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Abstract
Minimal-pair paradigm datasets have been used as benchmarks to evaluate the linguistic knowledge of models
and provide an unsupervised method of acceptability judgment. The model performances are evaluated based
on the percentage of minimal pairs in the MPP dataset where the model assigns a higher sentence log-likelihood
to an acceptable sentence than to an unacceptable sentence. Each minimal pair in MPP datasets is controlled to
align the number of words per sentence because the sentence length affects the sentence log-likelihood. However,
aligning the number of words may be insufficient because recent language models tokenize sentences with subwords.
Tokenization may cause a token length difference in minimal pairs, introducing token-length bias that skews the
evaluation results. This study demonstrates that MPP datasets suffer from token-length bias and fail to evaluate the
linguistic knowledge of a language model correctly. The results proved that sentences with a shorter token length
would likely be assigned a higher log-likelihood regardless of their acceptability, which becomes problematic when
comparing models with different tokenizers. To address this issue, we propose a debiased minimal pair generation
method, allowing MPP datasets to measure language ability correctly and provide comparable results for all models.
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1. Introduction

Various methods and benchmarks have been pro-
posed to measure the linguistic knowledge of lan-
guage models because general-purpose language
models that have acquired superior linguistic knowl-
edge exhibit high performance across domains and
tasks (Wang et al., 2018, 2019). An acceptability
judgment task is a standard method for measuring
linguistic knowledge of language models. This task
determines whether a given sentence is grammati-
cally acceptable or unacceptable (Chomsky, 1957;
Schutze, 1996). The most widely used acceptabil-
ity judgment corpus is the Corpus of Linguistic Ac-
ceptability (CoLA) (Warstadt et al., 2019), which re-
quires the training of a supervised classifier to mea-
sure the linguistic knowledge of a language model.
However, using a supervised classifier for accept-
ability judgment has a limitation in that it is unclear
whether the language model learned the linguistic
knowledge during pretraining or acquired it during
the supervised training of the classifier (Warstadt
et al., 2020).

Unsupervised methods of acceptability judgment
have attracted much attention to overcome this limi-
tation. Among the unsupervised method, the use of
minimal-pair paradigm (MPP) datasets has become
a widespread approach to measure the linguistic
knowledge of a language model (Warstadt et al.,
2020; Nangia et al., 2020; Misra et al., 2023). MPP
datasets consist of minimal pairs —a pair of accept-
able and unacceptable sentences that minimally
differs by one word (Linzen et al., 2016). The lin-

guistic knowledge of a language model is evaluated
based on the percentage of minimal pairs where
the model assigns a higher acceptability score to
an acceptable sentence than to an unacceptable
sentence. The log-likelihood of a sentence is gener-
ally used as an acceptability score of a sentence in
the MPP dataset. This metric is used under the as-
sumption that the language model should estimate
a higher log-likelihood for an acceptable sentence if
the model has acquired the correct linguistic knowl-
edge.

In MPP datasets, each minimal pair is controlled
to align the number of words per sentence be-
cause the sentence length affects the sentence
log-likelihood (Figure 1-a) (Warstadt et al., 2020).
However, this constraint is insufficient for evaluating
pretrained language models, such as GPT-2 (Rad-
ford et al., 2019) and BERT (Devlin et al., 2019).
This is because current pretrained language mod-
els tokenize sentences with subwords, generating
acceptable and unacceptable sentences with differ-
ent token lengths (Figure 1-b). Such token length
difference may cause token-length bias that con-
fuses the evaluation results because it is known
that the token length also affects the log-likelihood
of a sentence (Figure 1-c) (Kauf and Ivanova, 2023).
Moreover, whether the token-length bias affects the
evaluation results of the MPP datasets is unclear.

Thus, this study focuses on the effect of token-
length bias on evaluations using the MPP dataset.
We aim to answer the following research questions
(RQ):
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That ice vaporized .
(Sentence length: 4)

That ice resembles .
(Sentence length: 4)

Acceptable sentence Unacceptable sentence

That ice vapor ized .
(Token length: 5)

That ice resembles .
(Token length: 4)
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Figure 1: Example of token-length bias in an MPP
dataset, which causes the unacceptable sentence
with a higher log-likelihood than the acceptable
sentence. (a) Original minimal pair with the same
sentence length, (b) token-length bias due to the
subword tokenization, and (c) correlation of the
sentence log-likelihood and the token length.

RQ1 Does the token-length bias affect the evalua-
tion results of the MPP dataset?
We aim to determine the presence of the
token-length bias in the MPP datasets and
its effect on the evaluation results using MPP
datasets. We describe our approach to
demonstrate their effect in Section 3.1 and
show the experimental results in Section 5.1.

RQ2 Is it effective to use normalized log-likelihood
as an acceptability score?
Normalizing the log-likelihood to the token
length may mitigate the token-length bias, but
their effectiveness on the MPP dataset is un-
known. We aim to investigate their effective-
ness in mitigating the token-length bias. We
explain the approach in Section 3.2 and show
the experimental results in Section 5.2.

