monsense knowledge graphs and commonsense knowledge models have been constructed. The former manually
and symbolically represents commonsense, and the latter stores these graphs’ knowledge in the models’ parame-
ters. However, the existing commonsense knowledge models that deal with events do not consider granularity or
time axes. In this paper, we propose a time-aware commonsense knowledge model, TaCOMET. The construction
of TaCOMET consists of two steps. First, we create TimeATOMIC using ChatGPT, which is a commonsense knowl-
edge graph with time. Second, TaCOMET is built by continually finetuning an existing commonsense knowledge
model on TimeATOMIC. TimeATOMIC and continual finetuning let the model make more time-aware generations
with rich commonsense than the existing commonsense models. We also verify the applicability of TaCOMET on a
robotic decision-making task. TaCOMET outperformed the existing commonsense knowledge model when proper
times are input. Our dataset and models are available at https://github.com/nlp-waseda/TaCOMET.
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1. Introduction

Recent language models have acquired linguistic
knowledge (Hewitt and Manning, 2019; Manning
et al., 2020) and factual knowledge (Petroni et al.,
2019; AlKhamissi et al., 2022) through pretrain-
ing. This process includes causal language mod-
eling (Radford et al., 2019; Brown et al., 2020),
masked language modeling (Devlin et al., 2019),
and other methods (Lewis et al., 2020; Raffel et al.,
2020). However, because language models learn
only from the surface of the language written by hu-
man beings, they cannot deal well with common-
sense knowledge, which tends to be tacit (Zhou
et al., 2020b; Hwang et al., 2021).

Therefore, some symbolic commonsense knowl-
edge graphs have been constructed, in which com-
monsense knowledge is mainly collected manu-
ally. Typical examples include ConceptNet (Speer
et al., 2017) and ATOMIC (Sap et al., 2019). The
former mainly deals with entity relations, while the
latter deals with events and mental states. The
latter knowledge graph, ATOMIC, includes event-
to-event inferences, i.e., “what events follow an
event” and “what events should have occurred be-
fore an event”. Because a commonsense knowl-
edge graph collects knowledge symbolically, its
coverage is finite. Thus, commonsense knowl-
edge models such as COMET (Bosselut et al.,
2019) have also been proposed, which store the
graph’s knowledge in the models’ parameters.

The shift from symbolic knowledge graphs to
neural models has alleviated the coverage prob-
lem, but they still have problems. One of the prob-
lems is that existing commonsense knowledge
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(a) COMET (Previous work)
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5 seconds later, ... 
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(b) TaCOMET (Ours)

Figure 1: Concept of our proposal. 1(a) Ambigu-
ity exists because previous work does not address
granularity or time. 1(b) Our model clarifies points
in the event space by specifying the time.

models do not consider the granularity of events,
even though every event has a granularity. Granu-
larity has various aspects, such as a part-whole re-
lation of entities or events, a cause-effect relation,
the duration of an event, and the time between
events (Mulkar-Mehta et al., 2011). As an example
of the part-whole relation of events, an event sym-
bolically expressed in natural language as “go to

https://github.com/nlp-waseda/TaCOMET
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school” is possibly interpreted with different granu-
larity, such as (1) “visit the school building” or (2)
“get an education” (Mani, 1998). When consider-
ing the events that follow “go to school”, ambiguity
arises in the inference depending on the interpre-
tation of granularity, such as “go to the library” for
interpretation (1) and “get a job” for interpretation
(2).

However, existing commonsense knowledge
graphs and models do not consider the granular-
ity of events. Because of this, the models can-
not determine which events to generate, as de-
scribed above. Even in automatic evaluation, al-
though multiple correct answers with different lev-
els of granularity exist, only one correct answer is
currently handled.

To this end, we propose a time-aware common-
sense knowledge model, TaCOMET (Time-aware
COMET). We focus on the interval time between
events as one of the most important aspects of
event transition granularity. TaCOMET is a com-
monsense knowledge model that allows inference
generation to be controlled by the time input.

The construction of the model consists of two
steps. First, we create a dataset, TimeATOMIC,
using ChatGPT1 by augmenting existing knowl-
edge graphs with time between events. Second,
an existing COMET model is continually finetuned
on TimeATOMIC. This simple but effective method
builds a model that generates event inferences cor-
responding to the input time.

We conduct experiments in Japanese and En-
glish. Automatic and manual evaluations showed
that the proposed model generates acceptable in-
ferences corresponding to the input time.

