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Abstract
State-of-the-art language models perform well on a variety of language tasks, but they continue to struggle with
understanding negation cues in tasks like natural language inference (NLI). Inspired by Hossain et al. (2020), who
show under-representation of negation in language model pretraining datasets, we experiment with additional
pretraining with negation data for which we introduce two new datasets. We also introduce a new learning strategy
for negation building on ELECTRA’s (Clark et al., 2020) replaced token detection objective. We find that continuing
to pretrain ELECTRA-Small’s discriminator leads to substantial gains on a variant of RTE (Recognizing Textual
Entailment) with additional negation. On SNLI (Stanford NLI) (Bowman et al., 2015), there are no gains due to the
extreme under-representation of negation in the data. Finally, on MNLI (Multi-NLI) (Williams et al., 2018), we find that
performance on negation cues is primarily stymied by neutral-labeled examples.

Keywords: negation, inference, natural language inference, replaced token detection, sentence seman-
tics

1. Introduction

With the adoption of the Transformer (Vaswani et al.,
2017) and ever larger models trained on gigantic
datasets (Devlin et al., 2018; Raffel et al., 2020;
Brown et al., 2020; Fedus et al., 2022; Chowdhery
et al., 2022; OpenAI, 2024), we have seen massive
improvements in neural models’ ability to master
natural language understanding tasks. However,
these models still struggle with some linguistic phe-
nomena, including negation (Ettinger, 2020)–the
phenomenon that we focus on in this paper. As
an example of neural language models’ difficulties
with negation, BERT-Base (Devlin et al., 2018) out-
puts "Berlin" for both the inputs "[MASK] is the cap-
ital of Germany" and "[MASK] is not the capital
of Germany" (despite the latter statement being
factually incorrect). This problem extends to down-
stream tasks as well, including sentiment analy-
sis (Tejada et al., 2021) and NLI (Hossain et al.,
2020). Prior work has consistently held that nega-
tion is a fundamentally hard problem for models to
learn, particularly during pretraining. Kassner and
Schütze (2020) show that models are simply unable
to learn negation using the masked language mod-
eling (MLM) objective, and Hosseini et al. (2021)
only achieve modest improvements on NLI with a
pretraining task focused on negation. Moreover,
unlike other phenomena like math or multi-step
reasoning that language models have historically
struggled on, scaling up models to the billions of
parameters still does not solve the negation issue
(García-Ferrero et al., 2023).

In this work, we investigate the degree to which
additional pretraining on negated examples can

shrink the gap between neural language model’s
performance on NLI (natural language inference)
sequences with and without negation cues. Our
method involves taking ELECTRA (Clark et al.,
2020) and continuing pretraining on two new
datasets that we call Expanded NLI and Expanded
LAMA. ELECTRA’s pretraining differs from that of
BERT in that it also uses replaced token detec-
tion (RTD): it trains a discriminator to distinguish
tokens that were in the original, unmasked parts of
the sentence ("Original", represented as a 0) from
those where the generator replaced [MASK] tokens
("Replaced", represented as a 1).

More generally, can RTD training teach language
models about the meanings of words that MLM can-
not? Gastaldi and Pellissier (2021) view language
models with MLM pretraining from a structuralist
point of view, in which linguistic units are character-
ized through co-occurrence (syntagmatic relations)
and substitutability (paradigmatic relations). From
that perspective, our question becomes: Can the
meaning of negation be easily described in terms
of syntagmatic and paradigmatic regularities? We
are not aware of work arguing either for or against
this, but we think it is possible that the meaning
of negation is hard to pick up solely from word co-
occurrence. With the RTD training regime, we can
demonstrate more directly what negation "does",
and this may help the model pick up the right infer-
ences. If that proves successful, then RTD training
could also be helpful for other phenomena, such
as antonymy.

We use ELECTRA’s RTD objective to teach the
model about inferences involving negation cues as
follows. We want ELECTRA to output [0 0 0 0 0 0]
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– all original – for the sentence "Berlin is the capital
of Germany" (we make the simplification here that
each word is its own token) because the statement
is factually correct. In contrast, for its direct nega-
tive "Berlin is not the capital of Germany", we would
want the system to predict either "Berlin" ([1 0 0 0
0 0 0]), "not" ([0 0 1 0 0 0 0]), or "Germany" ([0 0
0 0 0 0 1]) as "Replaced", thereby creating a rep-
resentation in which adding "not" directly changes
the output.

After pretraining, we finetune our models on a col-
lection of RTE datasets (Recognizing Textual Entail-
ment)1 (Dagan et al., 2006; Bar-Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009;
Wang et al., 2018), MNLI (Multi-NLI)2 (Williams
et al., 2018), and SNLI (Stanford NLI)3 (Bowman
et al., 2015) and evaluate both on their standard
development sets as well as on held-out negated
data from Hossain et al. (2020).

Overall, we make the following contributions.
First, we demonstrate that ELECTRA’s discrimi-
nator can be used to learn negation cues within
NLI, finding a 19.9% increase in accuracy on our
Negated RTE evaluation dataset. Second, we
show that negation is not learned well in SNLI,
likely because it contains very few negated ex-
amples. Finally, we provide evidence that nega-
tion is not understood in MNLI because models
have difficulty learning the impact of negation cues
in neutral-labeled examples. If neutral examples
are excluded, even our baseline ELECTRA-Small
model learns the impact of negation cues on entail-
ment and contradiction in MNLI with relative ease.

