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Abstract

As deep neural models in NLP become more complex, and as a consequence opaque, the necessity to interpret
them becomes greater. A burgeoning interest has emerged in rationalizing explanations to provide short and
coherent justifications for predictions. In this position paper, we advocate for a formal framework for key concepts and
properties about rationalizing explanations to support their evaluation systematically. We also outline one such formal
framework, tailored to rationalizing explanations of increasingly complex structures, from free-form explanations to
deductive explanations, to argumentative explanations (with the richest structure). Focusing on the automated fact
verification task, we provide illustrations of the use and usefulness of our formalization for evaluating explanations,
tailored to their varying structures.

Keywords: Automated Fact Verification, Explainable AI, Natural Language Explanations, Evaluation of Ex-
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1. Introduction

In recent years, we have seen great performance
success in natural language generation (NLG) and
understanding (NLU), facilitated primarily by the
use of sophisticated large language models (LLMs),
e.g. LLaMA (Touvron et al., 2023). Despite these
accomplishments, the complexity of these models
calls for a greater need to interpret their compu-
tations. Interpretability of this kind would be de-
sirable in numerous settings, e.g. some models
are employed in safety and privacy critical appli-
cations (Deza et al., 2021), where it is important
to understand whether these models are making
the correct predictions for the right reasons (McCoy
et al., 2019).

An increased focus on model interpretability has
given way to several insightful works (Belinkov et al.,
2020; Madsen et al., 2021), exploring several an-
gles including examining model robustness through
the use of perturbations (e.g. adversarial attacks)
(Song et al., 2021), and generating natural lan-
guage explanations and evaluating their faithful-
ness (Jacovi and Goldberg, 2020). The latter is the
focus of this position paper. Explanations extracted
for deep neural models’ predictions take a variety
of forms. Earlier work employed explanations in
the form of attention heat-maps and highlighted
tokens (Li et al., 2016). More recent work focuses
on generating richer explanations, e.g. in graphical
form (Thayaparan et al., 2021; Saha et al., 2021;
Lampinen et al., 2022b), alongside techniques, sim-
ilar to work in text generation and summarization,
to obtain model faithful or label-consistent explana-
tions (Kumar and Talukdar, 2020; Chrysostomou
and Aletras, 2021).

Here, we take the view that explanations are best
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Figure 1: Abstract illustrations of the three classes
of explanations explored in this paper (where the
pi are propositions and the aj are arguments).

understood as rationales for predictions, where
these rationales are expressed in natural language,
and typically extracted from the input text(s). The
idea of rationalizing texts as explanations is dis-
cussed by (Lei et al., 2016) who deem rationales
parts of the input text that are the most relevant
for the predictions. This technique is similar to the
processes humans undertake when delivering ex-
planations to each other. We take the view that,
depending on context and human preferences, ra-
tionales should be in one of three different formats,
as illustrated in Figure 1.1 These have already
been proposed individually in some of the literature.
For example Atanasova et al. (2020b) construct
free-form explanations in the form of summaries;
deductive explanations are employed by Krishna
et al. (2022); and contrastive explanations which
can be modeled as argumentative frameworks are
employed by Derczynski et al. (2017); Gorrell et al.
(2019); Schuster et al. (2021). We systematize

1Here, and in the remainder of this paper, illustrations
are constructed by hand for space reasons, unless a
source is explicitly given.
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this line of work, by providing a paradigm in which
we formally define three explanation formats, state
their properties, and devise metrics for evaluating
explanations of each format.

We focus on per-prediction rationalizing expla-
nations, which are specific to and offer reasons
for individual predictions. We ground our analy-
sis and paradigm on automated fact verification,
for two main reasons. First, evidence-based au-
tomated fact verification is a knowledge-intensive
task, thus it is important to provide explanations for
predictions providing a summary of this evidence
(and counter-evidence documents, if any). Sec-
ond, the nature of misinformation claims is often
polarizing, emotive, and hyper-partisan (Potthast
et al., 2018), and thus explanations that are ra-
tionalizing can aid in gaining the end user’s trust
in the system delivering the predictions. Ratio-
nales may amount to free text (e.g. as in (Cam-
buru et al., 2018)), or structured descriptions (e.g.
as in (Tafjord et al., 2021)), possibly with an ar-
gumentative flavor (e.g. as in Kotonya and Toni
(2019), Schuster et al. (2021), Chen et al. (2021),
and Dougrez-Lewis et al. (2022)), present explana-
tions as debates including competing (and possibly
contrasting) arguments.

Concretely, we make the following contributions.

• First, we offer formal definitions of terms fre-
quently employed in the literature on explana-
tions for neural NLP. We present a paradigm
for conceptualizing rationale-based explana-
tions, expanding on (Wiegreffe and Marasovic,
2021), and viewing explanations by degree of
structure (see Figure 1).