The effectiveness of the constructed model was
also verified in a downstream task that makes de-
cisions for interactive robots. Considering the ap-
plication of language models to decision-making in
robotics (Ahn et al., 2022; Wu et al., 2023; Driess
et al., 2023), commonsense inference controlled
by granularity would be useful. For robots, reason-
ing on the scale of months or years is meaning-
less, but that on the scale of seconds to minutes
is meaningful. Our model outperformed the model
without time input, and we also observed that in-
putting an appropriate time for the robot improved
performance.

2. Related Work

2.1. Commonsense Knowledge Graphs
Symbolic Graphs Various commonsense
knowledge graphs have been constructed to deal
with tacit knowledge that does not appear on the
surface of the text.

1https://chat.openai.com/

WordNet (Miller, 1994) and ConceptNet (Speer
et al., 2017) are the ones of linguistic or common-
sense knowledge graphs, which deal with relations
among entities. GenericsKB (Bhakthavatsalam
et al., 2020) is a commonsense knowledge base in
a natural language format, though not in a graph.
A question-answering dataset based on Concept-
Net was also constructed (Talmor et al., 2019).

We deal with commonsense between events
in this paper. ATOMIC (Sap et al., 2019) is
a commonsense knowledge graph that focuses
on the relations between events. There is also
ATOMIC2020 (Hwang et al., 2021), which is an
extended graph of ATOMIC that integrates Con-
ceptNet. ATOMIC stores if-then relations between
events and mental states in the form of triples,
such as (“X makes Y’s coffee”, xEffect, “X gets
thanked”). In this paper, the first item of the triple,
the source event of inference, is called head, the
second item, the type of inference, is called rela-
tion, and the third item, the target event of infer-
ence, is called tail.

To alleviate the coverage problem of the hand-
crafted commonsense knowledge graphs, auto-
matic construction methods have been proposed.
For instance, ASER (Zhang et al., 2019, 2020a)
is a graph that was automatically acquired from
a corpus using rules. ATOMIC10x (West et al.,
2022) was constructed by extending ATOMIC2020
with GPT-3 (Brown et al., 2020). Dense-
ATOMIC (Shen et al., 2023) mitigated the cover-
age problem by predicting additional relations in
existing sparse commonsense knowledge graphs.

The above symbolic graphs have the challenges
of high construction cost and finite coverage.

Neural Models By training language models
such as GPT-2 (Radford et al., 2019) on symbolic
graphs, commonsense knowledge models have
been built to store the knowledge of commonsense
knowledge graphs in their parameters. They allevi-
ate the coverage limitations of the symbolic graphs.
They can also be regarded as automatic com-
pletion of the commonsense knowledge graphs.
COMET (Bosselut et al., 2019) is a commonsense
knowledge model trained with ATOMIC and Con-
ceptNet, which can generate commonsense infer-
ences for unseen events that are not included in
the original knowledge graph. COMET is trained
to generate a tail when given a head and a rela-
tion.

As extended models of COMET, there
are COMET2020 (Hwang et al., 2021) and
COMETDIS

TIL (West et al., 2022) trained on
ATOMIC2020 and ATOMIC10x, respectively.
COMETDIS

TIL can generate commonsense infer-
ences more accurately than GPT-3 even though
its base model is GPT-2.

https://chat.openai.com/
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There are also models for paragraph-level rea-
soning (Gabriel et al., 2021) and non-English stud-
ies (Ide et al., 2023; Wang et al., 2022).

Bhagavatula et al. (2020) introduced a condi-
tional generation task for explaining given obser-
vations in natural language. They also used
COMET’s embeddings for the baseline model
based on GPT-2 to improve its performance on
commonsense inference. Zhou et al. (2023) re-
ported that transferring COMET knowledge to
a general language model improved the perfor-
mance on commonsense tasks while retaining
general language skills.

2.2. Granularity and Temporal
Knowledge

Granularity of Events Every event has a gran-
ularity and human beings judge it unconsciously.
Mulkar-Mehta et al. (2011) modeled the granular-
ity of events and phrases. They identified the fol-
lowing three elements of granularity.

1. Part-whole relationships between entities.

2. Part-whole relationships between events.

3. Causal relationships between the fine and
coarse granularities.

They used the following example to illustrate these
elements.

The San Francisco 49ers moved ahead
7–3 11 minutes into the game when
William Floyd scored a two-yard touch-
down run.

