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Abstract
Multimodal Conversational Emotion (MCE) detection, generally spanning across the acoustic, vision and language
modalities, has attracted increasing interest in the multimedia community. Previous studies predominantly focus
on learning contextual information in conversations with only a few considering the topic information in single
language modality, while always neglecting the acoustic and vision topic information. On this basis, we propose a
model-agnostic Topic-enriched Diffusion (TopicDiff) approach for capturing multimodal topic information in MCE
tasks. Particularly, we integrate the diffusion model into neural topic model to alleviate the diversity deficiency problem
of neural topic model in capturing topic information. Detailed evaluations demonstrate the significant improvements
of TopicDiff over the state-of-the-art MCE baselines, justifying the importance of multimodal topic information
to MCE and the effectiveness of TopicDiff in capturing such information. Furthermore, we observe an interest-
ing finding that the topic information in acoustic and vision is more discriminative and robust compared to the language.
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1. Introduction

Multimodal Conversational Emotion (MCE) detec-
tion constitutes a crucial task in the fields of natu-
ral language processing (NLP) (Poria et al., 2017;
Majumder et al., 2019; Ghosal et al., 2019) and
multimodal processing (Hazarika et al., 2018a; Hu
et al., 2021b), with the objective of automatically
detecting emotions in each utterance within a con-
versation. As exemplified in Figure 1, an utterance
(including acoustic spectrum, video frame and lan-
guage “Guess what, I got an audition”) generated
by a speaker could be labeled with emotion joy.
Over the past decade, MCE has a significant im-
pact on the development of empathetic systems
and various potential applications, including opinion
mining, healthcare and intelligent assistants (Jiao
et al., 2019; Cao et al., 2019). Existing studies
have primarily focused on employing RNN-variants
(e.g., LSTM or GRU) (Poria et al., 2017; Majumder
et al., 2019), graph-based (Ghosal et al., 2019)
and transformer-based (Shen et al., 2021) models
to capture the contextual information of individual
utterances during a conversation.

Recently, a few studies realize the importance of
topic information in conversation tasks (Wang et al.,
2020a; Zhu et al., 2021). They assert that the utiliza-
tion of topic information in conversational contexts
contributes to fully mining the global clues of utter-
ances during the whole conversation. For instance,
conversations regarding the funeral topic tend to
elicit sadness, while those about the wedding topic
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Figure 1: A multimodal conversational example
from MELD dataset to illustrate the importance of
multimodal topic information, where each utterance
contains acoustic spectrum, video frame, language
and corresponding emotion label.

tend to elicit happiness. Therefore, considering the
topic information in a conversation could improve
our comprehension of content, context and intent
within the conversation. However, existing studies
on incorporating the topic information into conver-
sation tasks solely rely on single language modality,
without taking the topic information present in both
acoustic and vision into account.

In this paper, we argue that the multimodal topic
information is crucial for boosting the performance
of emotion detection in multimodal conversation.
By analyzing various modal topic information, such
as tones, facial expressions, and body postures,
we can better detect the emotions. As illustrated in
Figure 1, we observe a multimodal conversation be-
tween two speakers, where the language clues “get-
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ting an audition” and “role”, indicating the topic re-
lated to good job opportunities that could potentially
aid in detecting the emotions of speakers. More-
over, the acoustic spectrums with excited tones
and video frames with smile facial expression gen-
erated by two speakers indicate a positive (i.e., joy)
emotion throughout the conversation, which are
also useful to discriminate the emotions. Besides,
as previously mentioned conversations related to
funeral and wedding topics, the tones (frequency
and intensity variations in tones) and facial expres-
sions (smiling or crying face in video frames) can
precisely detect the emotions in the whole conver-
sations. Therefore, we believe that a well-behaved
approach should consider topic information within
multiple modalities in multimodal conversation to
enable the precise detection of emotions.

However, traditional neural topic models (Wang
et al., 2020b; Jin et al., 2021) generally adopt
the architecture of variational auto-encoder
(VAE) (Kingma and Welling, 2014) to capture
the topic information inside language, which may
suffer from the problem of semantic diversity
deficiency (Gao et al., 2019). More seriously,
acoustic and vision semantics are often more
sparse compared to language (He et al., 2022).
This may further exacerbate the problem of
diversity deficiency in topic information. With this in
mind, traditional neural topic models are potentially
not well-suited for capturing multimodal topic infor-
mation. Recently, the diffusion model (Song and
Ermon, 2019) has attracted increasing attention
due to their ability to sufficiently capture the diverse
information from multimodal semantic spaces,
achieving remarkable performance in various
multimodal tasks (Ruan et al., 2023; Huang et al.,
2023). Therefore, we believe that a better-behaved
topic mining approach should consider integrating
the diffusion model to capture the multimodal topic
information.

