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Abstract
Unpredictability, especially unpredictability with unknown error characteristics, is a highly undesirable trait, particu-
larly in medical patient care applications. Although large pre-trained language models (LLMs) have been applied
to a variety of unseen tasks with highly competitive and successful results, their sensitivity to language inputs
and resulting performance variability is not well-studied. In this work, we test state-of-the-art pre-trained language
models from a variety of families to characterize their error generation and reliability in medical assessment ability.
Particularly, we experiment with multiple choice tests for general medical assessment, as well as their open-ended
and true-false alternatives. We also profile model consistency, error agreements with each other and with humans;
and finally, quantify their ability to recover and explain errors. The findings in this work provide new insights
on medical models so that modelers can make better-informed decisions instead of relying only on standalone
performance metrics.
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1. Introduction

In 1999, the United States Institute of Medicine
published a report that at least forty thousand
deaths are a result of preventable medical errors.
The report, titled ”To Err Is Human: Building a
Safer Health System” asserted that humans – in
these cases, highly trained domain experts like
doctors and nurses – will make honest mistakes
but a well-planned system can prevent or at least
mitigate such errors (Institute of Medicine (US)
Committee on Quality of Health Care in America,
2000). While human error is a well-studied topic, it
is less clear what types of errors are produced and
how to mitigate the role of errors from pre-trained
generalized large language models (LLMs), espe-
cially in the medical domain.
Unlike previous models, pre-trained LLMs (e.g.,

GPT-3.5, PALM) are being applied as general-
ized AI models, “instructed” to solve a variety of
tasks, previously unseen, and doing so with com-
petitive performances. Such tasks can be as di-
verse as multiple choice reading comprehension,
summarization, machine translation, text classifi-
cation, named entity recognition, and relation ex-
traction. However, early findings reveal several un-
precedented challenges: (a) performance incon-
sistency for the exact same inputs processed at dif-
ferent times and (b) performance inconsistency for
semantically equivalent but variant surface form
prompts. Specifically the same task prompt re-
worded slightly differently or with additional con-
text may lead to wildly different results. Even the

same prompt with inference performed at a differ-
ent time may result in different outputs – a phe-
nomenon previously not characteristic of artificial
intelligence machine learning models. Because of
thesemodel behaviors, it is difficult to predict when
these LLMs will fail and if so, how ungrounded er-
rors are.
In this work, we survey models applied to the

medical domain, framed in the context of general
medical assessment tests, including its multiple
choice, binary, and free-text variants. The ob-
jective is to understand the stability of LLMs as
applied to medical problems and compare their
errors to that of smaller pre-trained language
models competitive in the same task. We further
quantify differences in model errors and compare
them with possible human errors to assess differ-
ences.

Our contributions are as follows:
• An annotated dataset of approximated ques-
tion errors by medical students and by medi-
cal doctors, as well as a dataset of model out-
puts with different configurations which may
be used to develop new consistency metrics.

• A framework for measuring consistency
for non-deterministic LLMs (e.g., GPT-3.5,
PALM) in the medical domain; and results
for the consistency assessment for current
state-of-the-art models. 1

1https://github.com/velvinnn/LLM_
error_study

https://github.com/velvinnn/LLM_error_study
https://github.com/velvinnn/LLM_error_study
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Original Multi-choice Question
Instructions: The following are multiple-choice questions about
medical knowledge. Solve them in a step-by-step fashion. Output
a single option as the final answer.
Question: A 10-year-old Caucasian female with Turner’s
syndrome underwent an abdominal imaging study and was
discovered that the poles of her kidneys were fused inferiorly.
Normal ascension of kidney during embryological development
would be prevented by which of the following anatomical
structures?
Options: (A) Inferior vena cava (B) Superior mesenteric artery
(C) Inferior mesenteric artery (D) Celiac artery (E) Splenic artery
GPT-4 response: Explanation: We refer to Wikipedia articles on
medicine for help. The superior mesenteric artery (SMA) is the
structure that the kidneys must ascend past during embryological
development. If the kidneys fail to ascend past the SMA, they
may become fused at the lower poles, resulting in a horseshoe
kidney.
Answer: (B) Superior mesenteric artery.

Open-ended Question Version Example
Instructions: Answer the question concisely based on your
medical knowledge. Solve them in a step-by-step fashion.
Question: ... Normal ascension of kidney during embryological
development would be prevented by what anatomical structures?
GPT-4 response: The normal ascension of the kidneys during
embryological development can be prevented by the inferior
mesenteric artery and the gonadal vessels. These structures can
act as physical barriers to the upward migration of the kidneys.

Binarized Question Version Example
Instructions: Decide if the answer is true to the question based on
medical knowledge. Solve them in a step-by-step fashion.
Question: ... Normal ascension of kidney during embryological
development would be prevented by what anatomical structures?
Answer: Inferior vena cava
GPT-4 response: We refer to Wikipedia articles on medicine for
help. The answer is wrong because the inferior vena cava is not
an anatomical structure that would prevent the normal ascension
of the kidneys during embryological development. The kidneys
ascend from the pelvic region to the lumbar region during
development, and this process is not hindered by the inferior vena
cava.

Table 1: Example of a medical assessment exam
multiple choice question with its true/false and
open-ended variants and GPT-4 response.

• Quantifiable measurements for how often the
incorrect answers from different medical as-
sessments pre-trained language models are
consistent with each other and to humans.

• A study of generalized LLMs’ ability to differ-
entiate and give explanations for medical as-
sessment errors.

We suggest that traditional measures of quality,
such as accuracy, are only one facet in this new
AI modeling landscape; understanding a model’s
consistency and error profiles compared to domain
experts are important considerations. We envi-
sion this study can be used to inform modelers
on expected results and failures of state-of-the-art
medical models and inspire ways to emphasize
strengths and manage risks - much in the way that
the original Institute of Medicine report spurred the
creation of checklists and safety measures for doc-
tors and nurses.