The player and the team are in a part-whole re-
lationship between entities. The phrases “moved
ahead” and “scored” are in a part-whole relation-
ship between events, and the player’s scoring
causes the team’s lead.

To deal with the granularity of the commonsense
knowledge graph of events, we focus on the sec-
ond element and regard the granularity as the time
between events. More details on the reasons for
this are given in Section 3.1.

Temporal Knowledge Temporal knowledge has
also been studied. Some corpora are annotated
with the order between events (Pustejovsky et al.,
2003; Cassidy et al., 2014; Kolomiyets et al., 2012;
Reimers et al., 2016), and others map events to a
time axis (Huang et al., 2016; Asakura et al., 2016).
However, these time axes are divided into macro-
scopic temporal units, such as “days” or “years”,
which are unsuitable for commonsense inference.

Benchmarks to assess temporal commonsense
have also been created. TempEval (Verhagen
et al., 2007, 2010; UzZaman et al., 2013) are

adopted in SemEval-{2007, 2010, 2013}. MC-
TACO (Zhou et al., 2019) is a temporal common-
sense benchmark that addresses five temporal
commonsense: frequency, duration, stationarity,
ordering, and typical time. TRACIE (Zhou et al.,
2021), a benchmark focusing on more tacit knowl-
edge, and TimeDial (Qin et al., 2021), which uses
richer context within the dialogue, were also cre-
ated.

TACOLM (Zhou et al., 2020a) is a language
model that considers temporal commonsense and
is superior to BERT (Devlin et al., 2019) and oth-
ers in temporal tasks. Dhingra et al. (2022) dealt
with time from a more macro perspective and pro-
posed a model that deals with factual knowledge
that changes over time. Unlike these models, we
propose to add temporal knowledge to an event-to-
event commonsense knowledge model described
in Section 2.1.

3. Time-aware COMET

The existing commonsense knowledge graphs
and models for events do not deal with the
granularity of events. We propose TaCOMET
(Time-aware COMET), a commonsense knowl-
edge model with temporal knowledge. Handling
temporal granularity alleviates the coverage prob-
lem in the tail event space of the existing models
and also broadens its application to downstream
tasks.

3.1. Task
We adopt the interval time between events as
granularity. Among the three granularity elements
listed in Section 2.2, we focus on the part-whole
relationships between events as the granularity be-
cause of the following reasons. The part-whole
relationship between entities is not appropriate as
granularity because events are retained in a for-
mat that fixes the subject as X, such as “X gets
X’s car repaired” in ATOMIC. Since the causal re-
lation is not an independent element of granularity
but is influenced by the other two, it is also diffi-
cult to treat it as granularity. Specifically, since the
commonsense knowledge graph deals with event-
to-event transitions, we adopt the interval time be-
tween events as a quantitative element of the part-
whole relationships between events.

In the existing commonsense knowledge model,
among a triple (head, relation, tail) in the common-
sense knowledge graph, head and relation are in-
put, and tail is output. Our task is to output an
appropriate tail given head, relation, and interval
time.

To handle event transitions, we focus on the fol-
lowing two typical relations.
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• xNeed: What X would do before the event.

• xEffect: What X does after the event.

Even with the same head and relation, if different
interval times are given, the model is required to
generate different tails.

3.2. Method

To build TaCOMET, we integrate temporal knowl-
edge with an existing COMET model. Specifi-
cally, we first construct a temporal event-to-event
dataset, TimeATOMIC, and then apply continual
finetuning to COMET on TimeATOMIC.

To acquire TimeATOMIC as the quadruple
(head, relation, time, tail), we feed head, relation,
and time into ChatGPT to generate tail. By this
process, multiple tails with different times can be
obtained for the same head/relation pair.

Then, we finetune the existing COMET model
continually on TimeATOMIC. COMET has been
trained to generate a tail for a given input of
head and relation. In other words, COMET
maximizes P(tail|head, relation), while TaCOMET
maximizes P(tail|head, relation, time). Since
there are instances of the same head/relation pair
with different times, time-aware generation can be
achieved.

3.3. Why not ChatGPT but TaCOMET?

One might think that if the model is built on the
knowledge extracted from ChatGPT, then Chat-
GPT could be used directly. The advantages of
our method include the following three points.

