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Abstract
End-to-end multimodal aspect-based sentiment analysis (MABSA) combines multimodal aspect terms extraction
(MATE) with multimodal aspect sentiment classification (MASC), aiming to simultaneously extract aspect words
and classify the sentiment polarity of each aspect. However, existing MABSA methods have overlooked two
issues: (i) They only focus on fusing image regional information and textual words for two subtasks of MABSA.
Whereas, MATE subtask relies more on global image information to assist in obtaining the quantity and attributes
of aspects. Ignoring the integration with global information may affect the performance of MABSA methods. (ii)
They fail to take advantage of target information. Nevertheless, the fine-grained details of targets are important for
classifying sentiments of aspects. To solve these problems, we propose a Target-oriented Multi-grained Fusion
Network (TMFN). It fuses text information with global coarse-grained image information for MATE subtask and
with fine-grained image information for MASC subtask. In addition, a target-oriented feature alignment (TOFA)
module is designed to enhance target-related information in image features with target details. In such a way,
image features will contain more target emotional-related information which is beneficial to sentiment classifica-
tion. Extensive experiments show that our method outperforms state-of-the-art methods on two benchmark datasets.
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1. Introduction

In recent years, with the rapid development of
the Mobile Internet, people often post comments
(often consisting of images and texts) online to
express their opinions. The analysis of these
multimodal comments has a great practical ef-
fect, which can help the government get peo-
ple’s attitudes to certain events to make the right
decisions and can also help manufacturers get
users’ opinions on the products to make improve-
ments. Aspect-based multimodal sentiment anal-
ysis, which can obtain users’ views on an event
from multiple perspectives in a fine-grained man-
ner, has attracted wide attention in recent years.
Early aspect-based multimodal sentiment analy-
sis methods usually have two independent tasks.
The first task is multimodal aspect terms extrac-
tion (MATE) (Li and Lam, 2017; Wu et al., 2020),
which aims to extract multiple aspect words in
sentences from image-text pairs. The second
task is multimodal aspect sentiment classification
(MASC) (Yang et al., 2022a; Huang et al., 2022),
which aims to classify the sentiment polarity of as-
pect words in image-text pairs.

However, extracting aspect words and classify-
ing their emotional polarity separately ignores cor-
relations between the two tasks and may have

* Di Wang is the corresponding author.

Figure 1: An example of end-to-end MABSA task.
The input is an image-text pair. The output is as-
pect words ’Taylor’ and ’BBC’ and their sentiments.

error accumulation, as the correctness of the ex-
tracted aspect words determines the accuracy of
sentiment analysis. Moreover, learning two individ-
ual models for MATE and MASC tasks has a large
time and computing consumption. To this end, Ju
et al. (2021) proposed the end-to-end multimodal
aspect-based sentiment analysis (MABSA) task,
which performs MATE and MASC simultaneously
through a single model and has better application
prospects.

Existing MABSA methods focus on extracting
image local information and the alignment of lo-
cal image information and words. For example,
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multi-modal joint learning model (JML)(Ju et al.,
2021) processes the two subtasks of MABSA in
stages, and uses the pre-trained model Resnet(He
et al., 2016) to extract fine-grained region fea-
tures of images to guide the two subtasks. Cross-
modal multitask transformer model (CMMT)(Yang
et al., 2022b) predicts adjective-noun pairs (ANP)
and calculates loss, thereby improving the ex-
pressive ability of fine-grained features of images.
Aspect-oriented method (AoM)(Zhou et al., 2023)
uses region fine-grained features and text fea-
tures for semantic tree modeling. Dual-encoder
transformer with cross-modal alignment model
(DTCA)(Yu et al., 2022b) minimizes the earth
mover distance (EMD) between the text features
and the fine-grained image patch features and
aligns them.

For MABSA task, it is crucial to integrate image
global coarse-grained information and local fine-
grained information. For the reason that MATE
subtask relies more on global image information
to assist in obtaining the quantity and attributes of
aspects, while MASC subtask relies more on fine-
grained image information for classifying the senti-
ment of each aspect word. As shown in Figure 1,
we can get target such as ’Taylor’ and ’BBC’ from
the global information of the image, and classify
Taylor’s sentiment polarity through the fine-grained
information of the image. In addition, the details
of the target will help us obtain more sentiment-
related information to improve the judgment of the
sentiment polarity of the aspect words. As shown
in Figure 1, Taylor’s facial expression provides
emotional information about the smile, which will
help us classify her sentiment polarity.