2. Background and Related Work

Medical assessment testing is a hallmark of medi-
cal education worldwide. These tests include com-
binations of multiple choice (MC), free written, and
oral examinations (Price et al., 2018; Li et al.,
2021). In the United States, the United States
Medical Licensing Examination (USMLE) medical
students take several tests during their student ca-
reers including the UMSLE Step 1, 2, and 3, prior
to clinical rotations, after clinical rotations, and dur-
ing the first year of residency (USMLE, 2023; Asso-
ciation, 2022). An example MC question is shown
in Table 1.
As well as testing humans, medical assessment

multiple choice questions have been one choice
for automated benchmarking of medical assess-
ment ability progress. For example, the MedQA
dataset includes a dataset of medical practice
exam questions for USMLE questions and Chi-
nese exams (both Mainland and Taiwan), with sev-
eral retrieval- and BERT-based baselines(Jin et al.,
2020). The authors, (Li et al., 2021), provide BERT
and RoBERTa as baselines for a variety of biomed-
ical question-answer (QA) scenarios with both text
and other data (e.g., images or tables) in Chinese.
In (Nori et al., 2023), GPT-4 is shown to score an
86.70 accuracy score on average across Steps 1,
2, and 3. The work of (Singhal et al., 2023) re-
veals FlanPalm accuracies of 57.6 on the MedM-
CQA dataset, 67.6 on the MedQA (USMLE type)
dataset, and 79.0 on PubMedQA.
The advent of instruction-tuned LLM (Ouyang

et al., 2022) has spurred home-grown small expert-
validated datasets that have been used to quan-
tify the general skills of these models, such as
ChatGPT. For example, in (Johnson et al., 2023)
284 domain-expert-created medical questions are
used to test ChatGPT and GPT-4 with answers
graded by physicians using a Likert-scale rubric.
(Al-Dujaili et al., 2023) studied ChatGPT perfor-
mance for 20 cases of pharmacotherapy ques-
tions; the answers for these questions were as-
sessed at different time points with the highest
score of 87.5% accuracy.
In (Schubert et al., 2023), GPT-4 achieves 85%

accuracy for a 1,956 neurology board exam ques-
tions. To test reproducibility, the same prompt was
repeated multiple times. GPT-4 was given a score
of 81.3% (if defining 75% same output across 50
independent queries). The authors also found that
correct answers tended to be on average more
consistent.
In (Liévin et al., 2022), the authors tested GPT-

3.5 on USMLE, MedMCQA, and PubMedQA and
analyzed if errors came from incorrect reasoning,
insufficient knowledge, or reading comprehension
problems. The authors suggested that when not
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sure, LLMs can make choices by heuristics and
be inclined to a certain option such as A or D.
In the general domain, there has been limited

study on LLM consistency. Primarily the work of
(Jang et al., 2022) and (Jang and Lukasiewicz,
2023) test consistency of LLM models with re-
spect to various 2-input classification tasks for
models such as RoBERTa, ChatGPT, BART, and
T5. Specifically, score consistency by measuring
model output when the order of the two inputs was
switched and the answer didn’t expect output (e.g.,
in a paraphrase classification task, the answer to if
”sentence1 is a paraphrase of sentence2” should
be equivalent to if ”sentence2 is a paraphrase of
sentence1”).
In this work, like (Jang and Lukasiewicz, 2023),

we apply a suite of systematic inconsistency tests,
however, we construct our experiments as related
to medical questions given a clinical narrative con-
text. Different from (Al-Dujaili et al., 2023; Schu-
bert et al., 2023), we extend the consistency and
reliability tests by additionally studying surface and
semantic variations; as well as compare results
across multiple model families.

3. Dataset

In this work, we study the US portion of the MedQA
dataset (Jin et al., 2020) Typically a question will
contain a clinical context, a question, and several
options, as shown in Table 1. In the real USMLE
test the number of multiple choice options can
range from 5-11. The MedQA dataset includes
both a simplified 4-option version as well as the full-
un-edited version. While most work report on the
4-option version, preliminary experiments from Mi-
crosoft/OpenAI’s study of GPT-4 revealed a drop
in performance when considering a 5-option multi-
ple choice versus 4-options(Nori et al., 2023).
We further extend the dataset by creating an

open-ended and true-false variant of the multiple
choice questions in the test set using a mixture
of automated replacements and human evaluation.
For example, we replace ’which’ with ’what’, so
that questions such as ’which of the following is the
best treatment for ... ’ will be converted to ’what
is the best treatment for ...’. The True/False vari-
ant further extends these questions by appending
each possible answer in the option pool and query-
ing for veracity. Examples are shown in Table 1;
Full details are described in the Appendix 8.1.
To understand whether models would make the

same mistakes as human domain experts, 200
randomly chosen questions out of the standard
test set were selected and annotated. To create
a proxy for human domain expert error, domain
experts were asked to identify the next best an-
swer if the correct answer was unavailable. We

assume that although medical question and an-
swer datasets, by design, will seek to provide
one best answer they would also provide other
plausible answers; the annotators’ function is not
only to screen away trivially incorrect answers but
also to find a credible incorrect answer if available.
The inter-annotator agreement (IAA) between two
doctors (Dct), a family medicine and emergency
medicine medical doctor, and four medical stu-
dents (Std) on 25 questions for the error approx-
imation is shown in Table 2.

Dct1 Dct2 Std1 Std2 Std3 Std4

Dct1 100 40 24 40 20 20
Dct2 100 36 40 24 28
Std1 100 32 48 56
Std2 100 28 52
Std3 100 44
Std4 100

Table 2: Pairwise IAA (accuracy, %) on the next
best answer on 25 questions.