To tackle the aforementioned challenges, this
paper proposes a new model-agnostic Topic-
enriched Diffusion (TopicDiff) approach to capture
the multimodal topic information for addressing
MCE. Specifically, we first integrate the diffusion
model into neural topic model to alleviate the prob-
lem of semantic diversity deficiency. Then, we lever-
age three TopicDiff modules to capture the topic
information inside acoustic, vision, and language
modalities, respectively. Finally, we jointly train
the basic MCE approaches alongside three Top-
icDiff modules under the architecture of multi-task
learning. Detailed evaluations demonstrate that
our TopicDiff approach achieves significant perfor-
mance improvements compared to the state-of-the-
art MCE baselines. Overall, the main contributions
of this paper are summarized as follows:

• We are the first to consider the multimodal

topic information for boosting the performance
of conversational emotion detection.

• We propose a TopicDiff approach to capture
the multimodal topic information in MCE, which
first attempts to integrate the diffusion model
into neural topic models for alleviating the di-
versity deficiency problem of them in capturing
the topic information. Since TopicDiff is model-
agnostic, it can be easily extended to MCE
approaches.

• We conduct detailed experiments on our topic-
density M3ED∗ and two public topic-sparsity
MELD, IEMOCAP datasets, and the results
on these datasets demonstrate that TopicDiff
achieves significant improvements compared
to state-of-the-art MCE baselines. This fully
justifies the importance of multimodal topic in-
formation and the effectiveness of our TopicDiff
approach in capturing such information.

• We observe an interesting finding that the topic
information in acoustic and vision is more dis-
criminative and robust than that in language.

2. Related Work

Multimodal Conversational Emotion Detection.
Previous studies in MCE focus on capturing con-
textual information due to the unique structure
of conversations, which can be broadly catego-
rized into RNN-, graph-, and knowledge-based
approaches. RNN-based approaches leverage
RNN variant networks to model contextual infor-
mation (Poria et al., 2017; Hazarika et al., 2018b)
or track emotional states (Hazarika et al., 2018a;
Majumder et al., 2019) in conversations. Graph-
based approaches leverage graph networks to
model the interaction of speakers (Ghosal et al.,
2019; Ishiwatari et al., 2020), model multimodal de-
pendencies and speaker dependencies (Hu et al.,
2021b; Joshi et al., 2022; Lian et al., 2023), and
understand the conversational contexts (Hu et al.,
2021a, 2022). Knowledge-based approaches lever-
age external knowledge to guide contextual mod-
eling, such as commonsense knowledge (Ghosal
et al., 2020), psychological knowledge (Li et al.,
2021), knowledge from pre-trained language mod-
els (Shen et al., 2021; Zhu et al., 2021), while these
approaches only consider language modality.

In summary, all the above studies ignore the mul-
timodal topic information, which can be leveraged
to boost the performance of emotion detection in
multimodal conversation.

Neural Topic Model. Based on the architec-
ture of variational auto-encoder (VAE) (Kingma and
Welling, 2014), Miao et al. (2016) propose neural
topic models to capture the topic information within
languages. Then, some improved studies attempt
to employ various strategies to address problems
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Figure 2: The overall architecture of our model-agnostic Topic-enriched Diffusion (TopicDiff) approach
for MCE, where TDB represents Topic-enriched Diffusion Block consisting of Topic-enriched Diffusion
Process and Topic-enriched Denoising Process.

in language topic modeling, such as adversarial
training (Wang et al., 2020b), pre-trained semantic
embeddings (Jin et al., 2021), reinforcement learn-
ing (Gui et al., 2019) and multi-task learning (Wang
et al., 2020a). Besides, a few studies (Pu et al.,
2020; An et al., 2020) consider incorporating the
multimodal topic information, while these efforts
are not designed to conversation scenarios and
hence are not appropriate for our MCE tasks.

Different from all above studies, we focus on
multimodal conversation scenarios and design an
TopicDiff approach to mine multimodal topic infor-
mation, which could mitigate the diversity deficiency
problem of traditional neural topic models in cap-
turing topic information.

Diffusion Model. Recently, diffusion models are
the state-of-the-art latent variable models in gener-
ative modeling (Yang et al., 2022), which have two
main paradigms, i.e., Denoising Diffusion Proba-
bilistic Models (DDPM) (Ho et al., 2020) and Score-
based Generative Models (SGM) (Song and Ermon,
2019). At present, there are many studies on diffu-
sion models (Vahdat et al., 2021; Baranchuk et al.,
2022; Rombach et al., 2022), of which Vahdat et al.
(2021) train SGMs with VAE to explore the effects
of the diffusion model on image generation. Ruan
et al. (2023) and Huang et al. (2023) leverage the
diffusion model to address the multimodal tasks
and achieve promising results.