In this paper, we propose a Target-oriented
Multi-grained Fusion Network (TMFN) model. The
core of TMFN is to fuse textual words with multi-
grained image information through two indepen-
dent cross-modal fusion modules and enhance the
importance of emotion-related detail information of
targets through target-oriented feature alignment
(TOFA) module. Specifically, we divide TMFN
model into three layers, each of which gets fea-
tures that focus on different granularity informa-
tion of the image, and then calculate the losses
to bring the prediction closer to the ground-truth
answer. For two independent cross-modal fusion
modules in the latter two layers, we introduce a
dynamic gating mechanism to control the propor-
tion of different granularity information in the image
and redesign the residual structure to enhance the
text information. For the TOFA module, we calcu-
late the similarity between patches and the candi-
date targets, then re-weight the candidate targets,
get the target enhancement information related to
each patch, and then make residual connection
with each patch, thus enhancing the perception of

target details.
Our contribution can be summarized as follows:

• A novel MABSA method named TMFN is pro-
posed. It utilizes different granularity of image
information for MATE and MASC subtasks.
By this means, the quantity and attributes of
extracted aspect words will be more accurate.

• A target-oriented feature alignment module is
designed to enhance the emotional-related in-
formation in image features and consequently
improve the classification accuracy of senti-
ment polarity.

• The proposed TMFN model outperforms
baselines on two benchmark datasets Twit-
ter2015 and Twitter2017. Specifically, F1, ac-
curacy and recall rates increased by 0.43%,
0.53% and 0.12% on the twitter2015 dataset,
and 0.54%, 1.06% and 0.03% on the Twit-
ter2017 dataset.

2. Related Work

2.1. Aspect-based Sentiment Analysis
Aspect-based sentiment analysis of textual data
has been extensively studied. This task focuses
on perceiving contextual semantic information re-
lated to aspect words. Early methods proposed
by Ali et al. (2016); Liu et al. (2018); Ma et al.
(2018); Fan et al. (2018) are mostly based on
SVM, RNN, LSTM and other traditional machine
learning algorithms. Later, due to the excellent
performance of attention mechanism and large-
scale pre-trained language models in various text-
related tasks, many recent aspect-based senti-
ment analysis methods have focused on utiliz-
ing them to accurately identify emotional infor-
mation(Hoang et al., 2019; Li et al., 2019; Zhao
and Yu, 2021). Such as Li et al. (2019) use
Bert as pre-train model and explore the effects of
fine-tuning with self-attention mechanism. Zhao
and Yu (2021) adopt external sentiment knowl-
edge base to enhance Bert’s domain knowledge,
thereby improving sentiment analysis ability.

2.2. Multimodal Aspect Sentiment
Classification

With the continuous development of social media
in the direction of multimodality, people find that im-
age visual information can be used as an important
supplementary information to text, so sentiment
analysis keeps developing towards multimodality
(Yu et al., 2022a; Zhu et al., 2022).

For MASC tasks, the existing methods focus
on the acquisition of high quality fine-grained im-
age information and image-text alignment. Image-
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target matching network (ITM)(Yu et al., 2022a) fil-
ters out coarse-grained information that is not rel-
evant to targets by calculating the correlation be-
tween text and the candidate regions of the im-
age. By setting the KL divergence function, the im-
age target is aligned with the fine-grained aspect
of the given aspect word. Face sensitive image-
to-emotional-text translation method (FITE)(Yang
et al., 2022a) extracts facial pictures from multi-
modal data and send them into the face classi-
fier to obtain the description of the facial informa-
tion, and use the facial description with the highest
similarity to the given aspect words as the textu-
ally supplementary information to make the final
judgment. In addition to that, sequential cross-
modal semantic graph model (SeqCSG)(Huang
et al., 2022) uses images to generate caption and
semantic graph triples as supplementary text in-
formation. These MASC methods are unable to
target the MABSA task’s needs to pay attention to
both image global and local fine-grained informa-
tion.

2.3. End-to-End Multimodal
Aspect-Based Sentiment Analysis

As a new research direction, end-to-end multi-
modal aspect-based sentiment analysis has more
extensive practical significance and has received
more and more attention. Compared with other
multi-modal sentiment analysis tasks, this task is
more difficult and integrated.