Based on the IAA experiments, individual pair-
wise agreements for the next best answer were not
high, signaling the difficulty of the task and the sub-
jective nature of the problem. The medical student
and doctor annotators had different thought pro-
cesses in their reasoning for selecting their next-
best answer. Despite this, we found that though
individual pairs may not always agree on the same
labels per question, in a small “crowd” a clear fa-
vorite label by majority vote will emerge. In fact,
21/25 (84%) of questions had at least 3 annotators
agree on the same next best answer.
The rest of the randomly sampled 200 questions

were annotated by one medical doctor and at least
three medical students. 28 out of the 200 ques-
tions were marked as invalid due to missing essen-
tial information, i.e. an image is needed to answer
the question. The medical doctor also provided a
free-text explanation of why the chosen error op-
tion is incorrect.

4. Methods

4.1. Evaluated Models
For our study, we selected several publicly avail-
able state-of-the-art (SOTA) LLMs from different
model families, either proven to show good perfor-
mance on the MedQA-USMLE or widely used for
a variety of tasks.

Instruction-tuned LLM’s model families include:

• PALM (Anil et al., 2023) (Palm2), a large gen-
eral artificial intelligence model developed by
Google. MedPalm or MedPalm2 was not
available at the time of this work.
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• GPT-3.5 (ChatGPT) (Brown et al., 2020b)
and GPT-4 created by OpenAI and Microsoft
(Achiam et al., 2023; Nori et al., 2023)

• Llama (Llama2-70b-chat) an open source
instruction-tuned large language model devel-
oped by Meta AI (Touvron et al., 2023).

Fine-tuning-based task-specific LLMs include:

• BioMedLM (Bolton et al., 2022) (previously
known as PubMedGPT), a 2.7B parameter
language model trained on biomedical litera-
ture out of Stanford University

• Dragon (Yasunaga et al., 2022) a QA-specific
model pretrained with text and knowledge
graph information, with proven succesful re-
sults on the MedQA dataset

4.2. LLM Consistency Experiments
We propose measuring consistency by providing
alternate forms of the original medical assessment
questions with surface and semantic variations,
as well as typical LLM configuration differences
such as changing temperature and priming with
N-shot examples. The 5-option multiple choice
(with 5-shot examples for instruction-based LLMs,
temperature set to 02) version is used as a basis
of comparison unless otherwise stated – we
picked this setting to be more realistic to actual
testing and running settings. LLM experiments
settings included fixed prompts with inspiration
from previous work (Singhal et al., 2023).

In the following text, we describe our experimen-
tal settings as well as our measures of consis-
tency.

Experiments with typical LLM configuration,
optimization, and superficial differences:

1. Repeated runs: For the instruction-tuned
LLMs, we used the same prompt repeated
at temperature 0. Fine-tuning-based models
repeat the same experiments conducted with
the same fine-tuning hyperparameters but dif-
ferent random seeds.

2. Temperature: In these experiments, temper-
ature is varied [0,0.2,0.4,0.6,0.8,1.0].

3. N-shot: For instruction-basedmodels, provid-
ing examples to prompt the model has experi-
mentally been shown to improve results. Here
we quantify the variations of 1-5 shot exam-
ples.

2For Llama with temperature 0, results are docu-
mented to be highly unstable because of division by 0
calculations. Instead, we use a small temperature of
0.01 to approximate this.

4. MC re-order: Here the same MC options
are presented however the order of the mul-
tiple choice is shuffled. We experimented
with three different settings: (1) random shuf-
fling keeping the same answer ID (e.g., (a)
can move to the second position), (2) random
shuffling with answer ID’s renamed such they
are alphabetical (e.g., first option is (a), sec-
ond option (b), etc), (3) randomly shuffling the
order of the 5-shot examples.

To measure consistency, we take the standard
deviation of accuracy across runs in an experi-
ment group.

Experiments where the original problem is
altered:

1. 4-option version: Compared to the base-
line system, the 4-option version effectively re-
moves one additional wrong option. Thus the
problem is simplified.

2. Open-ended: In these experiments, ques-
tions are changed to their open-ended forms.
For the evaluation of open-ended questions
of correctness, an annotator manually evalu-
ated 50 random questions accuracy. We ad-
ditionally calculated typical natural language
generation (NLG) metrics such as ROUGE.

3. Binarization: Here questions are changed to
their True/False variation. This is created by
using the open-ended variant and concatenat-
ing each possible option to the end - with in-
structions for a model to assess truth-hood.

To measure consistency, we measure the num-
ber of questions for which answers are changed
as compared to the baseline setting.

4.3. Error Comparison
Previous work studies overall model performances
in terms of accuracy, direct human assessment
(e.g., rating the same samples of output), or iso-
lated case studies. However, these assessments
do not provide information on whether models may
get the same questions correct or incorrect and if
the provided incorrect answers may match each
other.
In this analysis, two system outputs (e.g., two

different models or a model and a human), may
be compared according to the equation:

error_overlapij =
|{qerror}i ∩ {qerror}j |

|{qerror}j |
(1)

where {qerror}x is the set of all questions an-
swered incorrectly by system x. We also use an
exact answer variant that requires each question
must overlap and have the same answer.
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Figure 1: LLM prediction accuracy vs temperature.

Figure 2: LLM prediction accuracy change from
the baseline experiments, for N-shot experiments.

4.4. Error Recovery and Explanation

Besides the ability to recognize a correct answer,
recognizing an error is another test of medical as-
sessment ability. In these experiments, we sup-
ply both right and wrong answers (annotated by a
medical doctor) to a model and ask for explana-
tions on why there is an error. The explanations
are then manually compared to those provided by
the medical doctor annotator. We measure: (a)
percent accuracy on providing reasonable expla-
nations for errors, as assessed by an annotator
compared to doctor explanation annotation, and
(b) the percentage of questions for which models
are able to recognize there is no errors are present
even if asked to give an error explanation.

This provides a quantification of the possible
ability of LLM models to “recover” from errors.

5. Results

5.1. Overall results

Table 3 outlines the summary of results from our
general accuracy and consistency experiments.
We highlight several findings here:

• Most LLMs are relatively stable across
superficial differences: Most LLMs have
relatively low standard deviations across re-
peated runs and temperature experiments.
The exception was PALM.We further plot rela-
tive differences for LLMs across temperatures
(Figure 1), revealing significantly different be-
havior for PALM.