We experimented on the Benchmark of Lin-
guistic Minimal Pairs (BLiMP) (Warstadt et al.,
2020), Crowdsourced Stereotype Pairs Benchmark

(CrowS-Pairs) (Nangia et al., 2020), and Con-
ceptual Minimal Pair Sentences (COMPS) (Misra
et al., 2023) datasets. Experimental results demon-
strated that MPP datasets suffer from token-length
bias, which prevents them from correctly evaluating
the linguistic knowledge of the models. Further-
more, we show that using the normalized sentence
log-likelihood fails to mitigate token-length bias,
confusing the model analysis. Therefore, this study
proposed a minimal pair generation method to re-
move the token-length bias from the MPP dataset
and used this method to regenerate the debiased
BLiMP dataset named FairBLiMP. The result ob-
tained from the FairBLiMP dataset showed that
using the biased BLiMP may lead to a wrong con-
clusion, indicating the necessity of a token-length
control in future MPP datasets. 1.

2. Background and Related Work

2.1. MPP Datasets
MPP datasets are used to evaluate the linguistic
abilities of the models as an unsupervised way of
acceptability judgment. Most MPP datasets focus
on evaluating English linguistic knowledge. How-
ever, MPP datasets in various languages have been
proposed owing to the increasing need to measure
the linguistic knowledge of non-English language
models, such as the benchmark of Sino linguis-
tics (Song et al., 2022) and Japanese benchmark of
linguistic minimal pairs (Someya and Oseki, 2023),
French CrowS-Pairs (Névéol et al., 2022), and Ara-
bic minimal pairs (Alrajhi et al., 2022).

This study focuses on English MPP datasets be-
cause English has several MPP datasets that mea-
sure different linguistic knowledge. To show that
the token-length bias is common across various
MPP datasets, we experimented on the English
MPP datasets below, which measure different lin-
guistic knowledge. The example of a minimal pair
in each MPP dataset is shown in Table 1.

BLiMP BLiMP is an MPP dataset used to eval-
uate the linguistic knowledge of language mod-
els regarding grammatical phenomena in En-
glish (Warstadt et al., 2020). BLiMP comprises
67 linguistic paradigms, each containing 1,000 min-
imal pairs. Each minimal pair is automatically gen-
erated from the grammar templates.

CrowS-Pairs CrowS-Pairs is an MPP dataset for
measuring social bias and stereotypes in language
models (Nangia et al., 2020). CrowS-Pairs contains
1,508 sentence pairs that deal with nine types of

1Our code for experiments and dataset generation for
the FairBLiMP dataset is available at https://github.
com/NOIRUED/FairBLiMP

https://github.com/NOIRUED/FairBLiMP
https://github.com/NOIRUED/FairBLiMP
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Dataset Acceptable Unacceptable
BLiMP Amanda was respected by some waitresses. Amanda was respected by some picture.
CrowS-Pairs Vince was poor so he had very little money. Vince was rich so he had very little money.
COMPS A sock absorbs sweat. A stocking absorbs sweat.

Table 1: Examples of minimal pairs in MPP datasets. Differences are underlined.

bias. Each minimal pair is collected using Amazon
Mechanical Turk.

COMPS COMPS constitutes an MPP dataset for
measuring the ability of language models to at-
tribute properties to concepts and inherit property
behaviors (Misra et al., 2023). COMPS comprises
three subsets: COMPS-BASE, COMPS-WUGS,
and COMPS-WUGS-DIST, which contain 49,340,
13,896, and 27,792 minimal pairs, respectively.
Each minimal pair is automatically generated from
the templates.

2.2. Acceptability Score Calculation
Method

The log-likelihood of a sentence in an MPP
dataset is generally used as an acceptability
score (Warstadt et al., 2020; Nangia et al., 2020).
In unidirectional language models, such as GPT-2,
the log-likelihood of a sentence can be easily esti-
mated by applying a chain rule and summing the
probability of each token. When a sentence S is
given, the log-likelihood of the sentence logPLM (S)
can be calculated as the sum of the conditional log
probabilities of predicting each sentence token st
from past tokens S<t := (w1, ..., st−1). This is ex-
pressed as follows:

logPLM (S) =

|S|∑
t=1

logPLM (st|S<t) (1)

In contrast, masked language models such as
BERT cannot directly estimate the log-likelihood of
a sentence because they use bidirectional contex-
tual representations (Devlin et al., 2019). Instead,
pseudo-log-likelihood (PLL) is used as the accept-
ability score in masked language models (Salazar
et al., 2020). In PLL, the token log probability is esti-
mated by masking the targeted token st and predict-
ing the log probability of the token using past and
previous tokens S\t := (s1, ..., st−1, st+1, ..., s|S|).
In masked language models, the PLL of a sen-
tence logPMLM (S) can be calculated as the sum
of conditional log probabilities logPMLM (st|S\t) of
each token, which is expressed as follows:

logPMLM (S) =

|S|∑
t=1

logPMLM (st|S\t) (2)

Although PLL enables the estimation of the log-
likelihood of a sentence in masked language mod-
els, it has the limitation of overestimating the PLL of
out-of-vocabulary words. To overcome this issue,
Kauf and Ivanova (2023) proposed PLL-word-l2r as
an alternative method for calculating PLL. The PLL-
word-l2r method estimates the token PLL by mask-
ing the targeted token swt and future within-word
tokens w>t, instead of only masking the targeted
token. The PLL-word-l2r method can be used to
estimate the log-likelihood of a sentence as follows:

logPMLMl2r(S) =

|S|∑
w=1

|w|∑
t=1

logPMLM (swt |S\sw
t′≥t

)

(3)
The PLL-word-l2r method was used in the experi-
ments in this study to estimate the log-likelihood of
a sentence for masked language models.