In the past two years, many excellent methods
of end-to-end multimodal analysis have been pour-
ing out. Multi-modal joint learning model (JML)(Ju
et al., 2021) proposes a two-stage method to judge
the position of aspect words and the emotional po-
larity of aspect words in two steps, and designs
a correlation detection method of pictures and
texts to screen picture information. Cross-modal
multitask transformer model (CMMT)(Yang et al.,
2022b) extracts image features, uses image fea-
tures to predict noun adjective pairs to improve im-
age features’ quality, and introduces cross-modal
transformer for image text features fusion. In ad-
dition, dual-encoder transformer with cross-modal
alignment model (DTCA)(Yu et al., 2022b) aligns
image patch features and text features by mini-
mizing the earth mover distance between them,
so as to better integrate the two kinds of fea-
tures. Currently, the latest aspect-oriented method
(AOM)(Zhou et al., 2023) in this field is innova-
tive in that it introduces a graph neural network to
model the correlation information between pictures
and texts, and thus detects the location of aspect
words and the sentiment polarity of each aspect
word by means of triplet generated by the generat-
ing model.

However, as shown in Figure 5, the above
MABSA methods don’t notice the following two is-
sues: MABSA task consists of two subtasks that
need to pay attention to image different granularity
information to help text information extract multiple
aspects and classify their sentiment polarities. In
addition, it also need to align image local features
and targets to enhance the perception of the tar-
gets’ emotional-related details and further improve
the ability to classify the sentiment polarity. So we
propose an end-to-end multimodal aspect-based
sentiment analysis method named Target-oriented
Multi-grained Fusion Network (TMFN) which has
modular fusion design and a target-oriented fea-
ture alignment (TOFA) block to solve the above two
problems.

Figure 2: Fig (a) and (b) are flowcharts of existing
models and the proposed model, respectively.

3. The Proposed TMFN Model

3.1. Overview
Task Definition. This task inputs image
V and text sequence S = {s1, s2, ..., sn},
where n is the number of words in the
sentence, and outputs a sequence M =
{ts1, te1, s1, ..., tsi, tei, si, ..., tsk, tek, sk} contain-
ing all aspects of the text and their corresponding
sentiment polarities, where tsi, tei, si indicates
the beginning index, end index and the sentiment
polarity of the ith aspect word, k is the number of
aspect words.
Prediction Define. In our model, We use five BIO
labels {B-POS, B-NEU, B-NEG, I, O} prediction
on each word in the sentence to get the output se-
quence M , where ’B’ represents the beginning of
the aspect word, ’I’ indicates the end of the aspect
word, and ’POS’, ’NEU’, and ’NEG’ represent the
sentiment polarity of one aspect word.
Model Preview. The proposed model archi-
tecture diagram is shown in Figure 2 , which
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Figure 3: The overall structure diagram of the proposed TMFN model.

is divided into three layers from left to right,
namely text-only layer, global enhanced layer
and global-local enhanced layer. We innovatively
fused text information with image different grained
information by cross-modal interaction modules
in the second and third layers to improve the
performance of the two MABSA task’s subtasks
respectively. Then the TOFA module is designed
to make the image information pay more attention
to the emotional-related information in the target
details, and further improve the performance of
MASC task. In subsequent chapters, we will
describe the proposed model in detail.
Feature Extractor. We adopted Roberta(Liu
et al., 2019) as our text encoder. Specifically,
we insert ’<s>’, ’</s>’ two special marks at the
beginning and end of each input sentence S as
distinctions, and then feed it into Roberta to obtain
the n words embedded representation sequence
T = {t1, t2, ..., tn} of text sequence S. For images,
we choose ViT(Dosovitskiy et al., 2020) as our
pre-train model for the reason that ViT uses patch
blocks and we can obtain global coarse-grained
information and preliminary regional fine-grained
information more easily.