• Second, we argue the case for concrete met-
rics for evaluating such explanations based
on properties. To this end, we propose and
define several desirable properties for evalu-
ating free-form, deductive, and argumentative
explanations. We then offer means for employ-
ing said properties for evaluation in empirical
settings.

Note that, while we restrict attention to (the evalua-
tion of) explanations for predictions for the task of
automated fact verification, the formalism, proper-
ties and metrics that we introduce can in principle
be employed for evaluating explanations irrespec-
tive of the underlying task.

2. Related Work

The need for an explanation of NLP prediction tools
is well established (Doshi-Velez and Kim, 2017;
Ribeiro et al., 2018; Gohel et al., 2021) and rational-
izations, as explanations are advocated by several
(Rajani et al., 2019; DeYoung et al., 2020). In the

context of automated fact verification, several be-
spoke forms of explanations have been proposed
(see (Kotonya and Toni, 2020a) for an overview),
including rationalizations as explanations (Rana
et al., 2022; Si et al., 2023). Despite the many
advances in rationalizing explainable NLP, we still
observe the following shortcomings in the existing
literature.

First, there are no agreed-upon definitions of
what constitutes an explanation for an NLP predic-
tion or the preferred methods for generating expla-
nations. Many approaches are taken when charac-
terizing and generating rationales for explanations.
For example, DeYoung et al. (2020) describes ra-
tionales as snippets that support the outputs of a
model. Wadden et al. (2020) consider rationales
to be a minimal collection of sentences the sum
of which implies the veracity of a claim. Schuster
et al. (2021) extend this idea to include both sup-
porting and contrastive evidence, i.e., rationales
can favor one verdict or support an alternative ver-
dict. Ross et al. (2021) explore explanations as
edits, contrastive explanations in this case amount
to the edits to the inputs which an alternative out-
put. Contrastive explanations are closely related to
counterfactual explanations (Guidotti, 2022).

Second, there is considerable work on identify-
ing and evaluating properties of explanations in
NLP (Jacovi and Goldberg, 2020; Atanasova et al.,
2023) but the focus of existing works is not on the
evaluation of rationalizing explanations and priori-
tize properties can be interpreted as user require-
ments and are related to the relationship between
the explanation and model prediction, e.g. faithful-
ness (Jacovi and Goldberg, 2020; Atanasova et al.,
2023), robustness (Datta et al., 2021) and suffi-
ciency (Chrysostomou and Aletras, 2022). Instead,
the focus of our work is on properties related to
explanation form, i.e. what new properties emerge
as we enrich the structure of an explanation? As
there has been keen interest in the evaluation of
deep NLP models (Ribeiro et al., 2020), it would
be valuable for this to extend to the evaluation of
rationalizing explanations.

Third, there has been little effort to define and
formalize a rigorous set of desirable criteria spe-
cific to rationalizing explanations. Some recent
examples exist (Nauta et al., 2023), but they do
not focus on rationale-based explanations for fact-
checking as we do and take a high-level approach
to discuss properties, whereas we offer concrete
definitions. An example of some effort in this direc-
tion for a free-form explanation for fact-checking
is given in (Kotonya and Toni, 2020b). Atanasova
et al. (2020a) perform a diagnostic study of ex-
plainability for text classification concerning several
properties. However, their focus is not specifically
on rationalizing explanations; also they do not con-
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sider explainability in the automated fact verification
context. This paper aims to outline a direction for
addressing these issues.

3. Definitions

We define three classes of NLP (rationale-based)
explanations, as abstractions of explanations found
in the literature. The three classes amount to free-
form explanations (§ 3.1); deductive explanations
(§ 3.2), e.g. chains of facts as in Yang et al. (2018);
and argumentative explanations (§ 3.3), e.g. pro-
viding reasons for supporting or refuting a claim as
in Wadden et al. (2020) and Schuster et al. (2021).
We assume that the end users of our proposed
framework are humans, and this motivates us to
consider explanation formats and properties that
align closely with human explanations, following
established views in Explainable AI (XAI), most
notably by Miller (2019, 2021).

3.1. Free-form Explanations
Free-form explanations are the most common ex-
planatory outputs in the rationale-based landscape
and reflect a large part of earlier literature on
explaining deep neural models (Wiegreffe and
Marasovic, 2021). We define them abstractly be-
low, using a generic notion of proposition. Note
that, since we want to provide as general guidance
as possible to designers of explanations, we do not
place any stipulations on the nature of propositions
but, in practice, the decision of what to admit as
propositions needs to be taken before free-form
explanations are drawn from models. Concretely,
propositions could amount, for example, to words
or phrases (e.g. occurring in the input text being
explained), model predictions (e.g. that the model
predicts that the input is true), and tokens under-
stood by the underlying models.
Definition 1 A free-form explanation amounts to
a finite, non-empty sequence of propositions. A
free-form explanation for a model’s prediction,
given an input, is a free-form explanation that in-
cludes, among its propositions, some elements of
the input and the prediction itself. We use the no-
tation P ⇝f [m(X) = ŷ] to indicate that P is a
free-form explanation for prediction ŷ by model m,
given input X.