3. Approaches

3.1. RQ1: Token-length Bias
To evaluate how the token length difference affects
the evaluations using MPP datasets, we split each
subset of the MPP datasets by whether the token
length of the acceptable sentence (A) is equal to,
longer than, or shorter than the token length of the
unacceptable sentence (U) (Each split is shown
as A=U, A>U, A<U hereafter). The accuracy was
expected to remain the same among these splits
if token-length bias was not present in the MPP
datasets. Length bias among the MPP datasets
was analyzed by comparing the accuracy of A>U
and A<U with that of A=U.

3.2. RQ2: Length Normalization
Normalizing the log-likelihood to the token length
may mitigate the token-length bias because the log-
likelihood is proportional to the token length. Note
that, some previous studies (Misra, 2022; Mikhailov
et al., 2022; Someya and Oseki, 2023) have used
the normalized sentence log-likelihood as an ac-
ceptability score to reduce the effect of the token
length. They used normalization techniques such
as MeanLP, PenLP, and SLOR (Lau et al., 2020)
to normalize the sentence log-likelihood (LP). How-
ever, whether such normalization techniques are
effective in MPP tasks and can correctly normalize
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the log-likelihood of a sentence remains unclear.
Therefore, this study analyzes whether it is effec-
tive to normalize the log-likelihood of a sentence
with the token length in the MPP datasets.

In this study, MeanLP and PenLP are used as the
normalization techniques (Lau et al., 2020), normal-
izing the log-likelihood of sentences with the token
length. PenLP scales the token length using a scal-
ing factor α, which we set to 0.8 in this experiment.
MeanLP and PenLP are respectively calculated as
follows:

MeanLP =
logPLM (W )

|W |
(4)

PenLP =
logPLM (W )

((|W |+ 5)/(5 + 1))α
(5)

To reduce the effect of token length bias, these
normalization techniques must provide a normal-
ized log-likelihood that makes it possible to com-
pare sentences with different token lengths. To
meet that requirement, the token length should not
affect the expected value of the normalized sen-
tence log-likelihood. Moreover, the normalization
techniques must ensure that the expected value
of the sentence log-likelihood of acceptable sen-
tences is higher than that of unacceptable sen-
tences.

This study examined whether the length normal-
ization can mitigate the token-length bias among
the MPP datasets by observing the correlation be-
tween the normalized sentence log-likelihood and
the token length. Furthermore, we demonstrated
the effect of token-length bias on the accuracy of
the evaluations.

4. Experimental Settings

4.1. Models
We use unidirectional and masked language mod-
els to explore whether the effect of token-length bias
is common among the acceptability score calcula-
tion methods. Specifically, we used GPT2 (Rad-
ford et al., 2019), BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ELECTRA (Clark
et al., 2020) based on the implementation provided
by Huggingface Transformer (Wolf et al., 2020).
We list each model’s vocabulary size and training
corpora in table 5 (Appendix A).

Log probability was used for unidirectional lan-
guage models (GPT-2), and PLL-word-l2r was used
for masked language models (BERT, RoBERTa,
and ELECTRA) to calculate the acceptability score
of the sentence. Both log probability and PLL-
word-l2r were calculated using the minicons li-
brary (Misra, 2022). 2

2https://github.com/kanishkamisra/
minicons

4.2. Datasets
We conducted experiments on three English MPP
datasets: BLiMP (Warstadt et al., 2020), CrowS-
Pairs (Nangia et al., 2020), and COMPS (Misra
et al., 2023). For each dataset, we used sub-
sets that included at least one minimal pair that
exhibited varying token lengths between the accept-
able and unacceptable sentences. This enables
us to examine whether token-length bias affects
the minimal pair evaluations, specifically by ana-
lyzing cases where token-length bias was present.
Consequently, experiments were conducted on 31
subsets (e.g., animate subject passive and an-
imate subject transitive) of BLiMP, two subsets
(stereo and antistereo) of CrowS-Pairs, and two
subsets (BASE and WUGS) of COMPS. The ex-
periments were not conducted on the publicly avail-
able BLiMP dataset 3. Instead, the experiments
were conducted on the BLiMP dataset, which we
reconstructed using its generation code 4. This is
because the publicly available BLiMP dataset was
created using an old vocabulary table with some er-
rors. The new vocabulary table has been released
with modifications, but the BLiMP dataset itself has
not been updated. Thus, we decided to regener-
ate the BLiMP dataset with a new vocabulary table
to obtain a precise evaluation. Table 2 shows the
number of minimal pairs with different token lengths
in each dataset.

4.3. Metrics
Following previous studies (Warstadt et al., 2020;
Nangia et al., 2020; Misra et al., 2023), the accuracy
of each model was measured utilizing the propor-
tion of minimal pairs where the model estimated
a higher sentence log-likelihood for an acceptable
sentence. 5

5. Results

5.1. RQ1: Token-length Bias in MPP
Datasets

Subsets breakdown. Table 3 shows the experi-
mental results of each subset on base-size models.
The results showed that the accuracy decreased
when the acceptable sentence was longer than
the unacceptable sentence (A>U) compared with
that of A=U. This is because the models tended to
assign a higher log-likelihood to the unacceptable

3https://huggingface.co/datasets/blimp
4https://github.com/alexwarstadt/data_

generation
5The sentence log-likelihood was used as the accept-

ability score instead of the conditional log-likelihood score
on COMPS. This metric was aimed at experimenting un-
der the same conditions as BLiMP and CrowS-Pairs.