3.2. Text-only Layer

In this layer, we use text-only feature to make pre-
dictions. Specifically, we take the text feature T
obtained by the textual encoder, feed it into an ad-
ditional Multi-head Self-attention (MHSA)(Vaswani
et al., 2017) layer to enhance the contextual aware-
ness of feature T , and obtain the output feature
TS = {ts1 , ts2 , ..., tsn}, which is used for the text-
only BIO labels prediction. The specific formulas
are as follows:

TS = MHSA(T, T, T ) (1)

tpi = softmax(Wt
⊤tsi + bt) (2)

LT = − 1

M ×N

M∑
j=1

N∑
i=1

CLoss(tpi , ki) (3)

where TP is the prediction probability distribu-
tion of BIO labels, Wt ∈ Rd×5, LT is the text-only
loss, M is the number of samples, N is the num-
ber of tokens in the jth sample, ki denotes the
ground-truth label for the ith token, CLoss denotes
the cross entropy loss.

The specific calculation formulas of MHSA are
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Dataset Twitter 2015 Twitter 2017
Pos Neu Neg MA MS Pos Neu Neg MA MS

Train 928 1883 368 800 278 1508 1638 416 1159 733
Vaild 303 670 149 286 119 515 517 144 375 242
Test 317 607 113 258 104 493 573 168 399 263
Total 1548 3160 630 1344 501 2516 2728 728 1933 1238

Table 1: Statics of Twitter2015 and Twitter 2017 datasets. Pos: Positive, Neu: Neutral, Neg: Negative,
MA: Multi aspects, MS: Multi sentiments.

as follows:

CATT i(T, T, T ) = softmax

(
[W i

QT ]
⊤
[W i

KT ]√
d/m

)[W i
V T ]

⊤ (4)

TS = Wc[CATT 1(T, T, T ),

..., CATTm(T, T, T )]
(5)

where m is the number of MHSA heads,
{W i

Q,W
i
K ,W i

V } ∈ Rd/m×d are query, key, value
weight matrices, Wc ∈ Rd×d is the weight matrix
for MHSA, [ , ..., ] means feature concatenation,
and dimension d is 768.

3.3. Global Enhanced Layer
Since the MABSA task requires information of
different granularity, image global information is
needed to enhance the judgment of the attributes
and quantity of aspect words. Therefore, in this
layer, based on dynamic gating and cross-modal
interaction mechanism, we use the image global in-
formation as auxiliary information to enhance text
information. Specifically, we enter the whole im-
age into ViT, and get the patch embedding feature
V P = {vp1 ...v

p
k} then use average pool of V P as

the global feature V G for the whole picture, and do
calculations for the global and each local feature.
The specific formula is as follows:

V G = avgpool({vp1 ...v
p
k}).repeat(k) (6)

To use image global feature enhance text
feature, we remove the residual connection
in the Multi-head Cross-attention (MHCA)
model(Vaswani et al., 2017), and then redesign
a dynamic residual structure outside the module.
Specifically, we use the dot product of the text-
only prediction probability distribution TP as the
dynamic gate value(Yang et al., 2022b) to control
the input ratio of text and image global information.
We fed text feature T which is the output of
Roberta and image’s global pooling feature V G

into above re-designed structure, and obtain the
global enhanced feature HC . Then we use this
feature to make global BIO labels prediction and

get global feature loss LG. The specific formulas
are as follows:

HM = MHCA(T, V G, V G) (7)

gi = tpi⊤tpi (8)

hci = giti + (1− gi)h
mi (9)

HL = softmax(W⊤
h HC + bh) (10)

LG = − 1

M ×N

M∑
j=1

N∑
i=1

CLoss(hli , ki) (11)

where Wh ∈ Rd×5, gi is the ith token’s gate
value, MHSA and MHCA have the same formula,
just different inputs.

3.4. Global-local Enhanced Layer
Since the features of the patch blocks are not
aligned with image targets and no attention is
paid to the details of targets, we innovatively
design a target-oriented feature alignment block
(TOFA) based on the image candidate targets
to solve the above problems. Firstly, we use
Faster-RCNN(Girshick, 2015) as the backbone to
extract image candidate targets, and set certain
conditions to screen the obtained candidate tar-
gets. Specifically, we choose five candidate tar-
gets and select targets with a length or width
greater than 224 pixels to avoid noise interfer-
ence effects caused by too many or too small tar-
gets. The resulting candidate targets V1, V1, ..., V5

are then fed into ViT (shared parameters with
the previous chapter) to get the pooled output as
the representation of each whole target, V R =
{vr1 , vr2 , ..., vr5}. The formula is as follows:

vri = avgpool(V iT (Vi)) (12)