The inclusion of the prediction in a free-form ex-
planation relates to “relevance” thereof to the pre-
diction. This prediction is often implicit, as in the
example presented in Table 1.

Note that we do not enforce that P is restricted to
elements in the input X and indeed, in general, it
could also include elements not in X, as in the illus-
tration in Table 1. Free-form explanations may take
several concrete forms in practice. Wiegreffe and

A popular Facebook post about the life and
death of British mathematician Alan Turing is
truthful.
Verdict: Mostly True
Explanation:
The popular Facebook post got most of the
facts right (p1). However, there’s no evidence
that Turing inspired the design of the Apple
computer company’s logo (p2). Also, Turing’s
death in 1954 deserves further examination
than what was provided in the post, which we
included below (p3).

Table 1: Example of free-form explanation, match-
ing the abstract illustration in Figure 1(a). Here, the
claim, prediction (Verdict (label)) and explanation
(except for the pi, which are our addition) are
taken from the claim verification platform Snopes
https://www.snopes.com/fact-check/
alan-turing-facebook-post/.

Marasovic (2021) distinguish between highlights,
e.g. token-wise saliency maps, and free-form text.
Neural attention is used to create saliency maps
(Li et al., 2016). Instead, when free-form natural
language explanations are used, a sequence-to-
sequence model is typically employed to generate
a text that serves as the rationale for the predictions.
In this setting, Camburu et al. (2018) explore two
paradigms: one which jointly generates explanation
and prediction, and another which first generates
the explanation and then the prediction. As a fur-
ther example, Kumar and Talukdar (2020) looks to
generate label-specific explanations for each pos-
sible label prediction. Furthermore, Kotonya and
Toni (2020b)’s explanations as summaries could
be seen as a form of free-form explanation. Most
explanations of this type are self-generated, i.e. the
model is expected to both predict outputs and ex-
plain its reasoning, e.g. by way of a prompt-based
model (Narang et al., 2020; Marasović et al., 2021).

However, there is an ongoing debate regarding
whether explanations of this form are sufficient (Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019;
Pruthi et al., 2020), to which we contribute by char-
acterizing other forms, in § 3.2-3.3 below.

3.2. Deductive Explanations
Like free-form explanations, deductive explanations
also consist of propositions, but these propositions
are “connected” by a (binary) relation. Again, since
we aim to provide as general guidance as possible
to designers of explanations, we do not place any
stipulations on the nature of R and keep it abstract,
but, in practice, the decision of what to admit as
relation needs to be taken before deductive expla-

https://www.snopes.com/fact-check/alan-turing-facebook-post/
https://www.snopes.com/fact-check/alan-turing-facebook-post/
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nations are drawn from models. Concretely, for
example, this relation could be support between
propositions, or relevance between propositions, or
a proposition being in relation with another could
amount to the former being a reason for the latter or
for the two to have something in common. Deduc-
tive explanations also have strong parallels with the
reasoning obtained through chain-of-thought (Wei
et al., 2022a), tree-of-thought (Yao et al., 2023),
and other similar graph topological large language
model prompting techniques.
Definition 2 A deductive explanation amounts
to a pair composed of a finite, non-empty sequence
of propositions and a binary relation over the propo-
sitions. A deductive explanation for a model pre-
diction, given an input, is a deductive explana-
tion that includes, among the pair described above
its components, some elements of the input as
well as the prediction itself. We use the notation
⟨P,R⟩ ⇝d [m(X) = ŷ] to indicate that ⟨P,R⟩ is a
deductive explanation for prediction ŷ by model m,
given input X.

p3: A daffodil plant can live for more than two
years.
Verdict: Verified
Explanation ⟨P,R⟩, where:
P = {p1, p2, p3}, for:
p1: Daffodil is the common name for plants of
the narcissus genus, which are perennial.
p2: A perennial plant has a minimum life span
of two years.
R = {(p1, p2), (p2, p3)}.

Table 2: Example of deductive explanation, match-
ing the abstract illustration in Figure 1(b).

The example in Table 2 gives an illustration of
deductive explanation: here and later, we represent
R as a set of pairs, so, for example, (p1, p2) ∈ R
indicates that p1 and p2 are related by R. Here, R
may be seen as a logical reasoning chain or as
a linking of propositions by common entities. In
general, several other possibilities could be consid-
ered for identifying R, e.g. chronological ordering
of evidence.

As in the case of free-form explanations, we en-
force “relevance”, ensuring the prediction is in P
(but, again, we may have that the prediction is im-
plicit, as in Table 2).

Also, we may impose a direction in R or not, if
we want to capture bidirectionality as in the case of
R representing that propositions have something in
common. Furthermore, a compound layered deduc-
tive explanation could be acquired by considering
multiple semantics for R: we leave this as future
work.