• Aggregated N-shot experiments reveal
slightly higher standard deviation and
clear differences related to number of ex-
amples: Of LLM optimization settings, n-shot
experiments showed higher deviations than
the next-highest MC reorder experiments. To
further investigate, we plotted performances
across different N-shot experiments for LLM
models (Figure 2). This revealed sizeable per-
formance differences between 0-5 shots as
well as different rates of change across mod-
els. In general, the performance improvement
is large when adding the first few examples,
and gradually diminishes until a certain thresh-
old number of examples. We believe that the
first increase comes from the LLMs’ in-context
learning ability. Meanwhile, when there are
enough in-context examples, adding addi-
tional examples does not necessarily bring
about more information. This observation is
consistent with previous work(Brown et al.,
2020a).

• Number of options severely degrades
model performance: Comparing the mean
accuracy on the 5-option dataset with the 4-
option dataset, we observe a performance
drop in accuracy ranging from 3.1 to 7.4
across models (example in Appendix 8.2).

LLM Baseline Temp N-shot MC reorder 4-option Binarization Open-ended Error Recovery & Explanation
score std score std score std score std score cons score cons score cons HumAgree recovery explain

GPT-4 80.2 0.5 80.5 0.5 80.7 0.8 80.6 1.0 83.6 89.6 43.4 43.8 54.0 50.0 82.4 25.1 70.0
GPT-3.5 64.1 0.1 63.5 0.6 61.9 2.5 63.3 1.3 67.2 78.1 14.2 15.8 52.0 48.0 71.4 33.5 68.0
Llama 41.5 0.1 41.9 0.5 42.1 1.4 41.5 1.1 48.9 70.5 6.0 6.0 20.0 22.0 74.1 9.9 34.0
PALM 40.3 0.1 45.9 2.6 41.1 0.5 40.6 0.7 46.3 59.6 1.5 1.2 30.0 18.0 77.0 19.7 34.0
BioMedLM 44.6 0.8 - - - - - - 50.1 66.7 - - - - - - -
Dragon 41.6 0.9 - - - - - - 44.5 59.1 - - - - - - -

Table 3: Summary of LLM Accuracy, Consistency, and Error Experiments. (All scores are measured in
terms of accuracy unless otherwise specified. std=standard deviation among those accuracy measures,
cons=consistency measured through percent agreement with baseline), HumAgree=human agreement
with error labels (error overlap), recovery=detect of no errors in correct text, explain=give reasonable
explanation of errors in error text. Baseline is 5-option with 5-shot examples, CoT reasoning
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• GPT 4 shows strongest accuracy per-
formance across reasonable consistency
across different metrics: Though in re-
peated runs at a higher standard deviation
of 0.5 than GPT3.5, Llama, and PALM, GPT-
4 gives across-the-board higher performance
across different types of perturbations. When
changing to binarized and open-ended varia-
tions, the percentage overlap as related to the
original is also the highest.

• Semantic differences lead to large differ-
ences in LLM performance outcomes: As
evidenced by large score differences, espe-
cially when changing to open-ended and bina-
rization alternatives, certain models may not
give consistent answers if the same query is
adapted in a different way. These seem to af-
fect both model ranking as well as absolute
scores.

• LLMs cannot tell if the right answer is
given as wrong most of the time; however
can give reasonable explanations of errors
if truly wrong: We applied a rule-based key-
word algorithm to detect the LLMs’ claim on
the answer’s correctness. We observed that
in more than 66% of correct text for which we
prompted models to explain the alleged error,
models still generated a reason for an imag-
inary error. That said, we see some moder-
ately high percentage of models with explana-
tions consistent with humans (e.g., 68% for
GPT3.5).

5.2. Studying Instability vs Inaccuracy
Consistency and accuracy are not necessarily cor-
related. However, understanding whether or not
consistent answers may be more associated with
correctness per model is useful information.
In this analysis, we first categorize questions

into varying degrees of consistencies based on the
number of values ever given per question (e.g.,
question id 1, which gives one answer value in
all five runs is more consistent than question id 2

which as (b) or (c) chosen during the five runs). To
understand if accuracies are different across con-
sistency behaviors, we measure accuracy for all
runs related across the questions in a category.
Thus, as shown in Table 4, in 6 temperature

runs, we observe GPT-4 give one answer in 78.6%
of questions – however within those 90.1% is cor-
rect. When at least two selected options occur
across all runs (for 15.4% of questions), the ac-
curacy among this population drops to 48.6% (a
change of 41.4%).
These results confirm that for the most part in all

LLMs, higher consistency is related to higher accu-
racies; though this behavior is less pronounced in
Llama and PALM. For example, in Llama temper-
ature experiments the accuracy from 1-observed-
option questions (the most consistent) drops from
46.8% to 29.0% for 2-observed-options, with a
difference of 24.3% smaller than GPT-4 in the
same experiments. Thus, in practice, if chang-
ing your query across several temperatures or n-
shot cases, leads to the same answer in the mul-
tiple choice setting, it is likely the result is accu-
rate. Moreover, interestingly the profiles of con-
sistency will change among the different experi-
ments - where N-shot differences are likely to lead
to larger consistency differences (e.g., the per-
centage of GPT-4 consistent questions goes to
77.7%).