Then, we take the patch feature vpi obtained
in section 3.2 and the pooled features of candi-
date targets vri to calculate the similarity, get the
relation scores of each patch block feature for
the candidate target features, and weighted sum
candidate targets features by using these relation
scores to obtain each patch feature’s patch-target
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Twitter 2015 Twitter 2017Methods
F1 P R F1 P R

SPAN(Ju et al., 2021) 53.8 53.7 53.9 60.6 59.6 61.7
D-GCN(Ju et al., 2021) 59.4 58.3 58.8 64.1 64.1 64.2

Roberta(Yang et al., 2022b) 63.5 61.8 65.3 66.2 65.5 66.9
Text Only

BART(Yan et al., 2021) 63.9 62.9 65.0 65.4 65.2 65.6
UMT+TomBERT(Ju et al., 2021) 59.8 58.4 61.3 62.4 62.3 62.4
UMT-collapse(Yang et al., 2022b) 61.6 60.4 61.6 60.8 60.0 61.7
UMT-Robert(Yang et al., 2022b) 63.9 61.6 66.4 66.7 65.3 68.2

CapTrRoberta(Yang et al., 2022b) 63.2 60.6 66.1 67.3 67.1 67.4
JML(Ju et al., 2021) 64.1 65.0 63.2 66.0 66.5 65.5

VLP-MABSA(Ling et al., 2022) 66.6 65.1 68.3 68.0 66.9 69.2
CMMT(Yang et al., 2022b) 66.5 64.6 68.7 68.5 67.6 69.4

DTCA(Yu et al., 2022b) 68.4 67.3 69.5 70.4 69.6 71.2

Multimodal

AoM(Zhou et al., 2023) 68.6 67.9 69.3 69.7 68.4 71.0
Our TMFN 69.03 68.43 69.62 70.95 70.66 71.23

Table 2: Results of different methods on Twitter 2015 and Twitter 2017 for MABSA task. Bold and under-
lined numbers indicate the best results and bold numbers indicate the second-best results.

related feature vsi , and finally make a residual con-
nection with each patch feature to obtain the target-
oriented aligned feature V E = {ve1 ...vek}, where
k = 196 and hidden dimension is d. The specific
formulas are as follows:

V S = V PV R⊤
V R (13)

V E = V P + V S (14)

To utilize aligned local fine-grained information
for enhancing the classification ability of the senti-
ment polarity of aspect words, we firstly feed global
enhanced feature HC and target-oriented aligned
feature V E into MHCA, then use dynamic gate and
made a residual connection with text feature T , fi-
nally we get multimodal global-local enhanced fea-
ture HB . The specific formulas are as follows:

HO = MHCA(HC , V E , V E) (15)

hgi = (1− gi)h
oi (16)

HB = HG + T (17)

where HO is the output of the second MHCA
layer, HG is the gated feature of HO and HB is the
final output feature of global-local enhanced layer.

We feed multimodal global-local enhanced fea-
ture HB into MLP and input a standard CRF layer
to predict the five BIO labels classification corre-
sponding to each word, and get the final output se-
quence M . The specific formulas are as follows:

P (y) =
exp(score(HB , y))∑

y′∈YH
exp(score(HB , y′))

(18)

score(HB , y) =

n∑
k=0

Myk,yk+1
+

n∑
k=0

wyk · hbk (19)

where Mi,j is the transition matrix and repre-
sents the transition score from label i to label j,
wyk ∈ R2d is the weight vector for hbk . We min-
imize the negative log-probability of ground-truth
labels as our loss function.

LGARA = − 1

M

M∑
j=1

(score(hbj , yj)

−log
∑

y′
j∈Y j

H

exp(score(hbj , y′j)))
(20)

where M is the number of samples, yj denotes
the jth example’s ground-truth label and Y j

H repre-
sents all possible label sequences for input tokens.