Tacit Knowledge COMET, the base model of
TaCOMET, is trained on commonsense knowl-
edge graphs, which have been manually con-
structed using crowdsourcing and other methods.
It captures tacit knowledge that does not appear on
the surface of the text, which cannot be obtained
simply by training on text corpora (Zhou et al.,
2023). Continual training of this model integrates
human-derived commonsense knowledge with the
temporal knowledge gained from ChatGPT.

Soft Output Soft labels, such as the probability
distribution of an output, rather than hard labels,
such as a generated text, are useful for knowl-
edge transfer, such as knowledge distillation (Hin-
ton et al., 2015). The logits (soft labels) of LLMs
whose parameters are not public are usually un-
available via API. Our proposed model can be eas-
ily used to obtain soft labels.

Model Size Our method is to add temporal
knowledge to GPT-2-based COMET. The number
of parameters of ChatGPT is unknown, but for ref-
erence, the number of TaCOMET’s parameters is
less than 1/100th of GPT-3 (175B). It reduces the
resource and time costs. Related to the soft out-
put, smaller models have higher usability in appli-
cations.

4. Experiments of TaCOMET

In this section, we construct TaCOMET and verify
its performance. The details of dataset construc-
tion, finetuning, and evaluation are described, re-
spectively. Experiments are conducted primarily
in Japanese but also in English.

4.1. TimeATOMIC Construction
First, we construct TimeATOMIC in Japanese. We
use gpt-3.5-turbo2 through the OpenAI API (here-
inafter, ChatGPT). By inputting interval time in ad-
dition to head and relation into ChatGPT and out-
putting tail, a dataset of the form (head, relation,
interval time, tail) is constructed.

We randomly sample 2,000 events from the
heads and tails for xNeed and xEffect in ATOMIC-
ja (Ide et al., 2023) as events to be fed into Chat-
GPT as the heads. As described in Section 3.1,
xNeed and xEffect are used as the relations. An
interval time is created by concatenating a pair
of randomly selected strings from {1, 2, 3, 4,
5}×{second(s), 0 seconds, minute(s), 0 minutes,
hour(s), day(s), month(s)}.3 Three interval times
are adopted per head / relation pair. In summary,
there are two relations for each head and three in-
terval times for each head/relation pair. In other
words, a total of 12,000 triples of (head, relation,
interval time) are fed into ChatGPT.

Tails are obtained by few-shot generation. A
few manually created examples are used for shots,
and the number of shots is set to three. The tem-
plate for the instruction is, “Please describe an
event that happens {interval_time} after {head}.”4

In some cases, ChatGPT refused to generate unre-
alistic head/interval time pairs or sensitive heads,
and thus simple filtering is applied.

As a result, we obtained 11,249 instances, as
shown in Table 1. Of these, 10% is used as the test
set and the remainder as the training set. For the
same head/relation, appropriate and various tails
were obtained depending on the input time. The
entire cost of constructing this Japanese dataset
was approximately $6.

2May 12 version.
3The original units are in Japanese.
4This is for xEffect. For xNeed, “before” is used in-

stead of “after”. The original template is in Japanese.
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Relation Time Tail (Japanese) Tail (English)
xNeed 10 秒 (seconds) X が靴を履く X puts on shoes

2 日 (days) X が財布にお金を入れる X puts money in his wallet
1 ヶ月 (month) X が予算を立てるために貯金計画を立てる X creates a savings plan for budgeting

xEffect 30 秒 (seconds) X が財布を取り出す X takes out his wallet
30 分 (minutes) X が自宅に帰る X goes home
3 時間 (hours) X が家で料理をする X cooks at home

Table 1: Examples of TimeATOMIC. (Head: “X がスーパーへ買い物に行く” (“X goes shopping at the
supermarket”))

We created a same-sized dataset in English by
machine translation5.

4.2. Finetuning
We finetune COMET on TimeATOMIC. This sec-
tion describes the details of finetuning.

Format As described in Section 3.2, finetuning is
performed to generate the tail of the head, relation,
and time input for each instance. We insert time
while keeping the existing COMET format as much
as possible.

The COMET training format is “[head] [relation]
[tail]”, e.g., “X goes to the supermarket xNeed
X puts on shoes”. We insert interval time and
the suffix expression (ago or later) corresponding
to relation. The resulting format is “[head] [rela-
tion] [time] [ago | later], [tail]”. An example is “X
goes to the supermarket xNeed 10 seconds ago,
X puts on shoes”. In the same way as COMET,
loss calculation is performed only for tails.