5.3. Qualitative Analysis with
Open-ended Variation Questions

We experimented with both automatic and human
evaluations for the open-ended question variation.
However, while the gold answer is usually a con-
cise phrase, with an average of 4 words, the LLM
outputs were 10-45 times the average length of the
gold answer. Thus, we found traditional automatic
NLG metrics unreliable for this task.
Qualitatively in this set, we found that the

LLMs struggled with questions related to de-
scribing mechanism-related expectations. In one
example, a question was “What explains the
pathophysiology underlying this patient’s disor-
der?” where the expected answer was “Iso-

# options ever chosen and its percentage under each consistency testing experiment
Repeated Runs (5 runs) Temperature (6 runs) MC reorder (4 runs) N-shot (5 runs)

# options 1 2 ≥3 1 2 ≥3 1 2 ≥3 1 2 ≥3

Acc % Acc % Acc % Acc % Acc % Acc % 1 % Acc % Acc % Acc % Acc % Acc %
GPT-4 85.2 89.6 39.2 9.4 21.7 0.9 90.1 78.6 48.6 17.4 31.4 4.1 87.6 84.4 43.6 14.3 25.0 1.3 89.8 77.7 52.2 18.9 30.0 3.5
GPT-3.5 65.2 97.3 25.3 2.7 N/A 0.0 79.1 59.5 45.0 29.7 28.3 10.8 74.8 67.0 40.2 28.8 28.9 4.2 79.7 52.7 46.4 35.1 29.3 12.2
Llama 41.5 99.5 40.0 0.5 N/A 0.0 46.8 74.5 29.0 20.4 21.3 5.1 53.5 47.4 31.9 42.7 25.9 9.8 49.3 61.2 32.8 29.6 24.1 9.2
PALM 40.3 98.6 36.7 1.4 N/A 0.0 56.5 52.0 38.5 33.9 24.7 14.1 49.9 53.1 32.2 37.6 24.0 9.3 46.8 63.2 32.7 32.3 25.9 4.6

Table 4: Observations of each LLM’s answer consistency accuracy and frequency under different exper-
imental settings. For example, with simple repeated runs, GPT-4 will give exactly one answer for 89.6%
of questions at 85.2% accuracy, but in 9.4% of questions will have at least two different answers at a
39.2% accuracy. N/A refers to the situation where LLM has 0 questions with such number options.
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lated gonadotropin-releasing hormone (GnRH) de-
ficiency”, and the GPT 3.5 answer was “Kallmann
syndrome”. Though the latter is associated with
the former in some cases (which may be true in
this clinical scenario), the idea of the question is for
the test-taker to understand what type of biological
mechanisms may be interrupted rather than jump-
ing to a diagnosis. In another example, a question
was “The anatomic structure that was most likely
injured in this patient has what characteristics?”
with an expected answer of “Runs posteriorly from
the medial femoral condyle”, and the answers of
“ACL” or “PCL” from different models.
This suggests at least one of two ideas: (a) as

much as humans do, instead of critical thinking on
expected findings and perhaps updating source at-
tributions and hypotheses, LLMs memorize a fre-
quent conclusion, which is a problem if there are
incomplete or inaccurate assumptions at play; and
(b) multiple choice wording and expectations of
certain types of answers are specific to a limited
set of scenarios (e.g., standardized testing), but
may not be as prevalent (and therefore less learn-
able) or universally-understood in all contexts.

5.4. Further Study in the Binarized
Variation

To be comparable to the baseline version, we
changed the prompt to be a four-shot learning (1
right and 3 wrong options from one question), both
with and without chain-of-thought (CoT) reasoning
taking an example from Wei et al. (2022).

LLM %Parsed %Valid Acc
GPT-4 98.6 47.8 43.4
GPT-3.5 76.0 22.2 14.2
Llama 47.8 11.5 6.0
PALM 29.6 3.8 1.5

Table 5: Binarization experiment: percentage
among all questions in the test set.

Table 5 presents the results of the accuracies
in the converted binarized questions. Because
every question in the original dataset was con-
verted to five binary instances (True/False for each
available option) - to make scores comparable, we
convert the binary instances back by collecting all
True/False decisions per the same original ques-
tion. Only questions with only predicted true out of
the 5 original options were considered valid.
While GPT-4 results were parsable (e.g., a rule-

based regex was able to collect True/False an-
swers) at greater than 90%, this wasn’t the case
for GPT-3.5, Llama, and, PALM variants. Most
un-parsable results are because the LLM failed
to understand the task as True/False classifica-
tion, but explains why the answer is correct. No-

ticeably, the percentage of valid questions was
modest across all model groups, with the excep-
tion of GPT-4. We observed a great performance
drop from parsed to valid, especially for Llama and
PALM, due to the LLM predicting true for multiple
options. Finally, we observe significant drops in
performance, with the best accuracies at 43.4%,
whereas the highest open-ended variant scores
were at 58%. This could be attributable to the
stricter requirement to be able to answer five clas-
sification instances correctly instead of just one.

5.5. LLM and Human Error Agreement

Figure 3 details error question overlap agreements
according to equation (1). Figure 4 adds the addi-
tional constraint of requiring both question ID and
answer label to overlap. We additionally provide
a breakdown of the agreement of LLM with dif-
ferent numbers of annotators in Table 6. Table
7 provides both automated and human evaluation
scores when models are tasked with explaining er-
rors (even when none exist). We highlight several
key findings:

• When wrong, models differ about their pre-
ferred answer: The drop between Figure 3
and 4 show that even for the same questions
for which two models commit the same error,
the actual value of the error is often differ-
ent. For example between GPT-4 and GPT-
3, there is a 78.9% question error overlap if
taking the GPT-4 number of errors as denom-
inator (Figure 3). When factoring the answer
label, the overlap score drops to 50%(Figure
4).

• Models will pick an answer consistent with
a human, some with higher percentages:
Except for Dragon, at least 70% of all other
LLMs’ wrong predictions agree with at least
one human annotator (Figure 6). This sug-
gests that the options confusing to LLMs can
confuse humans as well. Among all the LLMs,
GPT-4’s wrong predictions agree with most
human annotators, as well as the doctor, as
seen in the last column of Figure 4.

• Automated NLG evaluation metrics give
rankings comparable to humans: Although
the measures of Rouge and BLEURT show
modest performances, in general, the rank-
ings based on these metrics and BERTScore
are consistent with humans. That said more
study needs to go into developing better met-
rics for this task as well as multiple reference
gold standards.
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Figure 3: Pairwise error question overlap (%) us-
ing Equation (1). (Denominator of incorrect an-
swers are indexed by rows.)