Overall, the diffusion model has shown a remark-
able ability in capturing diverse information from
latent spaces. Inspired by this, we first attempt to

take advantage of the diffusion model and integrate
it into neural topic model to mitigate the diversity
deficiency problem, thereby sufficiently capturing
the multimodal topic information in MCE.

3. Approach

In this section, we formulate the MCE task as fol-
lows. A conversation can be defined as a sequence
of utterances u = {u1,u2, ...,uM}, where M is
the number of utterances. Each utterance involves
three sources of utterance-aligned data correspond-
ing to acoustic (a), vision (v) and language (l),
which can be formulated as: ui =

{
ua
i ,u

v
i ,u

l
i

}
,

where ua
i , uv

i and ul
i denote the raw feature repre-

sentation of ui from acoustic, vision and language,
respectively. The MCE task aims to predict the
emotional status label for each utterance ui in the
conversation based on the available information
from all three modalities.

In this paper, we propose a model-agnostic
Topic-enriched Diffusion (TopicDiff) approach for
MCE. Figure 2 shows the overall architecture of
TopicDiff, consisting of an inference network with a
topic-enriched diffusion block (TDB), and a genera-
tive network. Before introducing TopicDiff, we first
give an overview of the basic MCE approaches.

3.1. Basic MCE Approaches
The basic MCE approaches mainly focus on lever-
aging RNN-variants (e.g., GRU), graph-based or
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transformer-based models to model contextual in-
formation of each conversation, and the general
workflow of them is described as follows. Firstly,
each utterance ui is encoded by different modal
contextual encoders to obtain context-aware repre-
sentation hi. Various MCE approaches employ dif-
ferent contextual encoders for each modality, which
we denote as CTEncoder for uniformity. Thus, the
context-aware representation hi of each utterance
ui is formulated as follows:

hi = CTEncoder(ui) (1)

where hi =
{
ha
i ,h

v
i ,h

l
i

}
is serving as the uniform

representation of acoustic, vision, and language
Subsequently, hi is fed into various MCE blocks

(e.g., MMGCN employs a spectral domain graph
convolutional network to encode the multimodal
contextual representations), where hi is trans-
formed into an intermediate representation oi. For
clarity, we use “MCE Block” to represent the core
and complex components of various MCE ap-
proaches as shown in Figure 2.

Finally, the emotion prediction ŷi is made by pass-
ing oi through a fully connected (FC) layer. The
basic MCE approaches are trained via the cross-
entropy loss function, which can be defined as:

Lmce = − 1∑N
n=1 c(n)

N∑
j=1

c(n)∑
i=1

ynj,i log ŷ
n
j,i (2)

where N is the total number of conversations in
the training set. c(n) is the number of utterances in
conversation n. ynj,i and ŷnj,i are the expected class
label and the predicted emotion label of utterance
i in conversation j, respectively.

3.2. Topic-enriched Diffusion Approach
To capture the topic information inside acoustic, vi-
sion, and language, we propose a Topic-enriched
Diffusion (TopicDiff) approach. TopicDiff is essen-
tially a variant of neural topic model (Miao et al.,
2016), and thus also consists of two main compo-
nents, i.e., inference network and generative net-
work as illustrated in Figure 2. Particularly, we
design a Topic-enriched Diffusion Block (TDB),
which is then integrated into the inference network
for alleviating the diversity deficiency problem of tra-
ditional vae-based neural topic model. Specifically,
we leverage three TopicDiff modules to capture
the topic information inside acoustic, vision, and
language on the basis of basic MCE approaches,
respectively.

Inference Network is leveraged to map the
context-aware representation hi in Eq.(1) to a low-
dimension latent topic representation ẑi.1 Specif-
ically, an MLP encoder layer is first employed to

1After obtaining the context-aware representation hi,

extract features from hi to obtain the output zi. And
then zi can be fed into two different fully connected
layers fµ and fσ to estimate the mean µi and stan-
dard deviation σi of a Gaussian distribution, respec-
tively, denoted as µi = fµ(zi) and σi = log fσ(zi).
Finally, we sample ẑi from the posterior topic distri-
bution q(ẑi|hi) by using a reparameterization trick
as described in Kingma and Welling (2014), i.e.,
ẑi = µi + ϵσi. Here, ϵ is sampled from N (0, I).