A clear form of deductive explanations in the
literature is chains of connected facts (Inoue et al.,
2020; Tafjord et al., 2021). The example we present
in Table 2 amounts to a chain of facts because
there is a sequence of propositions p1 → p2 → p3
that leads from the proposition p1 to the claim (p3).
Propositions p1 and p2 provide evidence for which
the logical conclusion is p3, thus this chain of facts
justifies the claim p3. Chains of facts are analogous
to chain-of-thought prompting (Wei et al., 2022b;
Lampinen et al., 2022a). In our view, the reasoning
output produced by the chain-of-thought process
amounts to a deductive explanation.

3.3. Argumentative Explanations
We now examine explanations that provide justifi-
cations for model predictions using arguments, as
opposed to simple propositions. Intuitively, an argu-
ment consists of a conclusion that is supported by
premises. In particular, we can choose premises
and conclusions of arguments to be propositions,
understood broadly as in the definitions of free-form
and deductive explanations.

Since the kinds of arguments used in argumenta-
tive explanations are expressed in natural language,
we do not place any stipulations on the logical con-
nection between premises and the conclusion of
an argument. In particular, arguments could be
enthymemes (Razuvayevskaya and Teufel, 2017)
with partially specified or even empty premises.

Arguments are the building blocks of debates.
For this work, in the spirit of (Dung, 1995; Atkin-
son et al., 2017), we represent debates as argu-
mentation frameworks, modeling the interactions
between arguments as relations. Specifically, we
focus on bipolar argumentation frameworks (Cayrol
and Lagasquie-Schiex, 2005), where an argument
can be attacked or supported by arguments, thus
modeling both conflict and agreement (respectively)
between arguments. In the spirit of (Cayrol and
Lagasquie-Schiex, 2005), we leave the definition of
what conflict or agreement may mean completely
unspecified, assuming instead that they are cap-
tured by abstract relations. We will return to them
later in Definition 4.

Definition 3 An argumentative explanation is
given by a 3-tuple which amounts to a finite, non-
empty set of arguments, a binary attack relation
over the set of arguments and a binary support re-
lation over the set of arguments. An argumentative
explanation for a model prediction, given an in-
put, is an argumentative explanation that includes,
among its arguments, attack and support relations,
some elements of the input as well as the predic-
tion itself. We use the notation ⟨A,RSup,RAtt⟩⇝a

[m(X) = ŷ] to indicate that ⟨A,RSup,RAtt⟩ is a an
argumentative explanation for prediction ŷ by model
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m, given input X.
Definition 3 could be realized so that at least

one argument exists that admits as its conclusion
the output prediction ŷ and that some arguments
need to admit propositions in the input among their
premises. If there is just one argument in the ar-
gumentative explanation then these restrictions im-
pose that the argument ‘connects’ the input and the
prediction, i.e. there is a way to reason from the
inputs which forms a rationale for the prediction.

Definition 3 leaves the attack/support relations
unspecified. These could be defined in several
ways, including as follows, making use of generic
notions of contradiction and implication, as in tex-
tual entailment (Dagan et al., 2005).
Definition 4 Let ai, aj ∈ A where A is a set of
arguments. Then:

• aj attacks ai (by undercutting) if the con-
clusion of aj is in contradiction with some
premise(s) in ai;

• aj attacks ai (by rebutting) if the conclusion
of aj is in contradiction with the conclusion of
ai;

• aj supports ai (by providing reasons) if the
conclusion of aj implies some premise(s) of
ai;

• aj supports ai (by accrual) if the conclusion
of aj implies the conclusion of ai.

Note that this definition borrows some concepts
from the literature on argumentation frameworks,
specifically, the notion of accrual (Prakken, 2005),
undercutting (Bex et al., 2003), and rebuttal (Kowal-
ski and Toni, 1996). Note also that typically attack
by rebutting and support by accrual will be sym-
metric (i.e. if aj attacks by rebuttal or supports by
accrual ai, then ai does so towards aj). For an illus-
tration of argumentative explanations and notions
of attack/support, consider Table 3.

Here, arguments A = {a1, a2, a3}, and several
argumentative explanations ⟨A,RSup,RAtt⟩ are pos-
sible, including where:

1. RSup = {(a3, a2)} and RAtt = ∅; here, argu-
ment a3 is reinforcing argument a2, we have
adopted a view of support as providing a ratio-
nale to justify the conclusion of an argument;
there are no attacking arguments in this par-
ticular explanation;

2. RSup = {(a3, a2), (a1, a2), (a2, a1)} and (again)
RAtt = ∅; here, arguments a1 and a2 corrobo-
rate one another (by accrual) in support of the
output of the classifier. An abstract depiction
of this argumentative explanation is shown in
Figure 1(c), with edges representing support.

Consider the following claim for fact-checking:
The King of the United States of America lives
in the White House.