https://github.com/kanishkamisra/minicons
https://github.com/kanishkamisra/minicons
https://huggingface.co/datasets/blimp
https://github.com/alexwarstadt/data_generation
https://github.com/alexwarstadt/data_generation
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Datasets GPT-2 BERT RoBERTa ELECTRA
A=U A>U A<U A=U A>U A<U A=U A>U A<U A=U A>U A<U

BLiMP 22,368 3,822 4,810 22,384 4,488 4,128 23,992 3,182 3,826 23,039 3,679 4,282
CrowS-Pairs 997 282 229 1,021 283 204 1,124 256 128 1,092 255 161
COMPS 29,592 16,727 16,917 24,691 19,584 18,961 20,608 6,784 35,844 30,186 16,158 16,892

Table 2: Number of minimal pairs with different token lengths in each dataset for each model with different
tokenizers and vocabulary sizes.

sentence, which had a longer token length than
the acceptable sentence. Conversely, the accu-
racy increased when the acceptable sentence was
shorter than the unacceptable sentence (A<U) com-
pared with A=U. The above tendency was present
in various subsets, indicating the trend is unrelated
to the tokens composing the sentence. Table 6
(Appendix B) shows the results on larger models,
showing the same tendency.

These results confirm that when the sentences in
a minimal pair have different token lengths, the sen-
tences with a shorter token length are likely to be
assigned with a higher log-likelihood, regardless of
the acceptability of a sentence. This token-length
bias is problematic because it prevents the MPP
datasets from accurately evaluating the model’s
linguistic ability, as the tokenizer can affect the eval-
uation results. Thus, we conclude as an answer
to RQ1 that currently available MPP datasets suf-
fer from token-length bias and fail to evaluate the
linguistic knowledge of the models correctly.

Overall, the GPT-2 and BERT models were more
susceptible to token-length bias. Contrastingly,
the results showed that token-length bias less af-
fected the RoBERTa model. This was because
the RoBERTa model exhibited a smaller regres-
sion coefficient than the other models. The correla-
tion between the log-likelihood of a sentence and
token length among the models is shown in Fig-
ure 2. A smaller regression coefficient of RoBERTa
increases the token length required to produce
the token-length bias, which makes the RoBERTa
model robust to the token-length bias. However,
why the RoBERTa model has such properties re-
mains unclear. We leave a more detailed exami-
nation of RoBERTa model properties on the MPP
datasets as future work.

Token length difference and accuracy. Due to
the correlation between the log-likelihood and the
token length, the larger difference in token length
between acceptable and unacceptable sentences
is presumable to affect the accuracies of the MPP
evaluations significantly. To investigate whether
this presumption is true, we analyzed how the MPP
evaluations change when a large difference in token
length is present. We defined the token length
difference as the token length of an acceptable
sentence subtracted from the token length of an
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Figure 2: Correlation between the log-likelihood of
a sentence and the token length on each model.
RoBERTa model has a smaller regression coeffi-
cient than those of other models.

unacceptable sentence and experimented using
this measure.

Figure 3(a) shows the token length difference
and the accuracy plots of each MPP dataset on
GPT-2. For all MPP datasets, the linguistic abili-
ties of the models were more likely to be overesti-
mated when the token length difference was nega-
tive. Conversely, the ability was more likely to be
underestimated when the token length difference
was positive. The accuracy is affected significantly
when the acceptable sentence is longer than the un-
acceptable sentence, especially if the token length
difference exceeds two tokens.

5.2. RQ2: Normalization of the
Log-likelihood

As mentioned in Section 3.2, we analyzed whether
normalizing the log-likelihood of a sentence with
the token length in the MPP datasets is effective.
The results of MeanLP and PenLP normalized log-
likelihood are shown in Figure 4. We found that
MeanLP and PenLP exhibited strong positive and
negative correlations with the token length, respec-
tively. This result demonstrated that the expected
values of the sentence log-likelihood are affected
by the token length in MeanLP and PenLP, indicat-
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Datasets & Subsets GPT2-medium BERT-base RoBERTa-base ELECTRA-base
A=U A>U A<U A=U A>U A<U A=U A>U A<U A=U A>U A<U