2. Related Work

Hossain et al. (2020) provides evidence that neural
models’ dismal performance on negation in NLI is
because sentences with negations are underrep-
resented in popular pretraining datasets. For ex-
ample, just 8.69% of sentences in Wikipedia have
negation cues. Many finetuning datasets suffer
from the same problem - for instance, just 1.19% of
SNLI (Bowman et al., 2015) examples and 7.16%
of RTE with examples include negation cues. As
a result, models do not get much experience with
handling negation. To remedy this, Hossain et al.
(2020) create 1,500 additional hand-annotated NLI
examples containing "not" for each of RTE, MNLI,

1RTE-1, RTE-2, RTE-3, and RTE-5, the datasets use,
are all freely available without restriction.

2Most of MNLI is available under the OANC license.
The remainder is available under the Creative Commons
share-Alike 3.0 Unported License, Creative Commons
Attribution 3.0 Unported Licenses, and the public domain
in the USA.

3SNLI is released under the Creative Commons
Share-Alike Unported License.

and SNLI, making 450 examples of each set visible
during finetuning. For example, when finetuning on
RTE, 450 Negated RTE examples were added to
the finetuning dataset, and the model was evalu-
ated on the 1050 held-out examples. While this was
enough to bring performance on negated examples
to the same accuracy as non-negated examples for
RTE and reduce the non-negative/negative gap by
about 50% for SNLI, MNLI (a multi-domain natural
inference dataset) only saw small gains. Hossain
et al. (2020) speculated that this was due to the
wide diversity of the MNLI dataset, which was diffi-
cult to cover from just 450 new examples. Our work
offers a different explanation–we find that weaker
performance on negation in MNLI is because the
model has not learned how to handle negation cues
in examples labeled "neutral".

Despite the clear gains in performance found by
Hossain et al. (2020), their approach has its limits
since finetuning can result in catastrophic forgetting,
meaning that knowledge from pretraining is lost
when weights are changed to learn the finetuning
task (French, 1999; McCloskey and Cohen, 1989;
Kirkpatrick et al., 2017). More specifically, because
the model is only learning negation in the finetuning
stage (i.e., when it loses knowledge not specific to
learning NLI), the knowledge it picks up cannot be
transferred to other downstream tasks.

Hosseini et al. (2021) propose resolving this
by further pretraining BERT with an unlikelihood
loss on factually incorrect statements with nega-
tion cues. For instance, for the training example
"[MASK] is not the capital of Germany," the aim
would be to minimize the probability of BERT pre-
dicting “Berlin.” They combine this continued pre-
training approach with knowledge distillation on
non-negated examples from the original BERT to
preserve performance on examples without nega-
tion. Our work borrows heavily from their training
regimen, except that we use ELECTRA’s replaced
token detection (RTD) objective for greater flexibility
in adding new pretraining examples.

While their approach leads to tangible gains (al-
beit much smaller than Hossain et al. (2020)’s gains
from finetuning data augmentation) when finetuning
RTE, unlikelihood pretraining only increases accu-
racy by 1.5 points on SNLI and performs within the
margin of error for MNLI. Hosseini et al. (2021) hy-
pothesize that this is due to catastrophic forgetting.
Our work largely replicates their findings, though
we find different causes for the results on MNLI and
SNLI. For SNLI, we find that models immediately
overfit on non-negated cues due to severe under-
representation of negated examples. For MNLI, we
find that the neutral-labeled examples confuse the
model; when choosing between just entailment and
contradiction, ELECTRA-Small already performs
well on MNLI.
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Kassner and Schütze (2020) find for multiple
pretrained language models that they are not well
suited to making factual predictions in the pres-
ence of negation. To demonstrate this, they com-
pare the models’ predictions between the LAMA
(LAnguage Model Analysis) (Petroni et al., 2019)
and Negated LAMA (Kassner and Schütze, 2020)
datasets4. LAMA consists of factual statements,
such as "As early as the 14th century there was do-
mestic hard-coal processing" where a word piece
is masked to test for factual knowledge. Negated
LAMA consists of sentence pairs where the first
sentence states a fact and the second sentence
repeats that statement, but adds "not" to falsify it.
The token that is masked is the one that would
need to change to make the sentence correct. One
example from the dataset is "The waters of the
river Brahmaputra are shared by China, India, and
Bangladesh. The [MASK] of the River Brahmaputra
are not shared by China, India, and Bangladesh."
In this case, [MASK] can be filled by the word
"delta", which is only in Bangladesh. The authors
find the tested language models do not respond to
the presence of negation cues: they have similar
predictions in both standard and Negated LAMA.

Kassner and Schütze also suggest that the
masked language modeling (MLM) task itself is
not well-suited to learning negation. They pretrain
a BERT-Base model from scratch on a custom
dataset, with 50% of examples in the form "xj is
an" and 50% of examples in the form "xj is not an"
(where x is a subject and a is an adjective). While
their model performed well on both negated and
non-negated examples in training, performance col-
lapsed on the test set, showing that MLM is unable
to teach generalizable negation knowledge. How-
ever, when this BERT model is finetuned on fac-
tuality classification (i.e., determining whether a
given statement is true or false), both training and
test accuracy reach 100%. Our work uses RTD
instead and finds that the task is sufficient to learn
how to handle negation during pretraining when the
negation cue flips the sentence’s polarity.