Figure 4: Pairwise error overlap agreement (%).
Same as Figure 4, however the same questions
and the same incorrect answer must agree. (De-
nominator of wrong answers are indexed by rows.)

6. Discussion and Conclusions

In our results, we quantified different accuracy
and consistency profiles across LLMs. GPT-4 re-
mains empirically the most robust when measur-
ing across changing answer options, superficial

LLM
Overlap with #

medical annotators Overlap with
Doctor≥ 4 ≥ 3 ≥ 2 ≥ 1

GPT-4 14.7 41.2 58.8 82.4 67.6
GPT-3.5 12.7 36.5 44.4 71.4 52.4
Llama 7.4 29.6 50.9 74.1 40.7
PALM 13.5 36.5 50.0 77.0 45.9
BioMedLM 11.0 22.0 37.6 71.6 34.9
Dragon 3.6 14.6 26.3 56.9 22.6

Table 6: Percentage of wrong predictions’ overlap
with number of human annotators’ approximated
errors.

LLM Rouge
BERT
Score

BLE-
URT

Human Eval (%)

-1 -2 -L contra-
dicts

non-
overlap

consis-
tant

GPT-4 18.4 5.9 12.2 84.5 48.2 10.0 20.0 70.0
+ 4shot 21.5 6.9 14.7 85.2 45.5 12.0 12.0 76.0
GPT-3.5 14.4 4.5 10 83.4 48.8 14.0 18.0 68.0
+ 4shot 19.3 5.7 13 84.6 46.0 34.0 24.0 42.0
Llama 10.5 3.1 7.6 82 51.4 22.0 44.0 34.0
+ 4shot 14.9 4.2 10.5 83.6 47.3 50.0 26.0 24.0
PALM 11 3 7.9 82.3 50.3 26.0 40.0 34.0
+ 4shot 12.4 3.3 8.9 82.8 46.6 26.0 40.0 34.0

Table 7: Comparison between the medical doc-
tor’s explanation with the LLMs’ on why an option
is wrong. The human evaluation is the percentage
of LLMs’ responses in each sub-category, among
the 50 randomly selected questions. (Baseline is
0-shot)

differences, semantic, consistency across varia-
tions, and error overlap with human annotation.
The drops in performances between 5-options to
4-options, and to open-ended/binarized variations,
suggest that the GPT family works well if given a
closed set of possibilities; however, if requiring ap-
plications toward open-ended questions or prob-
lems with multiple good solutions, there may be
challenges. This implies that one important re-
search direction is the generation of a small closed
set of optimal choices to reduce errors.
Our analysis measuring consistency versus ac-

curacy revealed that, across all LLMs, consistency
and accuracy are well-correlated. Thus, if certain
confidence thresholds are required in a system, it
is recommended to do some simple surface form
variations to identify possible uncertain answers.
As models have great overlap in incorrect answers
but different answers, ensembling efforts – while
useful in understanding which questions may be
incorrect – may not lead to additional gains for
correcting wrong assessments. That said perfor-
mance is still less than ideal for medical applica-
tions and would still require additional review by
experts.
LLMs show remarkable performances consider-

ing their generalized training regiment that is not
tuned for specific tasks. However, the differences
in scores when given larger semantic variations in
querying for the same knowledge as well as their
inability to recognize false presuppositions (e.g.,
tasked with finding an error in a correct medical
narrative) suggests unexpected tasks and unseen
set-ups are still challenging even when they are
related to very visible and well-studied datasets.
One future direction in dataset creation is to con-
struct benchmarks that query the same knowledge
but from different aspects; or add different related
challenges built upon the same base tasks. Such
a direction may give a better overall sense of a
model’s robustness for medical assessment than
isolated publicly available task performances.
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7. Ethics and Broader Impact
Statement

No use of patient information was used in the cre-
ation of this dataset. All labeled data was cre-
ated by hired domain expert workers, fairly com-
pensated as consistent with their state.
The medical assessment testing here was de-

veloped in by United States content creators
and therefore may not represent all the possible
schools of thought on medical knowledge. Con-
tent creators themselves may have differing opin-
ions on correct assessments which is not always
reflected in the questions datasets.
We provide an analysis related to specific mod-

els however, these trends may not hold for other
models or for future versions of current models.
The analysis here includes some but not all pos-
sible ways of testing accuracies, errors, and con-
sistency in the medical domain.
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8. Appendix

8.1. Open-ended Question Generation
A free-text, open-ended version of the MedQA
dataset is created to further challenge generative
LLMs’ consistency. This version is applied for the
binarization (Section. 5.4), open-ended QA (Sec-
tion. 5.3), and error explanation (Section. 5.5).
This was done by a rule-based algorithm that con-
verts the question from ’which’ format to ‘what’, i.e.
‘which of the following is the best treatment for ...
’ to ‘what is the best treatment for ...’. A human
review is conducted to improve the questions af-
ter this rule-based conversion, as well as to re-
move those questions that do not make sense in
the open-ended format, i.e. ‘What medication is
NOT likely to be the cause?’
The open-ended questions can be found in our

GitHub page.

8.2. Error analysis
As shown in Table 8, including one additional MC
option can confuse the model. Though the MC re-
order changes the GPT-4 CoT reasoning, it does
not impact prediction greatly.
Table 9 demonstrates an example of open-

ended MedQA question without offering the MC
options. All models make plausible reasoning, but
Llama 2 and PALM 2 fail to match the correct an-
swer.
Table 10 shows model explanations on why a

certain option is wrong, compared with the physi-
cian’s response, with 4-shot examples. GPT-4 and
PALM successfully provide explanations. GPT-3.5
does not agree with the instruction, while Llama 2
fails to follow the instructions and answers as a tra-
ditional MC question.
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Instructions: The following are multiple-choice questions about medical knowledge. Solve them in a step-by-step fashion.
Output a single option as the final answer.
Question: A 72-year-old woman is brought to the physician by her daughter because of a 6-month history of worsening
short-term memory deficits and social withdrawal. Treatment with galantamine is initiated. Two weeks later, the patient
develops vomiting, mild crampy abdominal pain, and watery, nonbloody diarrhea. Which of the following is the most
appropriate pharmacotherapy?