BLiMP
Animate Subject Passive 73.6 32.7 95.7 83.2 57.7 89.5 75.9 69.5 75.0 78.4 47.0 79.8
Animate Subject Trans 81.9 62.7 94.2 78.0 53.4 86.4 80.2 81.3 79.3 79.9 50.6 82.7
Causative 79.0 57.5 95.7 79.0 59.6 82.4 83.6 84.1 81.7 83.5 76.9 88.1
Drop Argument 59.0 15.2 82.3 64.0 22.3 77.5 65.3 63.1 70.3 56.6 28.9 61.2
Inchoative 71.2 47.6 96.1 71.5 41.6 77.8 77.1 73.1 73.4 70.5 50.6 67.9
Intransitive 75.1 58.5 89.2 72.3 56.0 75.7 80.6 81.3 N/A 69.7 58.3 66.9
Passive 1 93.3 61.3 99.3 90.4 54.5 93.1 87.2 86.4 N/A 90.5 82.8 90.3
Passive 2 90.4 60.9 93.6 93.7 72.2 91.8 90.7 N/A 88.3 95.6 84.1 92.8
Transitive 91.0 82.2 98.0 91.1 78.2 95.8 89.5 N/A 92.6 91.3 89.0 95.0
Principle A Case 2 98.7 97.0 100.0 99.6 94.9 96.5 98.5 N/A 97.3 99.1 96.3 96.5
Principle A Domain 3 65.6 66.6 60.9 85.3 N/A 100.0 68.2 64.1 65.9 68.2 N/A N/A
Existential There Object Raising 77.9 33.3 95.1 81.6 23.2 96.9 76.0 N/A 74.5 77.5 47.1 94.1
Existential There Subject Raising 89.7 100.0 100.0 91.5 85.0 100.0 89.5 92.2 89.2 90.0 100.0 100.0
Expletive It Object Raising 87.7 47.2 99.5 79.6 64.0 89.8 84.4 79.9 83.6 84.5 74.7 88.9
Tough vs. Raising 1 79.9 36.3 N/A 74.9 23.4 83.0 87.7 86.5 N/A 67.6 40.0 N/A
Tough vs. Raising 2 90.2 N/A 100.0 94.7 92.5 99.2 95.6 N/A N/A 95.7 N/A 100.0
Det. Noun Agr. 1 98.7 98.4 98.0 99.5 99.0 98.8 99.6 N/A N/A 99.8 100.0 100.0
Det. Noun Agr. Irregular 1 96.7 68.4 100.0 99.3 86.7 100.0 98.5 N/A 98.8 98.3 83.4 98.7
Det. Noun Agr. With Adj. 1 98.2 92.2 98.4 99.5 98.8 99.0 99.5 N/A 96.9 99.4 96.2 100.0
Det. Noun Agr. With Adj. Irregular 1 96.2 72.0 95.0 98.3 81.5 100.0 97.6 98.4 96.1 97.1 82.7 97.0
Ellipsis N Bar 2 96.8 90.7 100.0 96.9 99.7 100.0 99.6 98.9 N/A 98.8 99.7 100.0
Irregular Past Participle Verbs 94.0 11.8 100.0 95.3 N/A N/A 94.6 N/A N/A 96.8 N/A 52.9
Left Branch Island Echo Question 48.6 47.0 83.7 68.6 54.5 56.5 68.5 73.4 72.7 46.8 N/A N/A
Matrix Question NPI Licensor Present 63.2 41.7 50.2 92.7 N/A 90.0 90.1 N/A 89.6 91.4 N/A N/A
Only NPI Scope 80.1 N/A 81.9 82.5 N/A 84.2 85.2 N/A N/A 83.7 N/A N/A
Sentential Negation NPI Licensor Present 96.8 N/A N/A 95.7 N/A 100.0 96.4 N/A N/A 99.9 N/A N/A
Distractor Agr. Relational Noun 82.4 81.6 90.3 95.0 78.4 83.6 97.0 98.4 96.9 97.6 74.2 98.0
Distractor Agr. Relative Clause 68.4 66.7 71.8 83.8 65.5 67.3 86.8 90.6 N/A 88.6 77.3 83.8
Irregular Plural Subject Verb Agr. 1 95.2 85.7 91.7 93.9 82.4 81.0 96.7 94.5 N/A 96.6 86.0 96.0
Irregular Plural Subject Verb Agr. 2 96.8 50.0 97.0 97.0 61.9 90.0 96.7 97.3 96.6 97.0 72.0 94.1
Regular Plural Subject Verb Agr. 1 97.4 95.1 97.6 98.6 90.4 97.5 98.4 N/A N/A 99.2 95.7 100.0
Regular Plural Subject Verb Agr. 2 93.0 60.0 100.0 96.5 87.4 99.0 96.3 N/A N/A 96.5 90.0 98.7
CrowS-Pairs
Stereo 60.7 27.7 89.3 57.0 39.7 73.6 60.9 64.0 62.0 57.3 42.9 69.1
Antistereo 58.0 13.3 85.0 58.6 18.2 75.6 56.8 61.9 53.6 59.3 25.0 73.7
COMPS
BASE 66.3 49.9 81.8 67.2 29.1 88.5 65.7 67.9 67.6 66.9 37.8 83.3
WUGS 65.0 57.7 78.4 62.8 21.8 95.1 65.0 68.4 66.8 64.9 30.6 87.5

Table 3: Experimental results for each base-sized model on MPP dataset subsets. Each number represents
the model’s accuracy on the subset. The scores marked in red indicate that accuracy decreased compared
with A=U, and the scores marked in blue indicate the accuracy increased compared with A=U. N/A indicates
that the result could not be produced because no minimal pairs matched the condition.

ing that comparing sentences with different token
lengths can result in token-length bias.

Figures 3(b) and (c) show the correlation be-
tween token length difference and the accuracy
when the normalized log-likelihood is used. Unlike
LP, MeanLP attempts to eliminate the token-length
bias. However, the results of MeanLP demonstrate
that the accuracy varies depending on the token
length differences, indicating that the effect of token-
length bias can not be mitigated with MeanLP. In
contrast, the results of PenLP have a relatively
consistent accuracy across the token length differ-
ence in BLiMP and CrowS-Pairs datasets, reduc-
ing token-length bias compared to LP and MeanLP.
However, the token length difference in the COMPS
dataset affected the accuracy. Therefore, PenLP
can not be consistently used for all MPP datasets,
which in some cases may cause more confusion
when analyzing the results. Therefore, the answer
to RQ2 is that using normalized log-likelihood is in-

effective in MPP dataset evaluations and increases
confusion in the model analysis.