Models COMET-ja (Ide et al., 2023) and
COMETDIS

TIL + critichigh (West et al., 2022) are used
as the base COMET models for Japanese and
English, respectively. These are the COMET
models trained on the ATOMIC knowledge graphs,
which contain approximately 200K and 2.5M
triplets, respectively. Both the models use the
GPT-2-xl architecture, which has approximately
1.5B parameters.

For model size comparison, a COMET-ja model
based on GPT-2-small, which has 110M parame-
ters, is also tested. This model was also trained
on the 200K ATOMIC triples. For method compar-
ison, we also make GPT-2 models trained directly
on TimeATOMIC without using COMET. To distin-
guish these models from TaCOMET, we call them
TaCOMETSCRATCH.

4.3. Evaluation Metrics
We conduct automatic and manual evaluations of
the models’ generations for the test set. Gen-

5https://www.deepl.com/translator

eration is performed by inputting “[head][relation]
[time] [ago | later],” and outputting the following tail.

Automatic Evaluation We perform two kinds
of automatic evaluation using BERTScore (Zhang
et al., 2020b) for text similarity calculation.

The first automatic metric is the similarity be-
tween the TaCOMET generation and the reference
sentence in our dataset. This metric measures the
model’s performance of natural language genera-
tion, and thus the higher the number, the better.
It is denoted by BSGEN−REF and calculated as fol-
lows:

BSGEN−REF =
1

n

n∑
i=1

BS(gi, ci),

where n is the number of instances in the test set,
BS(s1, s2) denotes an F1 of BERTScore between
s1 and s2, and gi, ci(1 ≤ i ≤ n) denote a genera-
tion by TaCOMET and its reference sentence.

The second automatic metric measures how dif-
ferent TaCOMET generations are when the time
input changes. Referring to Paiwise-BLEU (Shen
et al., 2019), we measure the average similar-
ity among TaCOMET generations for the same
head/relation but only with different times. This
metric should be small because the model is re-
quired to generate differently depending on the
time inputs. The metric is denoted by BSINNER and
calculated as follows:

BSINNER =
1

|H||R|
∑

(h,r)∈H×R

BSh,r
INNER,

BSh,r
INNER =

1

|Gh,r|(|Gh,r| − 1)

∑
(g,g′)∈G2

h,r

g ̸=g′

BS(g, g′),

where H is the set of heads, R = {xNeed, xEffect},
and Gh,r denotes the set containing the all gener-
ations for h ∈ H and r ∈ R.

We use a Japanese model6 and an English one7

of RoBERTa (Liu et al., 2019) as the base pre-
trained models for BERTScore calculation. Note
that it is impossible to compare the values of

6https://huggingface.co/nlp-waseda/
roberta-base-japanese

7https://huggingface.co/roberta-base

https://www.deepl.com/translator
https://huggingface.co/nlp-waseda/roberta-base-japanese
https://huggingface.co/nlp-waseda/roberta-base-japanese
https://huggingface.co/roberta-base
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Base Model Model Type BSGEN−REF BSINNER ↓ ρpearson ρspearman ρlog
pearson valid%

TaCOMET 0.918 ± 0.033 0.924 ± 0.036 0.052 0.389 0.369 0.767
en-XL TaCOMETSCRATCH 0.917 ± 0.033 0.925 ± 0.036 0.019 0.387 0.370 0.799

(COMET) 0.906 ± 0.020 0.972 ± 0.030 0.034 0.091 0.094 0.737
TaCOMET 0.754 ± 0.119 0.763 ± 0.102 0.065 0.473 0.458 0.784

ja-XL TaCOMETSCRATCH 0.752 ± 0.118 0.760 ± 0.103 0.049 0.467 0.454 0.771
(COMET) 0.569 ± 0.068 0.818 ± 0.154 0.026 0.154 0.153 0.722
TaCOMET 0.605 ± 0.071 0.715 ± 0.129 0.131 0.450 0.438 0.682

ja-small TaCOMETSCRATCH 0.604 ± 0.072 0.711 ± 0.132 -0.008 0.467 0.444 0.640
(COMET) 0.571 ± 0.063 0.873 ± 0.173 0.022 0.062 0.059 0.344

Table 2: Evaluation results of TaCOMET. Only BSINNER should be smaller. In the first column, “en” and
“ja” denote English and Japanese, respectively.