García-Ferrero et al. (2023) show that negation
remains a problem even when scaling language
models to the billions of parameters. They show-
case this by taking a dataset built using WordNet to
do factuality classification (e.g., predict either true
or false for a given sentence) on both negated and
non-negated examples. They find that foundation
models ranging from T5-XXL (Raffel et al., 2020) to
Falcon-40B (Almazrouei et al., 2023) to LLaMA-65B
(Touvron et al., 2023) struggle to classify negative
sentences, with performance worse than random
guessing. While instruction-tuned LLMs like Flan-
T5 (Chung et al., 2022) and Vicun̈a (Chiang et al.,

4Both are licensed under the Creative Commons
Attribution-Noncommercial 4.0 International License

2023) (i.e., those that are fine-tuned on data that in-
cludes negated cues, including sentiment analysis)
are able to classify negated examples accurately
if they don’t have a distractor, they struggle to do
so if a distractor is present. Thus, we get the same
picture in the world of large language models as
both Kassner and Schütze (2020) and Hossain
et al. (2020) find with BERT: Pretraining alone does
not give sufficient information on how to work with
negation, thought fine-tuning helps.

3. Methods

We create two datasets to further train ELECTRA
based on existing NLI and LAMA data. While NLI
prediction is normally a sequence classification
task, we convert it to a task where ELECTRA clas-
sifies each token as "original" or "replaced".

3.1. Pretraining on Wikipedia and Books
To our knowledge, ELECTRA has not been pre-
viously used to test negation performance in NLI,
so we establish our baselines by finetuning the
ELECTRA-Small5 Discriminator on RTE, MNLI, and
SNLI. For all other experiments, we continue pre-
training the discriminator on the RTD task on two
datasets, which we call Expanded NLI and Ex-
panded LAMA. The two datasets comprise sen-
tences involving negation adapted from NLI and
LAMA datasets (see Sections 3.2 and 3.3). Both
datasets also contain 174,808 sequences from the
Books corpus and 144,496 examples from English
Wikipedia6 (all of size 128 tokens as measured
by ELECTRA’s tokenizer). The purpose of adding
Wikipedia and Books data (the datasets ELECTRA
was originally trained on) is to ensure that our mod-
els do not overfit on the much smaller set of NLI
and LAMA examples we introduce.

To combat the paucity of sentences containing
negation within Wikipedia, we upsample them. We
use NegBERT (Khandelwal and Sawant, 2020) to
identify negation cues in Wikipedia, and sample 1/3
of our examples from sequences without negation,
1/3 from sequences with 1 negation token, and 1/3
from sequences with multiple negation tokens.

Finally, to simulate ELECTRA’s pretraining, we
mask 15% of the tokens in our selected Wikipedia
and Books sequences at random, using the open-
sourced ELECTRA-Small Generator to replace the

5To our knowledge, only ConvBERT (Jiang et al.,
2021) and DeBERTa-v3 (He et al., 2021) also trained
with RTD. As they are trained on identical datasets as
ELECTRA, we believe that ELECTRA’s performance can
be generalized to them.

6Licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License (CC BY-SA) and the
GNU Free Documentation License (GFDL)



16240

tokens. Unlike in standard ELECTRA training, we
don’t train the generator and discriminator jointly–
we only train the discriminator. This choice is de-
signed to limit any potential gains the model may
get on standard Wikipedia and Books such that it
won’t have an unfair advantage over the baseline
ELECTRA-Discriminator model.

3.2. Pretraining on Expanded NLI
The new Expanded NLI dataset comprises our cu-
rated Books and Wikipedia datasets along with sub-
sets of the negation examples Hossain et al. (2020)
created for each of RTE, MNLI, and SNLI, refor-
matting these training examples in the ELECTRA
discriminator pretraining format.

An NLI data point typically consists of a premise
and a hypothesis, where the task is to predict
whether the premise means that the hypothesis
is true ("entailment"), whether the premise has no
bearing on the hypothesis ("neutral"), or whether
the hypothesis outright contradicts the premise
("contradiction"). RTE differs from MNLI and SNLI
in that there is no "neutral" category. Each data
point from Hossain et al. (2020) is a set of three
NLI data points. Each triplet contains one NLI data
point with a negation in the premise, one data point
with negation in the hypothesis, and one data point
with negation in both. Here is a simplified example:

Premise: Subia was not nominated by President
Bush to the board of directors of the Legal Services
Corp. Hypothesis: Subia was Bush’s first nomi-
nee to the Board of Directors. Label: Contradiction

Premise: Subia was nominated by President Bush
to the board of directors of the Legal Services
Corp. Hypothesis: Subia was not Bush’s first
nominee to the Board of Directors. Label: Neutral

Premise: Subia was not nominated by President
Bush to the board of directors of the Legal Ser-
vices Corp. Hypothesis: Subia was not Bush’s
first nominee to the Board of Directors. Label:
Entailment

We convert such a triplet to data that we can use
to train ELECTRA’s discriminator as follows. We
(1) convert an NLI premise/hypothesis pair to a co-
herent text, and (2) use the triplets to automatically
create original/replaced labels to teach ELECTRA
about negation. To address (1), we take inspiration
from cloze-based prompting (Schick and Schütze,
2020a,b), connecting the premise and hypothesis
by one of the connecting words (discourse markers)
from Table 1. Here is the contradiction from above,
reformulated using thus: "Subia was not nominated
by President Bush to the board of directors of the
Legal Services Corp. Thus, Subia was Bush’s first

nominee to the Board of Directors." To avoid overfit-
ting on sentence order, we format 50% of examples
as having premise then hypothesis and the other
50% as having hypothesis then premise.