6. Discussion

6.1. BLiMP Reconstruction
A possible solution to debiasing MPP datasets is to
control the acceptable and unacceptable sentences
to have equal token lengths. Therefore, we propose
a method to generate a debiased minimal pair by
controlling the token length between the acceptable
and unacceptable sentences by Algorithm 1. This
algorithm generates a debiased minimal pair by
repeatedly generating an unacceptable sentence
until it has the same token length as an accept-
able sentence. Following the algorithm, this study
generated a debiased BLiMP dataset (FairBLiMP)
as a case study to analyze how the conclusions
drawn from the evaluation results change between
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Figure 4: Correlation between the token length and the expected value of the normalized sentence
log-likelihood estimated with GPT2-medium: (a) LP, (b) MeanLP, and (c) PenLP.

the original MPP dataset and the debiased MPP
dataset.

Table 4 shows the results of the FairBLiMP cre-
ated by our algorithm. The results showed a few
contrasting changes, such as changes in the model
with the highest performance. However, the overall
performance gap between the models narrowed.
In particular, the RoBERTa model scored 76.2 in
the “Inchoative” subset of the original BLiMP, which
was more than 10 points higher than those of the
other models. Of these, the BERT model had the
worst performance, with a difference of 16.4 points
compared to the RoBERTa model. However, the
evaluation results using the FairBLiMP dataset re-
vealed only a slight difference in performance be-
tween the models. RoBERTa was still the best-
performing model. However, BERT turned out to be
not the worst-performing model, with only a slight
difference of 3.1 points compared to the RoBERTa
model. Therefore, the result indicates that using
the token-length biased MPP dataset leads to incor-
rect conclusions and must be reconstructed with
debiased minimal pairs to obtain comparable re-
sults.

6.2. Recommendations for Future MPP
Datasets

Based on the experimental results, acceptable and
unacceptable sentences in each minimal pair must
have equal token length for future MPP datasets.
However, controlling the token length of minimal
pairs for all models is difficult because of the myriad
of models and tokenizers. Therefore, future MPP
datasets should consider the following points:

• Token length should be controlled to be equal
among acceptable and unacceptable sen-
tences to avoid token-length bias.

• Each minimal pair must be automatically gen-
erated using templates to control the token
length and a sufficient number of vocabularies
must be available for this purpose.

• The dataset generation tools must allow users
to select multiple models, and the system must
generate minimal pairs with an equal token
length for all selected models.

By satisfying the above criteria, the MPP datasets
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Paradigms Original BLiMP FairBLiMP
GPT-2 BERT RoBERTa ELECTRA GPT-2 BERT RoBERTa ELECTRA

Animate Subject Passive 67.5 79.1 74.9 72.8 73.3 82.4 76.6 77.3
Animate Subject Trans 82.9 81.8 80.1 79.3 67.1 72.4 71.7 74.3
Causative 75.6 73.1 83.6 82.3 81.6 82.1 86.1 84.7
Drop Argument 58.7 58.8 64.8 52.5 60.1 64.0 63.7 61.9
Inchoative 65.3 59.8 76.2 63.2 72.5 73.3 76.4 69.2
Intransitive 75.3 69.2 80.7 66.7 73.4 71.5 78.5 68.7
Passive 1 92.5 86.4 86.9 89.7 92.3 88.0 89.3 92.2
Passive 2 88.7 90.1 90.1 93.7 91.3 92.8 93.5 94.3
Transitive 91.2 89.4 90.3 91.7 90.7 91.5 91.4 90.7
Principle A Case 2 98.7 98.9 98.2 98.7 98.5 99.6 98.6 99.1
principle A Domain 3 64.7 85.3 66.6 68.2 64.6 88.7 72.1 73.7
Existential There Object Raising 80.2 81.8 75.4 79.6 74.8 78.9 71.1 78.2
Existential There Subject Raising 91.1 91.4 89.8 91.2 88.4 91.9 89.0 90.5
Expletive It Object Raising 81.2 80.0 81.5 83.6 90.1 79.8 81.2 84.6
Tough vs. Raising 1 76.4 68.4 87.6 65.4 84.0 77.7 87.5 72.2
Tough vs. Raising 2 90.8 95.0 95.6 96.0 86.1 93.4 94.8 96.4
Det. Noun Agr. 1 98.6 99.4 99.6 99.8 99.4 99.8 99.8 99.7
Det. Noun Agr. Irregular 1 93.4 97.7 98.6 96.0 98.0 99.6 99.2 99.1
Det. Noun Agr. With Adj. 1 97.9 99.4 99.2 99.3 99.1 99.4 99.3 98.8
Det. Noun Agr. With Adj. Irregular 1 94.3 97.9 97.5 95.7 97.6 98.9 98.7 99.3
Ellipsis N Bar 2 95.1 98.0 99.1 99.1 97.6 98.1 99.2 98.6
Irregular Past Participle Verbs 92.8 95.3 94.6 96.1 93.7 96.1 96.0 96.0
Left Branch Island Echo Question 51.8 66.2 69.7 46.8 40.9 68.4 69.1 49.9
Matrix Question NPI Lic. Pres. 58.4 92.7 89.9 91.4 59.1 94.3 90.0 92.5
Only NPI Scope 80.4 82.5 85.2 83.7 78.3 83.2 85.8 84.2
Sentential Negation NPI Lic. Pres. 96.8 97.1 96.4 99.9 94.0 95.0 91.9 99.5
Distractor Agr. Relational Noun 82.6 93.5 97.2 96.9 84.1 96.3 98.1 98.3
Distractor Agr. Relative Clause 68.5 81.9 87.3 87.9 70.8 84.9 87.0 89.3
Irregular Plural Subject Verb Agr. 1 94.6 92.3 96.4 96.0 95.0 94.0 96.6 96.8
Irregular Plural Subject Verb Agr. 2 93.0 96.1 96.8 96.3 97.5 97.7 99.1 98.5
Regular Plural Subject Verb Agr. 1 97.3 97.9 98.4 99.1 97.6 98.7 98.9 98.7
Regular Plural Subject Verb Agr. 2 91.4 95.8 96.3 96.1 96.5 98.0 98.2 97.9

Table 4: Results for each model (base-sized model) on original BLiMP (comprising minimal pairs without
token-length control) and FairBLiMP (comprising minimal pairs with token-length control). The scores
marked in blue indicate the highest accuracy among the models compared.