Also, consider the following arguments in the
context of some argumentative explanation for
prediction Refuted in verdict to the claim:

a1: the King of the USA does not live in the
White House (ŷ) because the USA has no king,
as it is a republic (p1).
a2: The White House is the official residence of
the USA President (p2), thus it can not be the
official residence of a king or any other head
of state (ŷ).
a3: The head of state of the USA is the Pres-
ident (c3) because the title “president” is typi-
cally given to the head of a republic (p3).

These arguments can also be repre-
sented symbolically as pairs (consisting
of premises and claims): a1 = ({p1}, ŷ), a2 =
({p2}, ŷ), a3 = ({p3}, c3).

Table 3: Concrete example of arguments in an
argumentative explanation.

Note that in this example the explanation includes
an argument (a3) which is neither for the prediction
nor for any alternative predictions. In some settings,
argumentative explanations could be restricted to
make sure that the conclusion of each argument in
A must imply a prediction from the set of possible
outputs for the model. For these types of argumen-
tative explanations, which we may call flat if there
are arguments for different outcomes than com-
puted by the classifier, the attack relation would be
non-empty and include some attacks by a rebuttal.
This may be the case, for example, in (Wadden
et al., 2020; Schuster et al., 2021). Whereas it is
clear why we may want to include support, some
considerations about the inclusion of attack in ar-
gumentative explanations are in order. We include
an attack to reflect two scenarios:

1. First, the possibility of conflicting evidence the
model found in the input, giving reasons for
undercutting or rebutting other reasons;

2. Second, to represent the fact/foil relationship
(Barnes, 1994), given that attacks can distin-
guish between inputs which contribute to the
prediction from distractor inputs that do not;
here, attacks are of the rebuttal variety (as
they point to contradictory predictions).

In other words, attacks may be needed to explain
a low-confidence prediction from a model.
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4. Properties

We define a number of properties for our forms of
rationalizing explanations. Our list of properties is
not exhaustive, and we see each of the properties
as a useful criterion for assessing the validity of
explanations in rationalizing a model’s prediction
in NLP. We consider separately properties tailored
to free-form, structured and argumentative expla-
nations (§ 4.1, 4.2 and 4.3, respectively).

4.1. Free-Form Properties
We adapt the properties for free-form explanations
introduced by Kotonya and Toni (2020b) for evalu-
ating explainable summaries (a form of free-form
explanation) for automated fact verification. Here,
we propose a single property for any free-form ex-
planations: coherence. We define the notion of
coherence in terms of a notion of logical contra-
diction (which could amount to the implication of
negation), in line with the definitions in (Kotonya
and Toni, 2020b).
Definition 5 A free-form explanation P satisfies
coherence if there exists no contradictory subset
of propositions in P.

Thus, coherence is a measure of the cohesive-
ness of propositions in a free-form explanation. For
coherence to hold, in particular, any two propo-
sitions in an explanation must not contradict one
another, i.e. there is no pairwise disagreement be-
tween propositions which make up the explanation.
More generally, our definition excludes contradic-
tions involving any number of propositions making
up the explanation.

4.2. Deductive Properties
The coherence property for free-form explanations
is still applicable to deductive explanations ⟨P,R⟩
on the set of propositions P . In addition, we identify
four bespoke properties for deductive explanations:
non-circularity, (weak and strong) relevance, and
non-redundancy, defined below.
Definition 6 A deductive explanation ⟨P,R⟩ is
non-circular if there does not exist a propo-
sition pi in P and a set of propositions P ′

from P, P ′ = {p′1, . . . , p′k} ⊆ P, such that
{(p′1, p′2), . . . , (p′k−1, p

′
k)}⊆R and p′1 = p′k = pi.

Thus, non-circularity amounts to acyclicity of the
R component of deductive explanations (when see-
ing them as directed graphs with propositions as
nodes and elements of the relation as edges, as in
Figure 1). It seeks to avoid circular explanations,
which are not sound in a rhetorical sense.
Definition 7 A deductive explanation ⟨P,R⟩ such
that ⟨P,R⟩⇝d [m(X) = ŷ] is strongly relevant if
all propositions pi in P are such that (pi, ŷ) is in R.

Thus, all propositions in a strongly relevant de-
ductive explanation are directly connected to the
model’s prediction.

Definition 8 A deductive explanation ⟨P,R⟩ such
that ⟨P,R⟩⇝d [m(X) = ŷ] is weakly relevant if,
for all propositions pi in P, there exists a set of
propositions P ′ in P, P ′ = {p′1, . . . , p′k} ⊆ P, such
that {(p′1, p′2), . . . , (p′k−1, p

′
k)} ⊆ R, p′1 = pi and

p′k = ŷ.

Namely, for a deductive explanation to be weakly
relevant, each proposition needs to be connected
by some chain (path) to the prediction. Thus, in
weakly relevant deductive explanations there are
no unconnected propositions. Note that we could
easily define additional versions of relevance, e.g.
to enforce links to input propositions (we refrain
from doing so for lack of space).

Non-redundancy, the last property we define for
deductive explanations, requires that no superflu-
ous propositions are contained in an explanation.