Head Relation Time TaCOMET COMET
X が店まで走る xNeed 30 分 X が運動着に着替える X が家を出る
(X runs to a store) (minutes) (X changes into jersey) (X leaves home)

4 時間 X が運動不足になる X が家を出る
(hours) (X feels under−exercised) (X leaves home)

2 日 X がジョギングシューズを買う X が家から出る
(days) (X buys jogging shoes) (X leaves home)

X が店まで走る xEffect 4 秒 X が息を切らす X が財布を落とす
(X runs to a store) (seconds) (X becomes out of breath) (X drops the wallet)

10 分 X が息を切らす X が財布を忘れる
(minutes) (X becomes out of breath) (X forgets the wallet)

4 日 X が筋肉痛になる X が財布を落とす
(days) (X becomes sore) (X drops the wallet)

X が問題集を解く xNeed 10 分 X が机の上に問題集を並べる X が問題集を開く
(X does the workbook) (minutes) (X lays the workbooks on the desk) (X opens the workbook)

3 時間 X が勉強するための教材を整理する X が問題集を開く
(hours) (X organizes study materials) (X opens the workbook)

4 日 X が問題集を購入する X が問題集を開く
(days) (X purchases the workbooks) (X opens the workbook)

X が会社から xEffect 2 分 X が鞄を持ち上げる X が仕事を終える

パソコンを持ち帰る (minutes) (X lifts the bag) (X finishes thework)
(X brings home a computer 20 分 X が自宅のパソコンで仕事を始める X が仕事を終える
from the office) (minutes) (X starts working on the computer) (X finishes the work)

4 ヶ月 X がパソコンの故障に気付く X が仕事を終える
(months) (X notices a computer malfunction) (X finishes the work)

Table 3: Comparison of generated tails between TaCOMET and COMET. Japanese examples are shown,
and each translation is denoted in parentheses.

Japanese and English because the base models
are different.

Human Evaluation We perform human evalua-
tion by crowdsourcing. We asked crowdworkers
to tackle the following two tasks regarding the gen-
erations of TaCOMET. Five workers per example
are employed for both tasks.

The first task is to show head, relation, and tail
(generation by TaCOMET) to the workers and ask
them to answer the interval time. The mean of the
five interval times obtained is used as the crowd-
sourced labels. We measure the correlation be-
tween the two series of interval time, one in the

dataset actually entered into TaCOMET and the
other in the crowdsourced labels. We calculate
three human metrics: the Pearson correlation co-
efficient (ρpearson), the Spearman’s rank correla-
tion coefficient (ρspearman), and the Pearson corre-
lation coefficient calculated for the series with both
logarithmic transformations (ρlog

pearson).

The second task is to show the same things and
ask the workers to judge whether a generation is
valid. The interval time is not shown, and thus only
the adequacy of the inference is measured. The re-
sults obtained are aggregated by majority voting,
which forms a crowdsourced label. These labels
are used for calculating the ratio of valid genera-
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tions out of the total inferences (valid%).
We use Yahoo! Crowdsourcing8 and Amazon

Mechanical Turk9 as the platform for Japanese
and English, respectively. Note that it is impossi-
ble to compare the scores between Japanese and
English because the platforms and the nature of
the crowdworkers are different between Japanese
and English.

4.4. Results and Discussion
The evaluation results are shown in Table 2. For
each base model, the following three settings
are listed, including the two finetuned models de-
scribed in Section 4.2 and a baseline.

• TaCOMET: COMET + TimeATOMIC

• TaCOMETSCRATCH: GPT-2 + TimeATOMIC

• (COMET): Vanilla COMET without finetuning

COMET is tested in the same format as the oth-
ers to verify if the ability to consider interval time is
obtained by being finetuned on TimeATOMIC.

BERTScore Results BSGEN−REF, which indi-
cates the performance as a generation task, was
improved by finetuning on TimeATOMIC. The train-
ing of TaCOMET and TaCOMETSCRATCH was able
to adapt to TimeATOMIC.

Better results were also obtained by finetuning
for BSINNER, which shows the differences in gen-
erations at different times. By changing the in-
put time for the same head/relation, appropriate
generations can be obtained accordingly. Gener-
ated examples are shown in Table 3. We can see
that COMET generates similarly for any time in-
put, whereas TaCOMET controls generation in re-
sponse to the time. These results show that fine-
tuning on TimeATOMIC gave the models the ability
to generate different tails according to the time.

Neither BSGEN−REF nor BSINNER showed sig-
nificant differences between TaCOMET and
TaCOMETSCRATCH.