Traditional vae-based neural topic models di-
rectly feed latent topic representation ẑi into gen-
erative network to reconstruct context-aware rep-
resentation hi, which may suffer from the problem
of diversity deficiency (Gao et al., 2019) in captur-
ing multimodal topic information. Therefore, we
design a topic-enriched diffusion block (TDB) in-
tegrated into the inference network, consisting of
topic-enriched diffusion process and topic-enriched
denoising process as illustrated in Figure 2. In the
following, we will formulate the TDB integrated into
the inference network of TopicDiff in detail.
• Topic-enriched Diffusion Process is lever-

aged to perturb the latent topic representation ẑi
with an infinite number of noise scales. Indexed
by a continuous time variable t ∈ [0, T ], ẑi ∼ p(ẑi)
and ẑ

′

i ∼ p(ẑ
′

i), where p(ẑi) and p(ẑ
′

i) represent
the latent topic distribution and prior distribution in
TDB, respectively. Therefore, we have a tractable
form to generate representations efficiently, and the
topic-enriched diffusion process can be modeled
as the solution to a stochastic differential equation
(SDE), denoted as:

dẑi = f(ẑi, t)dt+ g(t)dw (3)

where w is the standard Wiener process2. f(ẑi, t)
and g(t) represent the vector-valued and scalar
function called the drift and diffusion coefficient of
ẑi, respectively. The SDE has a unique strong
solution as long as the coefficients are globally Lip-
schitz3 both in state and time.
• Topic-enriched Denoising Process is lever-

aged to synthesize the latent topic representations
ẑi from the prior distribution p(ẑ

′

i), which also can
be seen as a diffusion process, running backwards
in time and given by the reverse-time SDE, formu-
lated as:

dẑi = [f(ẑi, t)−g(t)2∇ẑi log p(ẑi)]dt+g(t)dŵ (4)

where ŵ is the standard Wiener process when time
flows backwards from T to 0, and dt is an infinites-
imal negative time step. Once the score of each

we incorporate latent topic representation ẑi via TopicD-
iff, without modifying the overall architecture of MCE ap-
proaches. Therefore, we say that our TopicDiff approach
is model-agnostic.

2https://en.wikipedia.org/wiki/Wiener_process
3https://en.wikipedia.org/wiki/Lipschitz_continuity



16308

marginal distribution, ∇ẑi
log p(ẑi), is known for all

t, we can derive the denoising process from Eq.(4)
and simulate it to sample from p(ẑi).

To estimate ∇ẑi log p(ẑi), we can train a time-
dependent score-based model sθ(ẑi, t) via a
continuous generalization, formulated as: θ∗ =

argminEẑi
Eẑ

′
i |ẑi

∥∥∥sθ(ẑi, t)−∇ẑi
log p(ẑi)(ẑ

′

i|ẑi)
∥∥∥2
2

where t is uniformly sampled over [0, T ]. With
sufficient data and model capacity, score match-
ing ensures that the optimal solution for this
formulation, denoted as sθ∗(ẑi, t), which equals
∇ẑi

log p(ẑi) for almost all ẑi and t.
Generative Network is leveraged to reconstruct

the context-aware representation hi from the latent
topic representation ẑi at each time step. Simi-
lar to inference network, we employ an MLP de-
coder to take the sampled latent topic represen-
tation ẑi as input and generate reconstructed h

′

i

for the context-aware representation hi. Besides,
generative network also uses Gaussian distribu-
tions for both generative prior and variational dis-
tribution, while it defines an independent diagonal
Gaussian distribution over the embedding space of
different modalities. Therefore, generative network
simultaneously learns to approximate the condi-
tional probability distribution p(h

′

i|ẑi), which repre-
sents the likelihood of generating the reconstructed
context-aware representation h

′

i given the latent
topic representation ẑi.

3.3. Topic-enriched Learning
After obtaining the latent topic representation ẑi of
each modality, we compute the output represen-
tation fi via concatenating ẑi and context-aware
representation hi as illustrated in Figure 2, i.e,
fi = hi ⊕ ẑi, which is used for final emotion detec-
tion following basic MCE approaches.