Number of options severely degrades model performance
4-option multiple choices: (A) Bethanechol (B) Metoclopramide (C) Atropine (D) Oxybutynin
GPT-4 response:
Explanation: We refer to Wikipedia articles on medicine for help. The symptoms suggest that the patient has developed
cholinergic side effects from the galantamine. Atropine is an anticholinergic drug that can be used to treat these side effects.
Answer: (C)
5-option multiple choices: (A) Bethanechol (B) Metoclopramide (C) Loperamide (D) Atropine (E) Oxybutynin
GPT-4 response:
Explanation: The patient’s symptoms are likely side effects of the galantamine treatment, which is a cholinesterase
used to treat Alzheimer’s disease. The side effects are due to increased cholinergic activity and can include gastrointestinal
symptoms like those the patient is experiencing. Loperamide is an opioid that decreases gastrointestinal motility and can
help manage these symptoms.
Answer: (C) Loperamide

Random shuffling while keeping the same answer ID
5-option multiple choices: (C) Loperamide (A) Bethanechol (E) Oxybutynin (B) Metoclopramide (D) Atropine
GPT-4 response:
Explanation: We refer to Wikipedia articles on medicine for help. The symptoms suggest that the patient has diarrhea.
Loperamide is an opioid that decreases the activity of the myenteric plexus, which decreases the tone of the longitudinal and
circular smooth muscles of the intestinal wall. This increases the amount of time substances stay in the intestine, allowing
for more water to be absorbed out of the fecal matter.
Answer: (C) Loperamide

Random shuffling with answer ID’s renamed such they are alphabetical
5-option multiple choices: (A) Metoclopramide (B) Oxybutynin (C) Bethanechol (D) Loperamide (E) Atropine
GPT-4 response:
Explanation: We refer to Wikipedia articles on medicine for help. The symptoms suggest that the patient has diarrhea.
Loperamide is an opioid that decreases the activity of the myenteric plexus which decreases the tone of the longitudinal
and circular smooth muscles of the intestinal wall. This increases the amount of time substances stay in the intestine,
allowing for more water to be absorbed out of the fecal matter
Answer: (D) Loperamide

Randomly shuffling the order of the 5-shot examples, with 5-option MC unchanged
5-option multiple choices: (A) Bethanechol (B) Metoclopramide (C) Loperamide (D) Atropine (E) Oxybutynin
GPT-4 response:
Explanation: We refer to Wikipedia articles on medicine for help. The patient is experiencing side effects from the galantamine,
which is a cholinesterase inhibitor used to treat Alzheimer’s disease. The side effects are due to increased cholinergic
and include nausea, vomiting, and diarrhea. Loperamide is an opioid that decreases gastrointestinal motility and can be used
to treat diarrhea.
Answer: (C)

Table 8: Example GPT-4 prediction on the same question, under 4-option and 5-option multiple choices,
and different MC reorders.
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Instructions: Answer the question concisely based on your medical knowledge. Solve them in a step-by-step fashion.
Question: A 16-year-old female presents to her physician’s office after noticing a round lump in her left breast 2 months ago.
She reports that the lump seemed to enlarge and became tender just preceding her last 2 menses. It is otherwise painless,
and the patient denies any discharge or skin changes. She has no past medical history but her grandmother, age 72, was just
diagnosed with invasive ductal carcinoma of the breast. The patient is an avid softball player at her high school and denies
alcohol, smoking, or illicit drug use. On exam, the breasts appear symmetric and normal. A 3-cm round, mobile mass is
palpated in the upper outer quadrant of the left breast. There is slight tenderness to deep palpation of the mass. There is no
axillary lymphadenopathy on either side. What is the most likely outcome of this patient’s condition?
Options: (A) This mass will likely require excision. (B) This mass will decrease in size if the patient starts oral contraceptives.
(C) This mass slightly increases this patient’s risk of breast cancer in the future. (D) This mass will most likely decrease in size
or disappear over time. (E) If this mass grows rapidly to greater than 5 cm, radiation and chemotherapy are indicated.
Answer: (D) This mass will most likely decrease in size or disappear over time
GPT-4 response:
The patient’s symptoms and age suggest that she likely has a fibroadenoma, which is a benign breast tumor common in young
women. These tumors can fluctuate in size with menstrual cycles due to hormonal influences. The most likely outcome for this
condition is that the fibroadenoma will remain stable or possibly regress over time. It does not increase the risk of breast cancer.
However, regular monitoring is usually recommended to ensure no significant changes occur.
Human label: The open-ended response is consistent with the correct option.
GPT-3.5 response:
Explanation: We refer to Wikipedia articles on medicine for help. The patient’s age, the presence of a round, mobile mass, and
the absence of axillary lymphadenopathy suggest a benign breast condition. Given the tenderness that worsens before her
menses, the most likely outcome is fibrocystic changes or fibroadenoma.
Answer: Benign breast condition (fibrocystic changes or fibroadenoma).
Human label: The open-ended response is consistent with the correct option.
PALM 2 response:
The most likely outcome of this patient’s condition is that she has a fibroadenoma, which is a benign (noncancerous) tumor of
the breast. Fibroadenomas are the most common type of breast tumor in women under 30 years old. They are usually round,
smooth, and rubbery, and they can range in size from a few millimeters to several centimeters. Fibroadenomas are often
caused by hormonal changes, such as those that occur during puberty or pregnancy. They are usually not painful, but they
can become tender before or during menstruation. Fibroadenomas are usually diagnosed by a physical examination and
confirmed by a mammogram or ultrasound. If a fibroadenoma is small and not causing any problems, it may be simply
monitored over time. If it is larger or causing symptoms, it may be removed surgically. The removal of a fibroadenoma is a
simple procedure that is usually done on an outpatient basis. The patient will usually be able to go home the same day as
the surgery. The recovery time is usually short, and the patient can usually resume normal activities within a few days.
The patient’s grandmother’s diagnosis of invasive ductal carcinoma of the breast is concerning, but it is important to remember
that breast cancer is not hereditary. Only about 5-10% of breast cancers are caused by inherited genetic mutations. The
patient’s family history does increase her risk of developing breast cancer, but she is still at a relatively low risk. She should
continue to have regular mammograms and breast exams to screen for breast cancer.
Human label: The open-ended response is wrong but can be mapped to one of options.
Llama 2 response:
Based on the information provided, the most likely outcome of this patient’s condition is a benign breast tumor. The patient’s age,
lack of significant medical history, and tender swelling in the breast suggest a high likelihood of a benign breast tumor, such as
a fibroadenoma. The fact that the patient’s grandmother was recently diagnosed with invasive ductal carcinoma of the breast may
increase the patient’s risk for breast cancer, but it is still unlikely given the patient’s young age.
The patient’s symptoms, such as the round lump in her breast that seemed to enlarge and became tender just preceding her last
2 menses, are consistent with a benign breast tumor. The absence of any discharge or skin changes also supports this diagnosis.
The patient’s physical examination, which revealed a 3-cm round, mobile mass in the upper outer quadrant of the left breast,
with slight tenderness to deep palpation, further supports the diagnosis of a benign breast tumor. The absence of axillary
lymphadenopathy on either side also suggests a benign condition.
Therefore, based on the information provided, it is likely that the patient’s condition is a benign breast tumor, such as a
fibroadenoma, and further diagnostic testing, such as a breast ultrasound or biopsy, may be necessary to confirm the diagnosis.
Human label: The open-ended response is wrong and cannot be mapped to any options