To address (2), we check each triplet to see if it
contains any item labeled as "entailment". If there
is exactly one, this becomes our "comparison sen-
tence". In our example above, this is the third mem-
ber of the triplet. We then rewrite the other two
members of the triplet with the aim of tagging any
word that is the same as in the comparison sen-
tence as 0/"original," and any mismatched words
as 1/"replaced". Roughly, the process is as follows:
to assign labels of 0 and 1 to a target sequence, we
track that sequence and the comparison sequence
in parallel. As long as the sequences align, we
mark words in the target sequence as 0/original.
When we come upon a mismatched word, we at-
tempt to look for the next possible alignment after
the mismatch, labeling words as 1/replaced until
we find the alignment. Below is the full procedure:

1. Split the NLI example into a premise and hypoth-
esis. For each of them:

2. Does the input sequence have the same number
of tokens as the comparison sequence?

2a. If yes: Check whether the ith token of the in-
put sequence is equal to the ith token of the
comparison sequence, outputting a 0 for index
i if they are equivalent and 1 if they are not.

2b. If no: We need to track two different indices - i
for input and j for the comparison sequence.
i and j both start as 0.

2b1. Is the ith token of the input sequence the
same as the jth token of the comparison se-
quence? If yes, increment both i and j by 1
(i.e., move one token to the right). Keep do-
ing this until the two tokens are found to be
different.

2b2. If the two tokens are found to be different:
Skip to the next token for whichever sequence
(input or comparison) is longer. That is, incre-
ment i if the input sequence is longer, and j
if the comparison sequence is longer. Keep
doing this until the tokens are equivalent, in
which case we will return back to Step 2b1
with our new values of i and j. All input to-
kens that were traversed during this step are
marked as a "1", except if both (1) the compar-
ison sequence is being traversed and a match
is found between input and comparison and
(2) the previous token in the input sequence
was tagged as a "1". In this case, since no
tokens were traversed in the input sequence,
the token would be tagged as a "0".
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2b3. If no equivalent pair of tokens is found after
moving k steps to the right (where k is a param-
eter; we chose 4 to mitigate the risk of finding
two identical words in very different parts of
the sentence), tag the current token as "1" on
the input sequence and add 1 to both i and j
(i.e., move one token to the right for both se-
quences) from where they were when you last
began step 2b2. Try Step 2b2 once more.

3. Connect the converted premise and hypothesis
with a vector of 0’s matching the number of
tokens in the connecting phrase.

As an example7, we consider the first member of
the triplet above as the target sequence. The first
mismatch is at the word "Bush’s" in the hypothesis
part of the target sequence, which does not match
the word "not" in the comparison (entailment)
sequence. To find a match, we traverse "not
Bush’s" in the comparison sequence, and "Bush’s"
in the target sequence, so we mark "Bush’s" in
the target sequence as 1/replaced. Here is the
reformulated first triplet member, where the bolded
word is marked replaced:

"Subia was not nominated by President Bush to
the board of directors of the Legal Services Corp.
Thus, Subia was Bush’s first nominee to the Board
of Directors."

Overall, our procedure shares similarity with both
traditional RTD-based matching as well as token-
level edit distance, though in the case of the latter it
differs in two crucial aspects. First, token-level edit
distance represents a sum, whereas we return a
vector of values with 1s and 0s denoting “replaced”
or “original” for each token. Second, our algorithm
also has to handle the placement of those 1s and
0s, which is important since unlike in standard RTD,
the two sequences being compared do not have
the same length.

If a triplet contains no entailed sentences, then
we discard it from pretraining. When there is more
than one entailed sequence, we compare each
entailed sequence to itself. For all other members
of the triplet, we randomly select one of the possible
entailed sequences to compare the example to. We
also remove neutral examples from Hossain et al.
(2020)’s MNLI and SNLI datasets.

Finally, to avoid the situation in which the model
would learn to overfit on the negation of our NLI-
like examples, we create non-negative versions of
the premise/hypothesis pairs, pseudo-label them
with pretrained models on each dataset available
on Huggingface (textattack/roberta-base-RTE for
RTE, microsoft/deberta-base-mnli for MNLI, and

7To see more examples of this procedure, please
reference Appendix A.

Sentence 1 Connecting Words
therefore; as a result; thus;
we can thus conclude that;

Premise based on this, we can assume that;
from this, we can deduce that;

this means that; hence;
accordingly; ergo

this is because; rather;
Hypothesis we know this because; in reality;

in fact, we know this since;

Table 1: Discourse markers used to connect Hos-
sain et al. (2020)’s examples for pretraining. "Sen-
tence 1" refers to whether the premise or the hy-
pothesis was chosen to be the first sentence.

Non-negated Sentence

0 0 0 0 0
The waters of the river

0 0 0 0
Brahmaputra are shared by.
0 0 0 0

China, India, and Bangladesh.

Negated Sentence

0 1 0 0 0
The waters of the river

0 0 0 0 0
Brahmaputra are not shared by

0 0 0 0
China, India, and Bangladesh.

Table 2: An example of a negated and non-negated
sentence used to create Expanded LAMA. Variant 1
combines both sentences into one data point; Vari-
ant 2 only uses the non-negated sentence; Variant
3 only uses the negated sentence; and Variant 4
uses the negated sentence twice.

boychaboy/SNLI_distilroberta-base for SNLI) (Wolf
et al., 2019) and use the same methods outlined
above to add them to our training set.