To train three TopicDiff modules, we minimize
the variational upper bound on negative data log-
likelihood, consisting of two components: recon-
struction loss and Kullback-Leibler (KL) loss. The
reconstruction loss is used to minimize the recon-
struction error between the context-aware represen-
tation hi and the reconstructed h

′

i, thereby improv-
ing the quality of the reconstructed context-aware
representation h

′

i, formulated as follows:

Lrec = Eq(ẑi|hi)

[
log p(h

′

i|ẑi)
]

(5)

And the KL loss is used to minimize the degree of
difference between the posterior topic distribution
q(ẑi|hi) and the latent topic distribution target dis-
tribution p(ẑi), which can be formulated as follows:

Lkl = kl(q(ẑi|hi)||p(ẑi)) (6)

Therefore, we jointly train the basic MCE ap-
proaches alongside three TopicDiff modules, and

Dataset Conversations Utterances
Train+Val Test Total Train+Val Test Total

M3ED∗ 809 181 990 19,702 4,747 24,449
MELD 1,153 280 1,433 11,098 2,610 13,708

IEMOCAP 120 31 151 5,810 1,623 7,433

Table 1: The statistics of our constructed topic-
density M3ED∗ and two public topic-sparsity MELD,
IEMOCAP datasets. ∗ denotes this dataset is dif-
ferent from the original.

the total training objective can be denoted as:

Ltotal=Lmce+α
∑

(a,v,l)
Lrec+β

∑
(a,v,l)

Lkl (7)

where
∑

(a,v,l) represents the sum of losses from
corresponding three modalities. Besides, α and
β are hyper-parameters of weight to balance the
losses between basic MCE approaches and three
TopicDiff modules.

4. Experimental Settings

4.1. Datasets and Baselines
For datasets, we empirically evaluate our Top-
icDiff approach on our constructed topic-density
M3ED∗ and two public topic-sparsity MELD, IEMO-
CAP datasets. MELD (Poria et al., 2019) is a
topic-sparsity dataset containing multi-speaker con-
versations from the only one popular TV series
Friends. IEMOCAP (Busso et al., 2008) is also
a topic-sparsity dataset containing dyadic con-
versations where actors perform improvisations
or scripted scenarios. M3ED∗ is a topic-density
dataset containing dyadic conversations from 56
different TV series, thus surpassing MELD and
IEMOCAP in topic richness. We construct this
topic-density M3ED∗ dataset based on the origi-
nal M3ED dataset4 to evaluate the effectiveness of
multimodal topic information. Specifically, for the
construction of M3ED∗, we partition the TV series
into 56, 10, and 20 for the training, validation and
test sets respectively, and maintain the 7:1:2 ratio
of utterances, which is different from the original
M3ED dataset in Zhao et al. (2022a). To focus on
evaluating the effectiveness of TopicDiff towards
mining multi-topic information, we ensure that the
TV domains in test set are seen in the training set,
which furthest excludes the influence of adaptation
problem stemming from different TV domains. All
the three datasets include aligned acoustic, vision
and language three modalities, and a comprehen-
sive statistical summary is reported in Table 1.

For baselines, we choose DialogueCRN (Hu
et al., 2021a), MMGCN (Hu et al., 2021b), COG-
MEN (Joshi et al., 2022), MM-DFN (Hu et al., 2022)

4https://github.com/AIM3-RUC/RUCM3ED
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M3ED∗ MELD IEMOCAPApproach
Happy Neutral Sad Disgust Angry Fear Surprise W-F1 W-F1 W-F1

DialogueCRN 54.38 67.75 54.27 34.59 70.74 12.10 55.55 61.32 54.32† 65.04♯

+ TopicDiff 56.22(↑) 72.21(↑) 55.06(↑) 38.92(↑) 73.41(↑) 28.45(↑) 55.08(↓) 64.49(↑) 55.36(↑) 66.05(↑)
+ TopicDiff w/o TDB 54.13 68.60 54.45 37.94 72.24 27.83 53.21 62.36 54.43 65.31

MMGCN 58.83 69.00 56.68 34.31 69.61 23.47 54.17 62.51 57.26† 66.22♯

+ TopicDiff 62.70(↑) 73.03(↑) 57.80(↑) 38.98(↑) 72.08(↑) 33.02(↑) 55.95(↑) 65.72(↑) 58.26(↑) 67.02(↑)
+ TopicDiff w/o TDB 60.52 72.10 58.11 36.55 71.39 0.8 43.46 63.94 57.63 66.47

COGMEN 59.25 71.20 56.98 40.20 73.50 22.94 58.93 64.88 52.29† 64.56†

+ TopicDiff 60.95(↑) 72.84(↑) 60.180(↑) 38.18(↓) 74.32(↑) 25.63(↑) 60.86(↑) 66.39(↑) 53.54(↑) 65.48(↑)
+ TopicDiff w/o TDB 59.45 71.64 57.29 39.83 73.98 20.37 61.56 65.26 52.76 64.91

MM-DFN 62.29 76.81 60.72 43.58 74.99 14.77 61.88 68.58 57.54† 65.66†

+ TopicDiff 63.69(↑) 77.78(↑) 61.60(↑) 45.66(↑) 76.47(↑) 38.02(↑) 62.140(↑) 70.06(↑) 58.42(↑) 66.52(↑)
+ TopicDiff w/o TDB 62.78 77.57 59.903 44.41 75.76 24.52 60.55 69.10 57.97 65.85