Table 9: Model prediction on the open-ended, no MC version of the MedQA question, with CoT reasoning.
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Instructions: Explain why the answer is wrong, based on your medical knowledge. Solve them in a step-by-step fashion.
Question: A 67-year-old man with transitional cell carcinoma of the bladder comes to the physician because of a 2-day
history of ringing sensation in his ear. He received this first course of neoadjuvant chemotherapy 1 week ago. Pure tone
audiometry shows a sensorineural hearing loss of 45 dB. The expected beneficial effect of the drug that caused this patient’s
symptoms is most likely due to which of the following actions?
Options: (A) Inhibition of thymidine synthesis (B) Inhibition of proteasome (C) Hyperstabilization of microtubules
(D) Generation of free radicals (E) Cross-linking of DNA
Wrong answer: (D) Generation of free radicals.
Physician’ explanation:
Free radical generation is not typically associated with the ototoxicity seen in drugs used to treat transitional cell carcinoma of
the bladder, like cisplatin, which primarily act via DNA cross-linking.
GPT-4:
The given answer is incorrect. The drug that likely caused this patient’s symptoms is cisplatin, a chemotherapy agent
commonly used in the treatment of transitional cell carcinoma of the bladder. Cisplatin is known to cause ototoxicity, which can
manifest as tinnitus (ringing in the ears) and sensorineural hearing loss.
The beneficial effect of cisplatin is not due to the generation of free radicals. Instead, cisplatin works by forming covalent bonds
with the purine bases on the DNA, which leads to the formation of DNA adducts. These adducts distort the DNA helix and
prevent DNA replication and transcription, leading to cell death.
Therefore, the beneficial effect of cisplatin is due to its ability to interfere with DNA replication and transcription, not the
generation of free radicals.
Human label: the model’s explanation is consistent with the physician’s explanation
GPT-3.5:
The answer is correct. The expected beneficial effect of the drug that caused the patient’s symptoms is most likely due to the
generation of free radicals. Neoadjuvant chemotherapy drugs, such as cisplatin, commonly used in the treatment of
transitional cell carcinoma of the bladder, can cause ototoxicity, which is damage to the inner ear resulting in hearing loss.
This ototoxicity is thought to be caused by the generation of free radicals, which can damage the delicate structures of the
inner ear and lead to sensorineural hearing loss.
Human label: the model’s explanation contradicts the physician’s explanation
PALM 2:
The answer is wrong because generation of free radicals is a harmful effect of chemotherapy. Free radicals are unstable
molecules that can damage cells, including healthy cells. This damage can lead to a variety of side effects, including
hearing loss.
The expected beneficial effect of the drug that caused this patient’s symptoms is most likely due to its ability to kill cancer
cells. Chemotherapy drugs work by damaging the DNA of cancer cells, which prevents them from dividing and growing.
This damage can also kill healthy cells, which is why chemotherapy often causes side effects.
In this case, the patient’s hearing loss is likely due to damage to the hair cells in the inner ear. Hair cells are responsible
for converting sound waves into electrical signals that are sent to the brain. When hair cells are damaged, they can no
longer function properly, which can lead to hearing loss.
There is no cure for hearing loss caused by chemotherapy, but there are treatments that can help to improve hearing.
These treatments include hearing aids, cochlear implants, and assistive listening devices.
Human label: the model’s explanation does not overlap with the physician’s explanation
Llama 2:
We refer to the Wikipedia article on Cisplatin, a chemotherapy drug commonly used to treat bladder cancer, for help.
Cisplatin can cause ototoxicity, which is damage to the inner ear and auditory nerve, leading to hearing loss. The generation
of free radicals is one of the proposed mechanisms for cisplatin ototoxicity. Free radicals are highly reactive molecules that
can damage cellular components, including the delicate structures of the inner ear.
Therefore, the answer is (D) Generation of free radicals.
Human label: the model’s explanation contradicts the physician’s explanation

Table 10: Model explanation on why a certain option is wrong, compared with the physician’s explana-
tions, under 4-shot examples. The 4-shot examples come from the 4 options from one MedQA question,
where three examples are from the wrong options and start with ‘The answer is wrong because’, and
one example is from the right option and starts with ‘The answer is right because’.
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