When we compare the small and XL sizes in the
Japanese models, the relative score trends are the
same. However, there are differences in the abso-
lute values of the scores due to the simple differ-
ence in the number of model parameters.

Correlation Coefficient Results We discuss
the correlation between the crowdsourced interval
time labels and the actual interval times input into
the model.

The Spearman’s rank correlation coefficient was
almost zero for COMET but was around 0.4 to 0.5

8https://crowdsourcing.yahoo.co.jp/
9https://www.mturk.com/

for the finetuned models, confirming a positive cor-
relation. These models can not only change the
generation with time but also generate the appro-
priate tails according to its time granularity. Espe-
cially for the XL models, TaCOMET generally ob-
tained higher values than TaCOMETSCRATCH, indi-
cating the effectiveness of the proposed continual
finetuning approach.

Regarding the Pearson correlation coefficient,
little correlation was found in the intact series.
For those after log transformations, a positive cor-
relation was found for the models with finetun-
ing. A logarithmic scale of human perception also
emerged in the generations of the language mod-
els, such that the difference between one minute
and five minutes is more perceptible than that in
one month and five months.

For model size comparison, in the Spearman’s
rank correlation coefficient and the Pearson corre-
lation coefficient after logarithmic transformations,
the XL models obtained higher correlations than
the small models in every model type. The ability
to capture the granularity and scale of time also
depends on the model size.

Acceptance Results We verify if the genera-
tions are valid when ignoring the time scale. For
valid%, the XL finetuned models achieved over
75%, and the small models achieved over 60%.
These models can keep the performance as the
original COMET, although they have been fine-
tuned on TimeATOMIC.

COMET could not achieve a high score due to
format differences. COMET XL is relatively adapt-
able to the format change, but not so in the small-
sized COMET.

Result Summary Finetuning on TimeATOMIC
has improved the ability to change generation and
to generate appropriately according to the input
time. Also, the continual finetuning strategy via
COMET showed effectiveness in rank correlation.
We supposed that valid% should also be high be-
cause the continual finetuning via COMET pro-
vides both a sense of time and a broad range
of commonsense knowledge. However, the re-
sults showed no significant difference in valid% be-
tween TaCOMET and TaCOMETSCRATCH for any of
the base models. Since the evaluation here uses
a split from a single dataset, a more open setting
may use the knowledge from the first-stage train-
ing. In Section 5, we show a more open down-
stream experiment, where TaCOMET was found
to be superior to TaCOMETSCRATCH.

https://crowdsourcing.yahoo.co.jp/
https://www.mturk.com/
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: あれ? もう⼀個⾜りない (Uh? Missing one more)
: グラスを持ってくる (To bring another glass)
: 1
: キッチン (kitchen)
: ⽴っている (standing)
: グラス, お酒 (a glass, alcohol)
: なし (None)
: お菓⼦, コップ, など (snacks, cups, etc.)
: なし (None)

utterance
action
viewpoint
position
pose
has
coffee table
dining table
kitchen

Figure 2: An example of the robot dataset.

5. Downstream Experiment

As an example of how the proposed model is appli-
cable to downstream tasks, we test it on a dataset
for robot decision-making. Using TaCOMET’s gen-
eration probability for in-home robots’ decision-
making, we verify the effectiveness of adding tem-
poral knowledge to COMET.

5.1. Dataset Description
We use the dataset created by Tanaka et al. (2024),
which measures the decision-making performance
of an in-home robot for ambiguous utterances.
Since the utterances in this dataset are not direct
instructions but rather a collection of ambiguous
utterances such as monologues, commonsense
reasoning is required. The dataset includes 400
examples and a list of 40 actions. Each instance
consists of a user’s utterance, an image from the
robot’s point of view, some descriptions of the im-
age, and one correct action (Figure 2). The task is
to choose the correct action from the list.

5.2. Method
We perform action classification using a score
based on the generation probability of TaCOMET.
This is achieved by TaCOMET’s ability to generate
soft outputs mentioned in Section 3.3. The score
can be calculated because the model outputs log-
its, not only word symbols.

The template for TaCOMET is “[head] [relation]
[time] [ago | later], [tail]”. We use an utterance and
one of the actions from the dataset as the head
and the tail of TaCOMET, respectively. The log
probability normalized by the action length of the
tail part is calculated as the score of an action.