GCNet 46.65 72.24 47.09 27.40 66.77 3.73 38.40 59.02 - 56.18♯

+ TopicDiff 51.54(↑) 71.09(↓) 51.21(↑) 36.46(↑) 71.42(↑) 8.92(↑) 45.63(↑) 61.71(↑) - 57.80(↑)
+ TopicDiff w/o TDB 50.04 70.97 49.64 24.53 69.39 4.68 41.52 59.78 - 56.78

Table 2: Comparison of several MCE approaches with and without our TopicDiff approach on our con-
structed topic-density M3ED∗ and two public topic-sparsity MELD, IEMOCAP datasets. The grey rows
highlights the results of TopicDiff applied to MCE approaches, where ↑ and ↓ represent improvement and
reduction respectively, and ↑ indicates better performance for all metrics. Since TopicDiff is model-agnostic,
for a fair comparison, we reproduce all the baselines under the same experimental environment and
independently run five times with random seeds, taking their average as final results to report. Particularly,
these reproduced results with symbol ♯ are close to those reported in Hu et al. (2021b) and Lian et al.
(2023), while those reproduced results with † are slightly lower than results reported in their original papers
due to different experimental environments. The symbol - denotes the results are not available, because
GCNet is not suitable to multiple speakers in MELD dataset as reported in (Lian et al., 2023).

and GCNet (Lian et al., 2023) five MCE approaches
to evaluate the effectiveness of our TopicDiff ap-
proach. We aim to compare the performance differ-
ences of these MCE approaches with and with-
out TopicDiff. It is worth noting that these ap-
proaches are all multimodal approaches, rather
than only using language modality. Since exist-
ing single-text conversation approaches, such as
COSMIC (Ghosal et al., 2020) and MuCDN (Zhao
et al., 2022b), finetune pre-trained models like
RoBERTa (Liu et al., 2019) and incorporate exter-
nal knowledge (e.g., commonsense and events),
we consider it is unfair to compare with single-text
conversation approaches. Because the above ap-
proaches have different experimental settings (e.g.,
different features or partitions in datasets, differ-
ent evaluation metrics, different devices etc.), for a
fair and thorough comparison, we reproduce these
approaches in our experiments.

4.2. Implementation Details and Metrics

Since our TopicDiff approach is model-agnostic,
for a fair comparison, we reproduce all the base-
lines on our topic-density M3ED∗ and two public
topic-sparsity MELD, IEMOCAP datasets under
the same experimental environment (i.e., all the
approaches are reproduced with PyTorch on a ma-
chine with NVIDIA GeForce RTX 3090, Intel(R)
Xeon(R) E5-2650 v4 CPU (2.20 GHz), CUDA ver-
sion 11.7, and PyTorch 1.7.1 library with python

3.6.13 on Ubuntu 20.04.1 LTS.). Besides, the
hyper-parameters of these baselines reported by
their public papers are still adopting the same set-
ting, and the others are tuned according to the
validation set. Furthermore, we conduct five inde-
pendent runs with random seeds for each baseline
with and without TopicDiff, taking their average as
the final results to report. Particularly, the repro-
duced results of DialogueCRN, MMGCN and GC-
Net on IEMOCAP could achieve close results as
reported in their corresponding papers. However,
the reproduced results of other baselines on two
public topic-sparsity MELD, IEMOCAP datasets are
slightly lower than those results reported in their
corresponding papers. For our TopicDiff approach
in experimental settings, we use a simple VAE con-
sisting of MLP with linear layers as inference and
generative networks, and leverage NCSN (Song
and Ermon, 2019) as score-based diffusion back-
bone. Specifically, we adopt Adam as the optimizer
with two initial learning rates (1e-4, 1e-5) and L2
weight decays (1e-4, 1e-4) for VAE and NCSN to up-
date training parameters, respectively. The dropout
rate is set to 0.25 for VAE. The dimension of hidden
state after VAE is set to 20, which also represents
the number of topics. The implementation details
of NCSN are referenced in their publicly available
code5. In addition, we set the weights α and β
to (0.5, 0.5) to balance the losses between MCE

5https://github.com/ermongroup/ncsn
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Figure 3: Four line charts to study the robustness of our TopicDiff approach and different modal topic
information with the change of topic-density degree via maintaining the total number of training set and
varying the numbers of TV series, where the x-axis represents the numbers of TV series. Line charts
of (a) and (b) show the performance trend on two MCE approaches (with/without TopicDiff). And line
charts of (c) and (d) illustrate the performance trend on acoustic, vision and language topic information
via two MCE approaches with TopicDiff. All the line charts are conducted on our constructed topic-density
M3ED∗ dataset and evaluated on W-F1 metric.

and TopicDiff. All the approaches are trained for a
maximum of 200 epochs, and stopped if the vali-
dation loss does not decrease for 20 consecutive
epochs. To facilitate the corresponding research in
this direction, all codes together with datasets are
released6.