Ultimately, we add 600 RTE-style examples (450
negated, 150 non-negated examples), 447 MNLI-
style examples (384 negative, 63 non-negated),
and 401 SNLI-style examples (348 negated, 63 non-
negated). We add all unused negated examples to
our evaluation sets used to test our models after
finetuning.
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0 1 0 0 0
The sketch of the river

0 0 0 0
Brahmaputra are shared by.
0 0 0 0

China, India, and Bangladesh.

Table 3: Using the same sentence pair as Table 2,
we show an example for Variant 2.

3.3. Pretraining on Expanded LAMA

Our Expanded LAMA dataset consists of our cu-
rated Books and Wikipedia datasets plus prepro-
cessed combinations of Standard (Petroni et al.,
2019) and Negated LAMA (Kassner and Schütze,
2020) corpora. Because Kassner and Schütze
(2020) originally created Negated LAMA for testing
masked language models, they did not create gold
labels for the [MASK] tokens. However, we can
always replace them by either random words or the
original word from the non-negated sentence.

Given transformers’ well-studied tendency to
memorize training datasets and struggle to gen-
eralize unless the training set is large and diverse,
we create 4 different variants of Negated LAMA and
3 of LAMA. Given each variant has 20,000 exam-
ples apiece, we ultimately add a total of 140,000
training examples to Expanded LAMA. All of these
are added to training only.

3.3.1. Variants of Negated LAMA

First, we use the entire sequence (both negated
and non-negated sentences). To protect against
overfitting on non-negated/negated sentence order,
we put the non-negated sentence first for 50% of
examples, and the negated sentence first for the
other 50%. We replace the [MASK] token by its
equivalent in the non-negated example and tag it
as a 1 for "replaced", with all other tokens tagged
as 0. Table 2 shows an example.

Second, we take the non-negated sentences
only, changing each masked token to a random
token and label it as 1/"replaced" (the other tokens
will be tagged as 0/"original"). This is designed to
help the model not overfit on "tag random noun if
’not’ is present". Table 3 has an example.

Third, we take the negated sentences only, sub-
stituting the [MASK] token with its equivalent in the
non-negated example and marking the token with
a 1. All other tokens are labeled 0. An example of
this is the negated sentence in Table 2. The goal
of this variant is to help the model understand how
a sentence with negation would look without also
needing a non-negated sentence in the sequence.

0 0 0 0
As early as the
0 0 0 0

14th century there was
0 0 0 0

domestic hard -coal processing.

Table 4: An example of a sentence pair in Ex-
panded LAMA constructed from Standard LAMA.
Variant 1 uses the sentence as-is, while Variant 2
duplicates it.

Fourth, we take the negated sentence and dupli-
cate it to further ensure the model doesn’t overfit
to learning negation only when a non-negated sen-
tence is also present. An example of this would
be "The waters of the river Brahmaputra are not
shared by China, India, and Bangladesh. The wa-
ters of the river Brahmaputra are not shared by
China, India, and Bangladesh." Both instances of
the word "waters" will be tagged as 1/"replaced"
and the others will be tagged as 0/"original".

3.3.2. Variants of Standard LAMA

From Standard LAMA, we create data as follows.
First, we include all of the sentences and output
all 0’s (for "original"). Second, we include all of the
sentences twice and output all 0’s for the label. This
is meant to hedge against overfitting on the 1 non-
negated / 1 negated and 2 negated cases from our
Negated LAMA dataset. Third, we randomly select
15% of tokens to mask, using ELECTRA-Small
Generator to replace them, and mark the replaced
token as 1 ("replaced") as in standard ELECTRA
training. Tables 4 (for the first two variants) and 5
(for variant 3) provide examples corresponding to
the sentence "As early as the 14th century there
was domestic hard-coal processing."

For cases where we link two sentences, we use
the connecting words from Expanded NLI. Given
that there is no real "premise" or "hypothesis", we
randomly selected 50% of cases where the first
sentence would be the "premise" (and thus the se-
quence’s connector would be sampled from the
corresponding linkage words), with the first sen-
tence considered the "hypothesis" for the rest.

4. Experiments

4.1. Continued Pretraining
We use three different pretrained models, each
with roughly 14 million parameters. The first is the
standard ELECTRA-Small discriminator checkpoint
open-sourced by Clark et al. (2020) (we refer to this
as "Base"). The second is additionally trained for
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0 0 0 0
As early as the
0 0 0 0

14th century there was
0 0 0 1

domestic hard -coal production.

Table 5: Using the same sentence pair as Table 2,
we show an example for Variant 3.

Model RTE MNLI SNLI
Base 0.614 0.819 0.895
+ NLI 0.581 0.813 0.896

+ LAMA 0.625 0.814 0.893

Table 6: Accuracy results when finetuning our Base,
+NLI, and +LAMA models on RTE, MNLI, and SNLI
and evaluating on their standard dev sets.

1 epoch on Expanded NLI (referred to as ("+NLI"),
while the third is trained for 1 epoch on Expanded
LAMA (denoted by "+LAMA").8 The latter two take
roughly 1 hour on a T4 GPU to train. We then
finetune the models on the RTE, MNLI, and SNLI
datasets for 5 epochs. For RTE, we run all experi-
ments three times and report the median accuracy;
otherwise, we run experiments once per category.
We use the AdamW optimizer with learning rate
2e-5, weight decay 0.01, and batch size 64 for both
continued pretraining and finetuning.