Definition 9 A deductive explanation ⟨P,R⟩ such
that ⟨P,R⟩ ⇝d [m(X) = ŷ] is non-redundant iff
for all propositions pi ∈ P \ {ŷ}, for P ′ = P \ {pi}
and R′ = R ∩ (P ′ × P), the pair ⟨P ′,R′⟩ is not
a deductive explanation for ŷ by m, given X, i.e.
⟨P ′,R′⟩ ̸|= m(X) → ŷ.

In other words, no proposition can be eliminated
from a non-redundant explanation while still ra-
tionalizing the prediction for which it is intended.
Note that, when eliminating a proposition from a
deductive explanation, we also delete from the
relation component all connections to and from
deleted propositions. Note also that, in practice, by
our definition of deductive explanation, ⟨P ′,R′⟩ ̸|=
m(X) → ŷ means that either ŷ is not in P ′ or P ′

contains no elements of the input X.

4.3. Argumentative Properties

The coherence property for free-form explanations,
presented in § 4.1, could be enforced on the
premises of arguments in argumentative explana-
tions (e.g. by seeing arguments with premises P
as free-form explanations P). Furthermore, we
could enforce properties similar in spirit to those for
deductive explanations, presented in § 4.2, to in-
dividual arguments in argumentative explanations,
(e.g. by seeing arguments with premises P and
conclusion c as deductive explanation ⟨P, {(p, c) |
p ∈ P}⟩). Here, we focus instead on additional
properties of argumentative explanations. Specifi-
cally, we identify a number of properties regarding
relations between arguments.

First, we can impose natural conditions on the
attack and support relations, i.e. that there are no
cycles therein:
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a1

a2 a4

a3
(a) All supports.

a1

a2 a4

a3
(b) All attacks.

a1

a2 a4

a3
(c) Mixed supports
and attacks.

Figure 2: Examples of dialectical circularity for
three argumentative explanations. Attacks are
shown in orange and supports are shown in green.
Argument a4 with conclusion ŷ is purple.

Definition 10 An argumentative explana-
tion ⟨A,RSup,RAtt⟩ is dialectically non-
circular if there is no argument ai in
A and no set of arguments A′ from A,
A′ = {a′1, . . . , a′k} ⊆ A, such that a′1 = a′k = ai,
and {(a′1, a′2), . . . , (a′k−1, a

′
k)}⊆(RSup ∪RAtt).

Violation of dialectical non-circularity would en-
tail a cycle of supports and/or attacks. The spe-
cific case of violation of dialectical non-circularity,
when some argument in the explanation is self-
supporting, may amount to a situation of an argu-
ment that is not grounded in evidence. The specific
case of violation of dialectical non-circularity by a
cycle of supports (Figure 2(a)) may amount to an
unsound debate in a rhetorical sense. The specific
case of violation of dialectical non-circularity when
some argument in the explanation is self-attacking
may amount to a paradoxical situation of the argu-
ment being self-contradictory. The specific case of
violation of dialectical non-circularity by a cycle of at-
tacks (Figure 2(b)) may also amount to an unsound
debate in a rhetorical sense. Mixed cases, as in
Figure 2(c) are also challenging from a rhetorical
perspective.

In addition, we can demand that argumentative
explanations satisfy other dialectical properties,
in the spirit of various argumentation frameworks
from symbolic AI, notably abstract argumentation
(Dung, 1995), bipolar argumentation (Cayrol and
Lagasquie-Schiex, 2005) and quantified bipolar ar-
gumentation (Baroni et al., 2019). These frame-
works rely upon notions of acceptability of sets of
arguments (Dung, 1995) or dialectical strength for
arguments (Baroni et al., 2019). In our setting, prop-
erties inspired by these notions can be used to point
towards the explanations’ credibility in the context
of the confidence of the underlying model in the

prediction. Intuitively, a credible (or strong) argu-
ment is supported by other (credible) argument(s).
Conversely, a less credible (weakened) argument
is attacked by (credible) arguments. In this spirit,
we deem an argumentative explanation dialectically
faithful if its credibility reflects the prediction confi-
dence. We formalize this property using a generic
notion of dialectical strength for arguments (Baroni
et al., 2019):

Definition 11 An argumentative explanation
⟨A,RSup,RAtt⟩ such that ⟨A,RSup,RAtt⟩ ⇝a

[m(X) = ŷ] is dialectically faithful if

• whenever m gives ŷ with top confidence, RAtt
is such that there are no arguments in A at-
tacking by rebutting any argument for ŷ;

• whenever m gives ŷ with high confidence,
the dialectical strength of the arguments in A
with conclusion ŷ is higher than the dialectical
strength of the arguments attacking them (as
per RAtt);

• whenever m gives ŷ with low confidence, A
must either include only dialectically weak ar-
guments with conclusion ŷ or include some
arguments attacking by rebutting some argu-
ment for ŷ with higher dialectical strength than
arguments in A with conclusion ŷ, if any.