Algorithm 1 Debiased Minimal Pair Generation
1: function Minimal_Pair_Generation(Models)
2: N ← 0
3: Generate an acceptable sentence AS and

an unacceptable sentence US .
4: while N < 10 do
5: EqLen ← TRUE
6: for all Models do
7: Tokenize AS and US .
8: if |AS| ≠ |US| then
9: EqLen ← FALSE

10: end if
11: end for
12: if EqLen = TRUE then
13: return AS , US
14: end if
15: Regenerate an unacceptable sentence

US by changing the minimally different words.
16: N ← N + 1
17: end while
18: return None
19: end function

can measure language ability correctly for all mod-
els and provide comparable results.

7. Conclusion

This study analyzed token-length bias in MPP
datasets. Experiments were conducted on three
English MPP datasets (BLiMP, CrowS-Pairs, and
COMPS). Log probability and PLL-word-l2r were
used to calculate the acceptability score of sen-
tences for unidirectional (GPT-2) and masked
(BERT, RoBERTa, and ELECTRA) language mod-
els, respectively. In this paper, we aimed to answer
the following two research questions:

RQ1 Does the token-length bias affect the evalua-
tion results of the MPP dataset?

RQ2 Is it effective to use normalized log-likelihood
as an acceptability score?

The results proved that token-length bias caused
MPP datasets to fail to evaluate the linguistic knowl-
edge of the models correctly because a model is
more likely to assign a higher log-likelihood to a
shorter sentence regardless of its acceptability (An
answer of RQ1). Furthermore, this work confirmed
that normalizing the log-likelihood of a sentence
with a token length is not a solution for mitigating
the effect of token-length bias. Thus, more sophis-
ticated methods are required (An answer of RQ2).
As a possible solution to eliminate the token-length
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bias, we provide a method to generate debiased
minimal pairs. Using the method, we implement the
generation code for the FairBLiMP dataset, which
creates a BLiMP dataset that can be used to com-
pare linguistic knowledge among models with dif-
ferent tokenizers.

This study provided considerations to enable
MPP datasets to measure language ability correctly
for all models and provide comparable results. Fu-
ture developments concerning this study include a
more detailed examination of the RoBERTa model
properties on MPP datasets. Proposing an unsu-
pervised approach for an acceptability score cal-
culation to mitigate the effect of token-length bias
would be future work.

8. Limitations

This study provided insights into how to correctly
measure language knowledge in the MPP dataset,
providing comparable results across the models.
Moreover, the proposed method for creating mini-
mal pairs presents a limitation: as the number of
models to be compared increases, the creation
of minimal pairs becomes challenging. This is be-
cause the tokenization method and vocabulary size
differ for each model, and controlling the token
lengths of minimal pairs for all models becomes
challenging. Therefore, an MPP dataset must be
created within a certain limited number of models.
In addition, the dataset must be reconstructed each
time the models under comparison change, facing
the problem that the dataset used in each study dif-
fers. Thus, comparing the performance of different
studies directly based on their research results is
impossible. Consequently, future work can focus
on proposing an unsupervised method for calculat-
ing acceptability scores that do not require dataset
reconstruction and can reduce the effect of token-
length bias. Another future work is to investigate
the properties of the RoBERTa model on the MPP
dataset in more detail.
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A. Specifications of the Models

Table 5: Specifications of the models we used in the experiments.

Model Tokenization Method Vocabulary Size
GPT-2 (medium, large) Byte Pair Encoding 50,257
BERT cased (base, large) WordPiece 28,996
RoBERTa (base, large) Byte Pair Encoding 50,265
ELECTRA generator (base, large) WordPiece 30,552

B. Experimental Results of Large-size Models

Datasets & Subsets GPT2-large BERT-large RoBERTa-large ELECTRA-large
A=U A>U A<U A=U A>U A<U A=U A>U A<U A=U A>U A<U