Our results are in Tables 6 and 7. Relative to fine-
tuning ELECTRA-Small, finetuning the model after
continued pretraining on Expanded NLI decreased
performance on standard RTE (-3.3%) while pre-
serving standard MNLI and SNLI performance.
However, it improved Negated RTE performance
(+4.1%). The additional pretraining appeared to
have little effect on Negated SNLI (+0.7%). Overall,

8The two non-baseline models have been trained
longer on Wikipedia and Books than Clark et al. (2020)’s
ELECTRA-Small, but the net increase in training time
amounts to less than 0.03% of ELECTRA-Small’s pre-
training time. Given that going from 50% trained to 100%
trained on ELECTRA-Small only led to a 0.9 point in-
crease on the GLUE benchmark, this difference should
have no significant impact on the results.

Model RTE MNLI SNLI
Base 0.504 0.610 0.469
+ NLI 0.545 0.607 0.476

+ LAMA 0.703 0.616 0.423

Table 7: Accuracy results when finetuning our Base,
+NLI, and +LAMA models on RTE, MNLI, and SNLI
and evaluating on their negated development sets.

adding Expanded NLI seemed to have little benefit.
On the other hand, continued pretraining on Ex-

panded LAMA led to dramatic improvements in
Negated RTE (+19.9%) while effecting little change
on standard RTE (+1.1%)9. On MNLI we see effec-
tively no change (+0.6% on Negated MNLI, -0.5%
on Standard MNLI). In contrast, Negated SNLI saw
a considerable performance drop (-4.6%). Overall,
our results on Expanded LAMA closely track Hos-
seini et al. (2021)’s: solid gains on RTE with little to
no improvement (or even decrease) on MNLI and
SNLI.

4.2. Analyzing MNLI and SNLI Results

To investigate what might be blocking gains on
MNLI and SNLI, we finetune each of our three pre-
trained models for 1 epoch on each dataset, evalu-
ating results every 39 steps (the number of steps in
1 epoch in RTE). Figure 1 shows our validation loss
curve for the first epoch of SNLI training. There is
near-immediate divergence on the Negated SNLI
validation set. Indeed, the lowest validation loss
was reached on 156, 156, and 273 steps when
finetuning the baseline model, the Expanded NLI-
trained model, and the Expanded LAMA-trained
model, respectively. Given that just 1.19% of the
SNLI training set even has negation cues, this sug-
gests that the models are almost immediately learn-
ing to overfit on patterns unrelated to negation.

In contrast, MNLI experiences fluctuation within
a narrow range on its negated validation set (see
Figure 2). The model appears to neither learn nega-
tion nor overfit on other cues on negated examples.
To explore why this occurred, we replace every
neutral example in both training and Negated MNLI
evaluation with an entailment or contradiction ex-
ample. (With a batch size of 100, we pick the first
non-neutral example in a given batch to replace all
neutral examples in the batch.)

Our results are shown in Figure 3. When there
are only "entailment" and "contradiction" labels
and no "neutral" labels, we see the standard pic-
ture of (albeit a little noisy) convergence. In-
deed, when finetuning for 5 epochs, the dev set
accuracy on Negated MNLI without neutral la-
bels reaches 88.92% (Base), 89.30% (+NLI), and
88.44% (+LAMA), showing that the model easily
learns this simplified task. In short, the failure to
learn that we saw on Negated MNLI only happens
when there are neutral examples with negation.

9Given these dramatic improvements, it is worth not-
ing that RTE and LAMA do not share any overlap, so the
improvements are not due to data leakage.
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Figure 1: Models trained on SNLI converge nor-
mally on the standard development set, but imme-
diately diverge on the Negated SNLI development
set. Note that the y-axis scale ranges from 1 to 2.

Figure 2: Models trained on MNLI converge nor-
mally on the standard development set, but oscil-
late within a narrow range when evaluated on the
Negated MNLI development set without converging.
Note that the y-axis scale ranges from 0.9 to 1.2.

Figure 3: When removing examples labeled "neu-
tral" in both the training and negated development
sets, MNLI converges normally on the negated de-
velopment set.

5. Discussion

Like previous work, we have focused on NLI exam-
ples where overt negation converts an entailment to
a contradiction (and vice versa). By doing so, how-
ever, we have exposed a new problem; namely, that
neural models have not learned to handle cases
where a negation cue does not change an NLI label
or changes it from or to the "neutral" label. Future
research will have to explore how to teach negation
to a model in the multi-class setting, which will likely
require a new pretraining task.

However, our work provides a generally effective
paradigm for handling binary entailment classifica-
tion when negation is present. Adding Negated
LAMA’s 20,000 examples proved sufficient to get
good performance in binary RTE despite just 7.16%
of the finetuning dataset including negation cues.
We conjecture that this was because Negated
LAMA examples were similar enough to RTE to
generalize to improved downstream performance.
On the other hand, Negated LAMA wasn’t simi-
lar enough to SNLI’s negated examples (at least
to counteract the severe under-representation of
negation cues at 1.19% of the dataset) to secure
similarly large gains from continued pretraining. As
for Negated NLI, our work demonstrates improve-
ments relative to standard ELECTRA for Negated
RTE, weaker performance on standard RTE, and
roughly the same results for all other datasets. We
theorize that the limited changes might be due to
the small quantity of NLI examples in training.

6. Conclusion

In this work, we explore continuing pretraining
ELECTRA’s discriminator on data containing nega-
tion to analyze the impact on performance on
Negated RTE, SNLI, and MNLI. We find dramatic
performance improvements on Negated RTE with
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additional pretraining, showing ELECTRA’s abil-
ity to learn negation cues in binary NLI classifica-
tion. We also demonstrate that overfitting on non-
negated cues due to the lack of negation data in
SNLI is the main hurdle in improving Negated SNLI
accuracy (showing the importance of having consid-
erable representation of negation in downstream
data). Finally, existing models actually perform
well on Negated MNLI if "neutral" examples are
excluded, though struggle with negation otherwise.