Following Hu et al. (2021a), the performance is
evaluated via Weighted-Average F1 (W-F1) on our
constructed topic-density M3ED∗ and two public
topic-sparsity MELD, IEMOCAP datasets. Besides,
we report the F1-score of each emotion on our
topic-density M3ED∗ dataset. Moreover, t-test7 is
used to evaluate the significance of performance
differences by following Chen et al. (2020).

5. Results and Discussions

5.1. Experimental Results
Table 2 illustrates the comparative results for MCE.
From the table, we can see that our TopicDiff ap-
proach applied to various MCE approaches signifi-
cantly outperforms those without TopicDiff on our
constructed topic-density M3ED∗ and two public
topic-sparsity MELD, IEMOCAP datasets. For in-
stance, TopicDiff yields an improvement of 3.21% in
terms of W-F1 over the MMGCN on our constructed
topic-density M3ED∗ dataset (p-value < 0.01), and
1% and 1.2% on two public topic-sparsity MELD,
IEMOCAP datasets respectively (p-value < 0.05).
This indicates that our TopicDiff approach is more
effective on topic-density scenarios, and further en-
courages us to consider incorporating multimodal
topic information in MCE.

Furthermore, we report the results for individual
emotions on our constructed topic-density M3ED∗

dataset, where TopicDiff boosts the performance of
most individual emotions. Impressively, TopicDiff
applied to MMGCN improves the performance of all

6https://github.com/Pomelo518/TopicDiff
7https://docs.scipy.org/doc/scipy/reference/stats.html

Language Acoustic Vision DialogueCRN MMGCN
✓ 62.34 +1.02 63.69 +1.18

✓ 62.78 +1.46 64.03 +1.52
✓ 62.82 +1.50 64.09 +1.58

✓ ✓ 63.13 +1.81 64.43 +1.92
✓ ✓ 63.18 +1.86 64.42 +1.91

✓ ✓ 63.55 +2.23 64.76 +2.25
✓ ✓ ✓ 64.49 +3.17 65.72 +3.21

Table 3: The effectiveness study of various modal
topic information in MCE, where ✓means that we
capture the current modal topic information. The
grey columns show the difference of MCE ap-
proaches with and without various modal topic in-
formation via TopicDiff. All the experiments are
conducted on our constructed topic-density M3ED∗

dataset and evaluated on W-F1 metric.

individual emotions, with a significant improvement
up to 9.55% for the fear emotion (p-value < 0.01).
This highlights the capability of TopicDiff to boost
the detection of challenging emotions.

5.2. Ablation Study of TDB

In order to demonstrate the effectiveness of inte-
grating the diffusion model into neural topic model
for fully capturing multimodal topic information, we
conduct ablation studies on our constructed topic-
density M3ED∗ and two public topic-sparsity MELD,
IEMOCAP datasets. Specifically, we remove the
topic-enriched diffusion block (TDB) from our Top-
icDiff approach, and apply the remaining compo-
nents (i.e., neural topic model) to various MCE ap-
proaches. We present the results (i.e., + TopicDiff
w/o TDB) in Table 2 for a clear and intuitive com-
parison with our primary results. The results show
that while the removal of TDB could improve perfor-
mance, it is not as significant as that achieved with
TopicDiff. This indicates that integrating the diffu-
sion model into neural topic model could mitigate
diversity deficiency problem, thereby fully capturing
multimodal topic information in MCE.
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Figure 4: A multimodal conversational sample includes utterances comprising acoustic spectrums, video
frames, language, and ground-truth emotions, alongside the probabilities of ground-truth emotion joy on
V4 predicted by various approaches. Language/Acoustic/Vision Topic denotes the utilization of TopicDiff
to capture the corresponding modal topic information.

5.3. Effectiveness Study of Modal Topics
Table 3 presents a comprehensive evaluation of
TopicDiff in exploring the contributions of various
modal topic information on our constructed topic-
density M3ED∗ dataset. Specifically, we randomly
choose DialogueCRN and MMGCN with TopicDiff
to capture various combinations of modal topic in-
formation, and calculate the performance improve-
ments between baselines with and without the incor-
poration of various modal topic information. From
the table, we can see that the incorporation of topic
information from various modalities still yields im-
provements in emotion detection, and the use of
three modal topic information outperforms that of
one or two modal topic information. This demon-
strates the importance of topic information in con-
versation tasks, and further highlights the potential
effectiveness of multimodal topic information.