Intuitively, the argument for a prediction with high
confidence should be supported by strong argu-
ments (as in the case of the argumentative expla-
nations outlined when discussing Table 3). Further-
more, consider the argumentative explanations in
Figure 3. Here, the argument a4 for the prediction
with top confidence (left-most argumentative ex-
planation) is not attacked, thus the explanation is
dialectically faithful. Note that rebuttals imply con-
tradiction between arguments’ conclusions and are
thus singled out in our definition of dialectical faith-
fulness. Also, in Figure 3, the argument a4 for the
prediction with high confidence (middle argumenta-
tive explanation), being again unattacked, trivially
has a higher dialectical strength than its attackers,
so, again, the explanation is dialectically faithful.
Finally, the argument a4 for the prediction with low
confidence (right-most argumentative explanation)
is supported by argument a2 which is weakened
by the attack from a3; the latter also weakens the
support from a1 to a2; thus, overall a2 is a weak
argument and the argumentative explanation can
be deemed dialectically faithful.

In the special case when dialectical strength is
“binary” (in that it sanctions an argument as win-
ning or losing, e.g. as in Dung (1995)), we can
refine dialectical faithfulness to define a notion of
acceptability as follows:
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Figure 3: An illustration of argumentative explanations for top, high, and low confidence (binary) predictions.
Attacks are shown in orange and supports are shown in green. Argument a4 with conclusion ŷ is purple.

Definition 12 An argumentative explanation
⟨A,RSup,RAtt⟩ such that ⟨A,RSup,RAtt⟩ ⇝a

[m(X) = ŷ] is acceptable if

• whenever m gives ŷ with top or high confi-
dence, there exists no A′ ⊆ A containing all
arguments in A with conclusion ŷ such that
for all arguments ai ∈ A′, if aj ∈ A attacks ai
(i.e. (aj , ai) ∈ RAtt), then there exists ak ∈ A′

attacking aj (i.e. (ak, aj) ∈ RAtt); in simpler
terms, A′ defends itself against all attacking
arguments;

• whenever m gives ŷ with bottom or low con-
fidence, for A′ ⊆ A containing all arguments
in A with conclusion ŷ, there exists some ar-
guments ai ∈ A′ and aj ∈ A \ A′ such that aj
attacks ai (i.e. (aj , ai) ∈ RAtt) but there ex-
ists no argument ak ∈ A′ such that ak attacks
aj (i.e. (ak, aj) ∈ RAtt); in simpler terms, A′

cannot defend itself against all attacking argu-
ments.

The explanation presented in Figure 1(c) with the
edges representing support satisfies acceptability
(as there are no attacks). The left-most and middle
explanations in Figure 3 are acceptable as there is
no argument attacking a4, the only argument with
conclusion ŷ. Instead, the right-most explanation
in Figure 3 is not acceptable, as there is no argu-
ment attacking a4 in the explanation. Note that the
definition of acceptable could be extended to allow
for chains of support to provide a defense, inspired
by (Cayrol and Lagasquie-Schiex, 2005).

5. Evaluation Metrics

We propose some metrics for evaluating empirically
rationalizing explanations for NLP models, drawn
from properties introduced in § 4.2 We focus only

2Implementations of the evaluation metrics discussed
in this section can be found here: https://github.
com/neemakot/Evaluating-Explanations

on sample properties for lack of space, but metrics
for other properties are also possible.

5.1. Free-Form Evaluation

We devise a metric for free-form explanation, Coh,
relating to the property of coherence defined in
§ 4.1. For a free-form explanation E = P such that
P⇝f m(X) → ŷ, let N = |P| and N ′ be the number
of subsets of P. Then, violation of coherence can
be measured by Coh(E) as shown in Eq. 1, where
contr(x, x′) = 1 if x is in contradiction with x′, and
contr(x, x′) = 0 otherwise.

Coh(E)=
1

N ′

∑
P′⊆P

(¬contr(P ′, ŷ) · ¬contr(P ′,X)) (1)

5.2. Deductive Evaluation

We define the following metrics for deductive ex-
planations: weak relevance, strong relevance, and
redundancy. We employ the properties presented
in § 4.2 for deductive explanations to devise these
metrics. We start with the metric RelWEAK which
is based on the weak relevance property. Let
E = ⟨P,R⟩ be a deductive explanation such that
⟨P,R⟩⇝dm(X)→ ŷ, with N = |P|. Then satisfac-
tion of weak relevance can be measured by:

RelWEAK(E) =
1

N

∑
pi∈P

path(pi, ŷ) (2)

where path(pi, ŷ) holds if there exists a path in R
(seen as a graph) which connects pi to ŷ. Note that
RelWEAK = 0 (RelWEAK = 1) means that none (all,
respectively) of the propositions in the explanation
are relevant to the prediction.