7. Limitations

The forms of negation we focused on were "not",
noun and verb phrases containing "not" ("cannot",
"did not do", etc.). "never", and "n’t". This was done
to better fixate on why and in what way negation
is difficult to learn for language models in a way
that would be useful for NLI. Most likely, the system
has not learned to react to other negation cues
(e.g., affixes like "-less"). Thus, we recommend
that future versions of Expanded NLI and Expanded
LAMA include a wider variety of different negation
cues (see e.g. Morante and Blanco (2012)). In
general, negation has a scope – the negated text
section – and a focus, the part of the scope that is
explicitly negated. The focus of negation looks to
be particularly suited to improving the generation
of pretraining data.

Second, the large difference in size between our
new NLI examples (1,448) and our new LAMA ex-
amples (140,000) could be a confounding factor in
our findings. While there is reason to doubt this
given that the number of negated Wikipedia exam-
ples in the original pretraining dwarfs both datasets,
we believe that future work should look into creating
additional negated NLI examples.

Third, we obtained good results on Negated
MNLI only after removing neutral-labeled data. Fu-
ture work should refine our continued pretraining
task to include neutral-labeled NLI examples.

Fourth, our datasets are English-only, so we rec-
ommend that future work extend our datasets to
cover multiple languages and explore how much
transfer of negation knowledge to other languages
occurs when continuing pretraining multilingual
models on Expanded NLI and Expanded LAMA.
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A. Examples of Sentence Labeling for
Expanded NLI

We demonstrate how we create Expanded NLI
data using simple (made-up) triplets styled in
Hossain et al. (2020)’s format. Here is the first one,
which we call Sample Triplet 1.

Premise: It is not raining. Hypothesis: It is driz-
zling. Label: Contradiction
Premise: It is raining. Hypothesis: It is not driz-
zling. Label: Neutral
Premise: It is not raining. Hypothesis: It is not
drizzling. Label: Entailment

As mentioned above, we convert each of the
three NLI examples into a contiguous text. For all
examples below, we start with the premise and use
"Therefore," as the connecting word for simplic-
ity. We exclude any consideration of punctuation,
[CLS], and [SEP] tokens, and consider every word
to be its own token.

Because the third member of the triplet is an
entailment, it becomes our comparison sentence.
Every word in it is labeled as 0/original. The second
member of the triplet is labeled neutral, so it will not
be included in our dataset. Finally, the first mem-
ber of the triplet is a contradiction, so we use the
preprocessing algorithm. Because the premises of
the first and third example are the same, the words
"It is not raining." are all labeled as 0/original. How-
ever, in the hypothesis, the word "drizzling" in the
first example is found to align with the word "not" in
the third example. We follow Step 5 to skip to the
next word on the third example (since it is longer),
which is "drizzing". Because these are equivalent,
we label the word "drizzling" as 1/replaced.

We now check to see what the next word after
"drizzling" is in both sequences. Because there
isn’t one, we can stop adding 0s and 1s to our label
vector. So the labels for the first triplet member is
a vector of all 0s (since every word in the premise
and every word up to "is" in the hypothesis are the
same) except for the last entry which is a 1 for the
word "drizzling". Tables 8 and 9 show how we label
the first and third example.

Tables 10 through 14 showcase four additional
labeled triplets, this time from data created from
Hossain et al. (2020)’s SNLI data. Here is another
example, Sample Triplet 2, which we use for Tables
10 and 11:

Premise: This little girl is not riding her bike. Hy-
pothesis: A young girl rides her bike in the grass.
Label: Contradiction
Premise: This little girl is riding her bike. Hypothe-
sis: A young girl does not ride her bike in the grass.
Label: Neutral

Sentence 1

0 0 0 0
It is not raining.

Sentence 2

0 0 0 0 0
Therefore, it is not drizzling.

Table 8: Labeling the third triplet member of Sample
Triplet 1.

Sentence 1

0 0 0 0
It is not raining.

Sentence 2

0 0 0 1
Therefore, it is drizzling.

Table 9: Labeling the first triplet member of Sample
Triplet 1.

Premise: This little girl is not riding her bike.
Hypothesis: A young girl does not ride her bike in
the grass. Label: Entailment

Like the previous triplet, the third triplet member
is an entailment and serves as our comparison
sentence. Every word is labeled as 0/original. The
second triplet member is neutral and is discarded.
The first triplet member is a contradiction, so it
is processed by comparing it to the comparison
sequence. The premises of both sequences are
the same, so all words of the premise are tagged as
0/original. The hypotheses are the same up until we
get to "rides" on the contradiction and "does" on the
entailment. Because the entailment hypothesis is
longer than the contradiction hypothesis, we iterate
through the entailment sequence (specifically "not",
"ride", "her", and "bike").

Per Step 6 of the preprocessing algorithm, we
have not found a word in the entailment sequence
equal to "rides" within 4 steps. Thus, we tag the
word "rides" as 1/replaced in the contradiction and
set our contradiction pointer to the next word - "her".
The entailment pointer is set to "not" (one to the
right of "does", which was the first word we com-
pared to "rides"). Since these words are still not
the same, we continue iterating through the entail-
ment sequence to "ride" and "her", with "her" being
where we stop since it matches the contradiction
word. Since we did not have to move the contradic-
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Sentence 1

0 0 0 0
This little girl is

0 0 0 0
not riding her bike.