This is repeated for all 40 actions in the list, and
the action with the highest score is regarded as the
model’s prediction. That is, for an utterance u, a
time expression t (“[time] [ago | later],”), the action
list A, and each action a = wa

1...w
a
|a|, we obtain the

predicted action â as follows:

â = argmaxa∈AH(a),

where H(a) = 1

|a|

|a|∑
t=1

log P(wa
t |u, ‘‘xEffect”, t, wa

1...w
a
t−1).

To adapt the input format to TaCOMET, an utter-
ance and an action are substituted in the form “X
says [utterance]”10 and “X [action]”,10 respectively.
An example of the actual input to TaCOMET is “X
says he forgot to put ketchup on it xEffect 1 minute
later, X brings ketchup”.10

Given a natural interval time for the interaction
between the in-home robot and the user, such as
1 second to 1 minute, the inference becomes more
natural and performance improves. In contrast, for
an unnatural input time, such as a day or a month,
it is difficult to make a decision. For example, it
is easy to infer that what to do one minute after
forgetting ketchup is to bring ketchup. However,
what to do a month after forgetting ketchup is not
settled, nor is to bring ketchup correct.

5.3. Experimental Setup
We vary the input interval time to verify that per-
formance increases when an appropriate time is
input and decreases when an unrealistic time is
input. The interval time to be assigned to [time]
is one of the following: {1 second, 5 seconds, 1
minute, 1 hour, 1 day, 1 month}.

The experiment is conducted using the
Japanese XL model. In the same way as
Section 4, we test three models: TaCOMET,
TaCOMETSCRATCH, and COMET. As a baseline
with no time input, we also test COMET with a
template that removes t from the above format.

When the 40 actions in the list are sorted by
score, the percentage of correct answers at top-
1 and top-5 is calculated as Accuracy (Acc.) and
Recall at 5 (R@5), respectively.

5.4. Results
Figure 3 shows the results. The finetuned models
with the 1-second to 1-minute input outperformed
those without time input in both Acc. and R@5.
By giving the appropriate time, the models could
make time-based predictions. When the input was
more than one hour, the scores were equal to or
less than those without time input. This unnatural

10The original texts are in Japanese.
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Figure 3: Robot dataset results. Acc. and R@5
denote accuracy and recall at five, respectively.

time input affected the action predictions because
the finetuned models acquired the sense of time.

We compare TaCOMET with TaCOMETSCRATCH
below. For Acc., TaCOMET was superior from 1
second to 1 minute, while TaCOMET was inferior
for more than 1 hour, which is unnatural a time
input. TaCOMET’s results varied greatly depend-
ing on natural and unnatural time inputs, indicating
that TaCOMET better captures time and responds
to temporal input. For R@5, TaCOMETSCRATCH al-
ways outperformed TaCOMET. Although the per-
formance was expected to drop for 1 hour or more,
TaCOMETSCRATCH always remained better than
the baseline without time. In contrast, TaCOMET
was below the baseline in this range and was bet-
ter in terms of precision.

COMET with time input underperformed the
baseline without time because they could not cope
with the change in the format.

As a reference, Tanaka et al. (2024) used an ut-
terance and the corresponding images as input in
a model based on RoBERTa and EfficientNet (Tan
and Le, 2020). They performed supervised learn-
ing with cross-validation. They obtained Acc. and
R@5 of 0.2723 and 0.5450, respectively. Our
method was more accurate despite the zero-shot
setting without image inputs.

6. Conclusion

We proposed a time-aware commonsense knowl-
edge model, TaCOMET, in response to the fact
that the existing commonsense knowledge graphs
and models do not deal with granularity.

First, we built TimeATOMIC, a commonsense
knowledge graph with time, using ChatGPT at a
low cost. Based on TimeATOMIC, we then built

TaCOMET by applying continual finetuning to the
existing COMET model.

TimeATOMIC has improved the model’s ability
to change generation and to generate appropri-
ately according to the input time. Also, our contin-
ual finetuning approach helps capture the granu-
larity and scale of time. We observed some trends
that the commonsense knowledge from the first
finetuning step on ATOMIC is leveraged.

In addition, as an example of TaCOMET’s ap-
plicability, we tested it on a robot dataset. We
found that proper time input improves performance
and has a useful time sense even for downstream
tasks. This more open experiment also showed
the proposed continual training was effective.

Future work includes building models that can
consider context, extending relations, adopting
other aspects of granularity, and multimodalization.
TaCOMET could also be applied to more general
tasks, including testing on a wider range of down-
stream tasks and knowledge transfer to general
language models.
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