For the related metric of strong relevance, we
specify that there must be a relation, i.e. a direct
connection between each proposition in the expla-
nation and the prediction ŷ. This metric is defined
as follows:

https://github.com/neemakot/Evaluating-Explanations
https://github.com/neemakot/Evaluating-Explanations
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RelSTRONG(E) =
1

N

∑
pi∈P

is_relation(pi, ŷ) (3)

If all propositions are directly connected to ŷ,
the value for this metric is 1, whereas if none of
the propositions is directly connected to ŷ, then
RelSTRONG = 0.

The final metric that we provide for the evaluation
of deductive explanations computes a score for the
non-redundancy of an explanation. We define a
non-redundant explanation in § 4.2 as one for which
all propositions have relevance to the explanation
in the context of the prediction. That is to say, if
one of the propositions is omitted, the explanation
would no longer be a sufficient justification for the
model’s prediction. The computation for the non-
redundancy-derived metric is thus:

Red(E) = 1− 1

N

∑
pi∈P

(pi ∈ X) · (pi ∈ GR) (4)

The non-redundancy metric checks that two con-
ditions have been met. First, we must ensure that
each proposition in the explanation is derived from
the inputs, and second, it must be the case that
there is some relation that connects each proposi-
tion to all others (either when the direction of edges
is considered or not), i.e. if viewing the deductive
explanation as a graph it should consist of a single
connected component GR. The best possible score
for redundancy is zero, indicating that the explana-
tion contains no redundant components. A score
greater than zero indicates at least one redundant
proposition, if not more, exists in the explanation.

5.3. Argumentative Evaluation
We define metrics corresponding to two argumen-
tative explanation properties: acceptability and di-
alectical non-circularity (see § 4.3). For simplicity,
we focus on argumentative explanations of a re-
stricted kind, namely corresponding to sets of trees
of depth two at most (where the root is of depth
zero). Let E = ⟨A,RSup,RAtt⟩ be an argumentative
explanation such that ⟨A,RSup,RAtt⟩⇝a m(X) →
ŷ, and let N = |A|. Then, the satisfaction of ac-
ceptability can be measured by

Acc(E) =
1

N

∑
ai=(P,ŷ)∈A

(
1

|Atts(ai)|
∑

(aj ,ai)∈RAtt

δ(aj))

(5)
where Atts(ai) = {aj | (aj , ai) ∈ RAtt and

δ(aj)) = 1 if there exists (ak, aj) ∈ RAtt, and
δ(aj) = 0 otherwise. If ŷ is predicted with top or
high confidence we expect Acc(E) = 1 for the
explanation to be acceptable. Instead, if ŷ is pre-
dicted with bottom or low confidence, we expect
Acc(E) ̸= 1.

The second metric which we devise for evalu-
ating argumentative explanations is related to the
property of dialectical non-circularity. We define
this metric as follows:

Cir(E) =
1

N

∑
a∈A

1

M

∑
A′∈RSup,RAtt

head(A′, a) · tail(A′, a)

(6)
Here, we check for each argument in the expla-

nation if there exists an attack or support relation
in the explanation such that the head and tail argu-
ments in the relation are the same arguments, i.e.
the argumentation framework is circular. For the
circularity measure, a favorable explanation would
have a low score, i.e. fewer circular arguments.

6. Conclusion

We have identified and defined three rationale-
derived explanation classes, drawing on illustra-
tions from the automated fact-checking task in NLP.
We also offered several desirable properties, both
generic and structure-specific, for these explana-
tions. Finally, we provided some quantitative mea-
sures for explanation evaluation.

We understand that devising a framework that
assumes that explanations modeled in the spirit of
human reasoning will have some limitations, e.g.
sociocultural differences in a population (one ex-
ample being generational differences) may mean
that an explanation that can be well understood
by one population may not be as well received by
another. In understanding this, our framework is
modular and customizable, meaning it is flexible
and can accommodate culturally and linguistically
dependent preferences for explanations.

We would be interested to see the application
of our metrics across a range of NLP tasks. Fur-
thermore, there is also scope for expanding these
metrics, either to account for further properties or
to account for explanation structure at a finer level
of granularity. Overall, we believe this work will
help guide further research in explainable NLP and
explanation evaluation.

7. Acknowledgments

We thank the anonymous reviewers for useful com-
ments. F. Toni was partially funded by the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 101020934), by J.P.
Morgan and the Royal Academy of Engineering
under the Research Chairs and Senior Research
Fellowships scheme, by the Royal Society, UK
(IEC\R2\ 222045 - International Exchanges 2022)
and by the UKRI INDICATE project.



16373

8. Ethics Statement

In this paper, we present a framework for the eval-
uation of rationalizing explanations in the context
of fact verification. We do not present empirical
results, and, for that reason, we do not believe
that serious ethical considerations arise from this
work. However, we believe that this work presents a
significant contribution towards improved AI ethics
because explanations, and in particular means for
assessing the quality of varied explanations, allow
for greater model transparency and accountability.
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