Sentence 2

0 0 0 0 0 0
Therefore, a young girl does not

0 0 0 0 0 0
ride her bike in the grass.

Table 10: Labeling the third triplet member of Sam-
ple Triplet 2.

Sentence 1

0 0 0 0
This little girl is

0 0 0 0
not riding her bike.

Sentence 2

0 0 0 0 1
Therefore, a young girl rides

0 0 0 0 0
her bike in the grass.

Table 11: Labeling the first triplet member of Sam-
ple Triplet 2.

tion pointer, we still tag "her" as a 0 before moving
to the next word on both sequences. From there,
every word in both sequences is the same, and so
the remainder of the first example’s hypothesis will
be tagged as 0/original.

For Tables 12 and 13, we use the following
triplet, which we call Sample Triplet 3:

Premise: A swimmer is not doing the breaststroke
in a pool. Hypothesis: A swimmer uses the pool.
Label: Neutral
Premise: A swimmer doing the breaststroke in a
pool. Hypothesis: A swimmer does not use the
pool. Label: Contradiction
Premise: A swimmer is not doing the breaststroke
in a pool. Hypothesis: A swimmer does not use
the pool. Label: Entailment

The third triplet member is an entailment and
thus serves as our comparison sequence. We
label each word as 0/original. Given that the first

Sentence 1

0 0 0 0 0
A swimmer is not doing
0 0 0 0 0

the breaststroke in a pool.

Sentence 2

0 0 0 0
Therefore, a swimmer does

0 0 0 0
not use the pool.

Table 12: Labeling the third triplet member of Sam-
ple Triplet 3.

Sentence 1

0 0 1 0
A swimmer doing the
0 0 0 0

breaststroke in a pool.

Sentence 2

0 0 0 0
Therefore, a swimmer does

0 0 0 0
not use the pool.

Table 13: Labeling the second triplet member of
Sample Triplet 3.

triplet member is marked as neutral, we discard it.
The second triplet member is a contradiction, so
we will compare it to the entailment sequence.

For the contradiction sequence, the premise is
the same as the comparison sequence’s until we
get to "doing" in the contradiction example and
"is" in the entailment example. As the entailment
example is longer, we iterate through it to find
a match for "doing". We traverse through "not"
before hitting the word "doing". We tag "doing"
as 1/replaced in the contradiction sequence as
per the default case in step 5 of our preprocessing
algorithm . The rest of the premise of each as well
as the hypotheses are the same, so we tag all
other words as 0/original.

The triplet in Table 14 is Sample Triplet 4:

Premise: A little girl is not sitting in a seat. Hypoth-
esis: She is standing on the seat. Label: Neutral
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Sentence 1

0 0 0 0
A little girl sitting

0 0 0
in a seat.

Sentence 2

0 0 0 0
Therefore, she is not

0 0 0 0
standing on the seat.

Table 14: Labeling the second triplet member of
Sample Triplet 4.

Premise: A little girl sitting in a seat. Hypothesis:
She is not standing on the seat. Label: Entailment
Premise: A little girl is not sitting in a seat.
Hypothesis: She is not standing on the seat.
Label: Neutral

The second example is an entailment and thus
each word can be safely tagged 0/original. As the
other two sequences are labeled neutral, they are
to be discarded.

We provide the following triplet as our final
example:

Premise: A child is not looking out of a door. Hy-
pothesis: The door is open. Label: Neutral
Premise: A child is looking out of a door. Hypoth-
esis: The door is not open. Label: Contradiction
Premise: A child is not looking out of a door.
Hypothesis: The door is not open. Label: Neutral

Because no example in the triplet is an entail-
ment, we do not add it to our training data.

B. Negated MNLI Results for Base
ELECTRA-Small Split By Where

Negation Was Located

We take a closer look at Neutral-labeled data points
in MNLI. First, we separate data points by whether
they have negation in the premise, in the Hhpothe-
sis, or both. Results are shown in Table 15. Over-
all, the model makes the most mistakes when the
premise contained negation. The percentage of
error is lower when the hypothesis contained nega-
tion, especially when the premise did too.

In a further manual analysis of 40 gold-neutral
examples, half misclassified by the system and
half not, no clear patterns stood out. One thing we
noticed is that the misclassified examples, but not

Negated Cue Location Correct Incorrect
Premise Only 0.206 0.253

Hypothesis Only 0.200 0.124
Both 0.204 0.013

Table 15: Accuracy with our Base model on
Negated MNLI, split by whether the negation cue
was located in the premise only, hypothesis only,
or in both the premise and the hypothesis. Decimal
values are represented such that the sum total of
1 represents the entire Negated MNLI dataset (in
order to align with our results in Table 7.

the correctly labeled examples, seemed to contain
many cases that were pragmatically odd. Here is
an example:

Premise: Much that was not said about Japanese
management style in the 1980s–with its supposed
Zen focus and greater sense of process than
outcome–was pure buncombe. Hypothesis: The
information about Japaneese management in the
1990s was correct. Gold label: Neutral

The premise basically says that "much that was
not said about X was only for show", which is very
odd. Examples that are unusual, from a language
modeling point of view, could in principle throw the
language model off. However, more analysis is
required to see if such subtle patterns of pragmatic
oddness are more prevalent in misclassified neutral
examples than elsewhere.
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