3.5. Loss Function.
We use hyper-parameters α, β to control the text-
only loss LT and global feature loss LG and use
LGARA as our main loss to get our final loss L. The
specific formula is as follows:

L = LGARA + αLT + βLG (21)

3.6. Experimental settings
Datasets: We use two benchmark datasets of
MABSA task, Twitter2015 and Twitter2017, to eval-
uate the effects of TMFN model proposed in this
paper. These two datasets are originally provided
by (Zhang et al., 2018) for Multimodal Named En-
tity Recognition and labeled with sentiment polar-
ity by (Lu et al., 2018) so that they can be used for
MABSA task. The statistical results of these two
datasets are shown in Table 1.
Expermental details: Our experiments are based
on Roberta and ViT pre-trained models. For
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Figure 4: Hyper-parameters sensitivity experiments on Twitter2015 and Twitter2017. Set β = 1 when
fine-tune α and set α = 1 when fine-tune β.

Roberta model, we use roberta− base, where the
hidden size is 768 and the maximum sentence
length is set to 60. For the vit model, we use
vit− base− patch16− 224− in21k, and the output
feature dimension is consistent with the text fea-
ture. The task was implemented using PyTorch,
training 25 epochs on GTX3090 with batch size
4, using the AdamW(Loshchilov and Hutter, 2017)
optimizer with a learning rate of 2e-5 and warmup
decay of 0.1 to update all trainable parameters.
The Multi-head Self-attention and Cross-attention
modules have an attention head count of 8.
Evaluation indicators: We use three metrics to
evaluate the performance of TMFN model in this
paper, namely Micro-F1 (F1), Precision (P) and
Recall (R). Only when aspect word and it’s senti-
ment polarity matched both can be considered cor-
rect.

For a comprehensive comparison, we selected
both text-only and multimodal baseline models,
as follows:
Text-only approaches for ABSA: 1) SPAN(Hu
et al., 2019) first extract targets and then clas-
sify them by using Span-based Scheme. 2)
D-GCN(Chen et al., 2020a) build dependence
tree among words and improved GCN so that it
can adapt the category relationships of specific
images in an adaptive way. 3) Roberta(Liu et al.,
2019) is based on Bert and improved the perfor-
mance. 4) BART(Yan et al., 2021) adopts encoder
decoder architecture, which is a generation model
based on transformer.
Multimodal approaches for MABSA: 1)
UMT+TomBERT(Yang et al., 2022b) is pipeline
approach which combine UMT(Yu et al., 2020)
and TomBERT(Yu and Jiang, 2019a). 2) UMT-
collapse(Yu et al., 2020) which is designed for
MATE task and then adapted to MABSA task
uses Cross-Modal Transformer layers to fuse text
and picture information. 3) UMT-Robert(Yang
et al., 2022b) replaces text encoder with Roberta

from UMT-collapse. 4) JML(Ju et al., 2021) first
proposes End-to-End MABSA task and uses
two step to extract aspect words and classify
their corresponding sentiment polarity. 5) Cap-
TrRoberta(Khan and Fu, 2021) uses images to
generate auxiliary sentence as supplement of
original text. 6) VLP-MABSA(Ling et al., 2022)
is a pre-train model for MABSA, using BART
as base model. 7) CMMT(Yang et al., 2022b)
predicts ANP pairs to improve the expression
ability of image features and narrow the distance
with text features. 8) DTCA(Yu et al., 2022b)
aligns image feature and text feature by minimize
the Wasserstein distance. 9) AoM(Zhou et al.,
2023) models the dependencies between image
and text and fuses them with GCN.

4. Experiment

4.1. Baselines
4.2. Experimental Results
In this section, we will compare the baseline mod-
els and fully demonstrate the excellent results
achieved by the proposed TMFN. The results of
different models are shown in Table 2.

Compared with the above baseline models, our
model achieves SOTA on the three evaluation met-
rics(F1, P, R) of the two datasets. Among them, in
the metric of P, compared with the previous DTCA1

model with the best comprehensive performance,
our model has respectively increased by 1.13%
and 1.06%, and compared with the newly pro-
posed AoM model, it has respectively increased
by 0.53% and 2.26%. This fully demonstrates the
effectiveness of our designed method for focus-
ing on image local information and enhancing re-
gional features by aligning with targets. In addi-
tion, the metric of F1 in the two datasets is 0.63%,

1This model also uses ViT as image encoder.
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Figure 5: Case Analysis. JML and CMMT are comparison models. TMFN is the proposed model. Words
in red font are aspect words and in blue font are sentiment words.