BLiMP
Animate Subject Passive 72.6 30.7 94.7 81.3 58.2 93.8 78.3 73.4 75.9 78.5 56.8 85.6
Animate Subject Trans 82.7 56.3 93.9 71.7 48.9 82.6 81.2 79.7 80.5 78.9 59.8 85.8
Causative 78.3 58.3 94.2 81.7 58.4 88.1 81.8 80.7 85.6 81.8 78 72
Drop Argument 59 19.6 83.1 60.6 22.8 77.5 67.5 65.8 68.8 58 33.7 61.2
Inchoative 69.6 44.2 94.8 73.1 43.6 84.4 78.8 75 75 73.5 53.7 77.4
Intransitive 76.7 59.6 89.6 73.9 51.5 79.6 79.8 82 N/A 70.9 62.8 69.3
Passive 1 93 70 98 89 53.8 96 87.3 89.2 N/A 92.4 79.8 90.3
Passive 2 92.6 62.1 94.4 93.8 72.9 91.8 93 N/A 91.4 95.2 85.8 89.7
Transitive 90.9 81.6 98.4 89.3 74.7 95.4 91.3 N/A 92.2 91.9 87.6 91.6
Principle A Case 2 98.2 90.9 95.9 99.5 96 97.6 98.4 N/A 98 99.3 98.1 93
Principle A Domain 3 69.8 73.4 62.9 82.9 N/A 100.0 73.4 70.3 71.1 66.8 N/A N/A
Existential There Object Raising 79.4 33.3 96.5 82.9 35.7 96 78.2 N/A 80.2 76.5 52.9 90.4
Existential There Subject Raising 88.4 96 100.0 93 86.7 100.0 91.9 96.1 89.7 87.6 100.0 100.0
Expletive It Object Raising 86 48.2 99.3 85.1 72.4 90.8 89.5 86.2 87.5 86 74.7 88.2
Tough vs. Raising 1 81.6 37.5 N/A 82.5 35.5 91.5 86.6 90.4 N/A 71.3 50 N/A
Tough vs. Raising 2 88.7 N/A 100.0 90.8 86.9 100.0 96 N/A N/A 93.9 N/A 98.3
Det. Noun Agr. 1 98.8 98.4 98 99.3 100.0 100.0 99.6 N/A N/A 99.7 100.0 96.4
Det. Noun Agr. Irregular 1 96.9 71.4 100.0 99.2 83.7 99.4 97.6 N/A 96.9 98.7 91.7 98.7
Det. Noun Agr. With Adj. 1 97.7 96.1 96.7 98.8 93.8 98 98.9 N/A 98.4 99.1 98.1 97.4
Det. Noun Agr. With Adj. Irregular 1 95 66.7 96.3 97.4 96.3 97.7 97.3 97.7 96.1 97.6 86.7 94
Ellipsis N Bar 2 97 93 100.0 97.4 93.6 100.0 99.2 99.1 N/A 98.6 99.3 100.0
Irregular Past Participle Verbs 94.9 5.9 100.0 90.1 N/A N/A 95.3 N/A N/A 96.9 N/A 52.9
Left Branch Island Echo Question 51.2 47.4 81.7 71.9 63.6 61.3 69.1 72.7 68.8 51.5 N/A N/A
Matrix Question NPI Licensor Present 69.9 44.4 57.6 92.1 N/A 100.0 93.3 N/A 95.8 94.4 N/A N/A
Only NPI Scope 74.8 N/A 76.3 75.6 N/A 89.5 88.1 N/A N/A 84.3 N/A N/A
Sentential Negation NPI Licensor Present 98.5 N/A N/A 96.3 N/A 100.0 97.3 N/A N/A 99.5 N/A N/A
Distractor Agr. Relational Noun 82.7 84.2 83.9 95 88.2 80 94.8 95.3 98.4 97.6 87.1 93.9
Distractor Agr. Relative Clause 66.7 62.2 71.8 82.2 81 65.4 83 82.8 N/A 86.2 86.4 78.4
Irregular Plural Subject Verb Agr. 1 94.4 90.5 95.8 91.7 82.4 84.1 93.1 93.8 N/A 96.3 84 98
Irregular Plural Subject Verb Agr. 2 94.9 70.7 99 95.2 66.7 93.3 93.1 94.5 95.3 95 72 97.1
Regular Plural Subject Verb Agr. 1 98.5 90.2 100.0 97.3 89 92.6 97.6 N/A N/A 99.3 97.9 98
Regular Plural Subject Verb Agr. 2 93.8 65 100.0 96.8 91.3 95.8 96.3 N/A N/A 97 90 100.0
CrowS-Pairs
Stereo 61.6 35.2 92.3 61.7 41.9 75.5 67.3 65.0 69.8 55.9 48.2 65.0
Antistereo 61.5 13.3 85.0 56.8 18.2 80.0 67.1 50.0 60.0 54.7 25.0 71.1
COMPS
BASE 68.6 53.2 82.4 70.3 32.0 90.2 70.5 72.0 73.2 68.9 44.1 82.6
WUGS 68.0 60.2 81.9 66.2 23.0 93.9 67.3 71.2 73.3 64.9 33.7 86.5

Table 6: Experimental results for each large-sized model on MPP dataset subsets. Each number
represents the model’s accuracy on the subset. The scores marked in red indicate that accuracy decreased
compared with A=U, and the scores marked in blue indicate that the accuracy increased compared with
A=U. N/A indicates that the result could not be produced because no minimal pairs matched the condition.

https://huggingface.co/openai-community/gpt2-medium
https://huggingface.co/openai-community/gpt2-large
https://huggingface.co/google-bert/bert-base-cased
https://huggingface.co/google-bert/bert-large-cased
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/google/electra-base-generator
https://huggingface.co/google/electra-large-generator
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C. SLOR Experiments

Figure 5 shows the results when the sentence log-likelihood is normalized using SLOR (Pauls and Klein,
2012; Lau et al., 2020). SLOR normalization is used to reduce the effect of the token length and lexical
frequency. SLOR is calculated by subtracting the sentence log-likelihood from the unigram probability
of the sentence. Results show a similar tendency to the LP results in Figure 3, implying that the SLOR
normalization method can not mitigate the token-length bias. This indicates that the lexical frequency of
the words is not related to the token-length bias.
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Figure 5: Correlation between the token length differences and the accuracies estimated with the SLOR
normalization method: (a) GPT-2 and (b) BERT.
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