Moreover, we have observed an interesting ex-
perimental phenomenon wherein incorporating
acoustic or vision topic information leads to bet-
ter performance than language. For instance, the
incorporation of acoustic and vision topic informa-
tion yields improvements of 0.44% and 0.48% com-
pared to language via using DialogueCRN respec-
tively. This observation demonstrates that com-
pared to language, acoustic and vision topic infor-
mation is more discriminative, which is reasonable
since acoustic and vision signals are more natural
and direct than language, making their associated
topic information more discriminative to emotion.

5.4. Robustness Study of Modal Topics
To investigate the impact of topic-density degree
on the effectiveness of our TopicDiff approach, we
conduct experiments that involved sampling differ-
ent numbers of TV series and analyzing the re-
sulting changes in performance. Specifically, we
randomly select 5,000 utterances from the train-
ing set, while varying the number of TV series to
20, 27, 34, 41, 48, and 56. Subsequently, we ran-
domly choose DialogueCRN and MMGCN, with

and without TopicDiff, to analyze the performance
trend concerning changes in the topic-density de-
gree. As illustrated in Figure 3 (a) and (b), all ap-
proaches show a decrease in performance due to
the reduction in the number of samples from the
same TV domain, while maintaining the total num-
ber (i.e., 5,000) of the training set8 and increasing
topic-density, necessitating the use of multimodal
topic information to sustain performance. We ob-
serve a significant decline in performance for the
two MCE approaches, while TopicDiff exhibits a
slight and stable decline. This demonstrates that
our TopicDiff approach is robust since it incorpo-
rates additional multimodal topic information.

To further explore the performance difference of
various modal topic information under the change
of topic-density degree, we randomly choose Dia-
logueCRN and MMGCN with TopicDiff to capture
acoustic, vision or language topic information. We
plot the trend of performance changes in Figure 3
(c) and (d). The results reveal that TopicDiff, with ei-
ther acoustic or vision topic information, maintains
a more stable performance compared to language,
even with changes in topic-density degree. This in-
teresting observation indicates that acoustic and vi-
sion topic information is more robust than language,
which is reasonable since the emotional clues ex-
pressed by acoustic and vision tend to be more
consistent across different topics than language.
For example, the facial expressions of smile are
always similar in different topics, thus making them
have better robustness.

5.5. Qualitative Study of TopicDiff
As shown in Figure 4, we randomly choose Dia-
logueCRN with and without TopicDiff and leverage
TopicDiff to capture the topic information of lan-
guage, acoustic and vision to predict the probability
of ground-truth emotion joy on V4. From this fig-

8To furthest exclude the influence of domain adap-
tation, similar to the construction of M3ED∗, we ensure
that TV domains in test set are seen in the training set.
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ure, we can see that: 1) Predicting the emotion of
V4 in the absence of context is challenging. More-
over, the use of global language topic clues (i.e.,
“worried about”, “nervous”) may lead to negative
predictions. Thus, it is essential to combine acous-
tic and vision topic clues (i.e., joy tones, smile face)
for predicting the emotion of V4 precisely. This
highlights the importance of multimodal topic infor-
mation in conversations. 2) DialogueCRN with Top-
icDiff provides a higher probability of joy emotion on
V4 compared to DialogueCRN, indicating the effec-
tiveness of TopicDiff in capturing multimodal topic
information. 3) TopicDiff without TDB provides a
lower probability compared to TopicDiff, indicating
the effectiveness of integrating the diffusion model
to capture multimodal topic information. 4) The
prediction probabilities of acoustic or vision topic
are obviously higher than language topic, indicating
that acoustic and vision topic information is more
discriminative compared to language.

6. Conclusion

In this paper, we propose a model-agnostic Topic-
enriched Diffusion (TopicDiff) approach to MCE,
which integrates the diffusion model into neural
topic model for mitigating the problem of semantic
diversity deficiency in capturing multimodal topic
information. Detailed experiments on our topic-
density M3ED∗ and two public topic-sparsity MELD,
IEMOCAP datasets demonstrate the effectiveness
of our TopicDiff approach in MCE. Furthermore, we
observe an interesting finding that acoustic and
vision topic information is more discriminative and
robust compared to language. In our future work,
we would like to improve the emotion detection by
incorporating more information, such as speaker
personality and posture information. Besides, we
would like to leverage large-scale multimodal video
pre-training to enhance the representation ability of
basic modalities. Moreover, we intend to transfer
TopicDiff to other conversation based multimodal
tasks, such as multimodal psychological counseling
and conversational depression detection.
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