0.55% and 0.43%, 1.25% higher than that of DTCA
and AoM respectively. We analyze the reason and
speculate that because the above models may ig-
nore to pay attention to global information and lo-
cal information at the same time, which may lead
to misjudgment of the number and position of as-
pect words. Thus, the comprehensive evaluation
metric F1 is significantly affected. This also shows
the effectiveness of the proposed TMFN model in
integrating multi-grained information.

4.3. Analysis

Ablation Study: To further demonstrate the ef-
fects of the TMFN models we proposed, ablation
experiments are designed as follows: 1) w/o TOFA
means we remove the TOFA block. 2) w/o G-
enhanced means we remove the global enhanced
layer and don’t use image global information to en-
hance text feature. We also remove the layer loss
LG. 3) w/o L-enhanced means we remove the
Global-local enhanced layer and also remove this
layer loss LTMFN . 4) w/o G-L-enhanced means
we remove the above two layers and only use text
feature for prediction. 5) w/o Gate control means
we remove the dynamic gate control mechanism
in TMFN model.

The results are shown in Table 3. From the form,
we can see that after removing each block, each
evaluation matric has decreased, which indicates
the effectiveness of our proposed model. On Twit-
ter2015, the removal of the gating mechanism has
the greatest impact on the overall performance of
the model, with the F1 value decreasing by 1.76%.
This shows that the non-correlation between pic-
ture and text may be more obvious on Twitter2015
dataset, and more attention needs to be paid to
noise control. On Twitter2017, w/o G-enhanced
has the biggest effect, with F1 dropping by 2.1%,
suggesting that images may provide more global

information to help judge the content and quan-
tity of aspect words on the Twitter2017 dataset.
In addition, the result of w/o G-enhanced or w/o
L-enhanced is mostly lower than that of w/o G-L-
enhanced, which just shows that when processing
MABSA tasks, we should not pay too much atten-
tion to a certain granularity of information, other-
wise image noise may be introduced, and then af-
fect the quality of text features. We should con-
sider both the image global and local comprehen-
sive.

Methods Twitter 2015 Twitter 2017
F1 P R F1 P R

TMFN 69.03 68.43 69.62 70.95 70.66 71.23
w/o TOFA 67.47 65.20 69.91 69.89 69.61 70.17

w/o G-enhanced 68.12 67.04 69.24 68.85 68.57 69.12
w/o L-enhanced 67.92 66.30 69.62 69.22 68.21 70.26

w/o G-L-enhanced 68.57 67.93 69.24 68.97 68.34 69.61
w/o Gate Control 67.27 66.47 68.08 69.15 69.01 69.29

Table 3: Results of ablation experiments.

Hyper-parameters Fine Tuning: We set up re-
lated experiments with hyper-parameters α and β
to explore their influence on the experimental re-
sults. Specifically, on the two datasets, we con-
ducted relevant experiments by fixing one of the
two parameters to 1 respectively, and then in-
crease the other parameter from 0 to 1 by 0.1,
and the results are shown in Figure 3. Finally, we
get result by using (1, 0.8) hyper-parameter pairs
in Twitter 2015 dataset and (1, 0.5) in Twitter 2017
dataset as the final result of our proposed DTCA
model. In addition, subsequent ablation experi-
ments also fixed the hyper-parameter to this opti-
mal value.
Case Study: To better demonstrate the effect of
TMFN model, we analyzed two cases as shown in
Figure 4. We choose CMMT and JML model to
compare. In the first example, JML lacks focus on
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the global information and therefore fails to iden-
tify the correct number of aspect terms. In the sec-
ond example, we designed the TOFA module to
align image local feature with target and enhance
the perception of target emotional-related details,
which has certain advantages, so that we can bet-
ter grasp the sentiment polarity of Harry Reid.

5. Conclusion

In this paper, we propose a TMFN method for
MABSA. It fuses global image information and lo-
cal fine-grained image information with text to im-
prove the performance of MATE and MACS sub-
tasks in MABSA. In addition, since the details of
targets in images contain a lot of emotional-related
information, we designed a TOFA module to align
and enhance image regional features with senti-
ment information of targets, so as to improve the
accuracy of the MASC subtask. Experiments on
two benchmark datasets show that our method out-
performs state-of-the-art results.

In future work, we will try to strengthen fine-
grained text information for MABSA and apply our
model to other multimodal tasks that require atten-
tion to different granularity of information.
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