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Abstract
The increase in the availability of online videos has transformed the way we access information and knowledge.
A growing number of individuals now prefer instructional videos as they offer a series of step-by-step procedures
to accomplish particular tasks. Instructional videos from the medical domain may provide the best possible visual
answers to first aid, medical emergency, and medical education questions. This paper focuses on answering
health-related questions asked by health consumers by providing visual answers from medical videos. The scarcity
of large-scale datasets in the medical domain is a key challenge that hinders the development of applications that
can help the public with their health-related questions. To address this issue, we first proposed a pipelined approach
to create two large-scale datasets: HealthVidQA-CRF and HealthVidQA-Prompt. Leveraging the datasets, we
developed monomodal and multimodal approaches that can effectively provide visual answers from medical videos
to natural language questions. We conducted a comprehensive analysis of the results and outlined the findings,
focusing on the impact of the created datasets on model training and the significance of visual features in en-
hancing the performance of the monomodal and multi-modal approaches for medical visual answer localization task.

Keywords: Multimodal Learning, Video Localization, Medical Video Question Answering

1. Introduction

An effective multimodal system that can enhance
the ability to interact with the visual world, which
encompasses images and videos, using a natural
language query, has always been a coveted goal
in artificial intelligence (AI) applications. These
multimodal AI systems have the potential to rev-
olutionize the fields of education, healthcare, and
entertainment by enabling individuals to commu-
nicate with machines in a natural language that
emulates human conversation. The emergence of
large language-vision models and the availability
of language-vision datasets has greatly improved
the performance of many language-vision tasks,
such as visual captioning (You et al., 2016; Pan
et al., 2020; Anderson et al., 2018), visual ques-
tion answering (Lei et al., 2018; Khan et al., 2021;
Lei et al., 2020), and natural language video local-
ization (Hendricks et al., 2017; Chen et al., 2019).
Natural language video localization (NLVL) is one
such language-vision understanding task whose
goal is to semantically identify a temporal seg-
ment within an untrimmed video that is semanti-
cally aligned to a language query. Due to its ap-
plications in various downstream tasks, such as
video retrieval (Francis et al., 2017), relation de-
tection (Rodriguez-Opazo et al., 2021), and visual
question answering (Lei et al., 2018), there has

∗Work done during the Postback at NLM, NIH.

been a growing research interest in this direction.
However, much of the advancement in NLVL is
confined to open-domain, partially due to the avail-
ability of large-scale datasets. A specialized do-
main, such as the medical and healthcare domain,
where there is a multitude of applications of NLVL
task, remains unexplored.

Consider a health-related question, “how to
stretch the leg muscles to prevent arthritis?” (cf.
Fig. 1); the textual answer to this question may not
be appropriate to act upon for a consumer with lim-
ited medical understanding. In this case, a short
visual answer will be helpful for the consumer to
follow as it offers visual assistance in the form of
a step-by-step demonstration. In order to provide
visual answers to the consumer’s question, a mul-
timodal system should be capable of identifying
relevant videos and locating the appropriate seg-
ments from the videos, which can be considered
as the audio-visual answer. Providing audio-visual
answers from videos can cater to a wider audi-
ence, including those with reading difficulties or
language barriers. Motivated by this, in this work,
we focus on the task of medical visual answer local-
ization, with the goal of locating visual answers to
medical/healthcare-related questions. The small
size of the existing dataset (Gupta et al., 2023)
hinders the development of sophisticated neural-
based approaches, which leads to sub-optimal
performance on medical visual answer localiza-
tion task. To address these issues, we first pro-
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How to stretch the leg muscles to prevent arthritis?

Video span containing visual answer

2:22 3:16

Here, we are doing this stretching of the iliotibial band; this is
a structure that lies on the side of a  thigh region. You need to put
your leg on the therabnd or any belt that you are using and then keep
the knee straight to move the leg toward the internal direction; you
need to hold each position for 30 counts, and for each leg, you
can do three repetitions and don't forget to do this exercise for both
legs since almost whenever we have pain in one side of the neck, we
tend to put more pressure on the other side leading to more tightness
and stiffness on the other side, muscles as well. 

Subtitle of the video span containing visual answer

Figure 1: An example of a health-related question and its video answer from the video.

pose a pipelined approach to automatically cre-
ate large-scale datasets for the medical visual
answer localization task. Second, we propose
monomodal and multimodal approaches utilizing
the created datasets. The proposed approaches
achieve substantial performance improvement on
multiple evaluation metrics for the medical visual
answer localization task. We summarize the con-
tributions of this work as follows:

1. We proposed a three-stage pipelined ap-
proach to automatically generate the datasets
for the medical visual answer localization task.
The human evaluation confirms that the ap-
proaches used in the pipeline are effective in
generating high-quality datasets for the visual
answer localization task.

2. We created two large-scale datasets1,
HealthVidQA-CRF and HealthVidQA-Prompt,
for the task of medical visual answer lo-
calization. The former consists of 23, 345
question-answer-video triplets from 11, 683
medical videos, while the latter has 52, 711
triplets from 13, 990 medical videos.

3. We proposed an effective Cycle-Consistent
Answer Localization (CCAL) approach, which
outperforms the existing approaches on
benchmark datasets. Later, we integrated
the visual information from multiple visual en-
coders into the CCAL framework and per-
formed the experiments that showed that the
created HealthVidQA-CRF dataset can be
used to achieve better performances with mul-
timodal approaches.

4. We performed a detailed analysis of the re-
sults and highlighted the effects of the cre-
ated datasets in model training, as well as the
role of the visual features in improving the per-
formance and benchmarking of the created
datasets with monomodal and multimodal ap-
proaches.

2. Related Work

Natural Language Video Localization: re-
quires modeling the cross-modality interactions

1The created resources are publicly available on
https://bionlp.nlm.nih.gov/

between video and natural language to retrieve
relevant segments from the video. Hendricks
et al. (2017) proposed a Moment Context Network
(MCN) that learns a shared embedding for video
temporal context features and LSTM language
features. The proposed video temporal context
features integrate local and global video features
and temporal endpoint features, which indicate
when a moment occurs in a video. Later, they
proposed the Moment Localization with Latent
Context (MLLC) (Hendricks et al., 2018), which
models video context as a latent variable. Liu
et al. (2018b) develop a cross-modal retrieval
technique to retrieve moments from the video
responding to a given query. Other works also
exploit the temporal relationship to tackle NLVL
problems (Liu et al., 2018a; Zhang et al., 2019a;
Liu et al., 2018c). Zhang et al. (2020a) propose
span-based question answering to solve NLVL
task. They propose the VSLNet approach based
on a query-guided highlighting strategy to search
for the target moment within a highlighted re-
gion. Later, they extend VSLNet to VSLNet-L
(Zhang et al., 2021), which employs a multi-scale
split-and-concatenation approach.

Medical Visual Answer Localization: Gupta
et al. (2023), first introduced the task of med-
ical visual answer localization (MVAL) and cre-
ated the MedVidQA dataset having 3, 010 question-
answer-video triplets. Later, Gupta and Demner-
Fushman (2022) utilized this dataset and orga-
nized the shared task of retrieving the answer seg-
ments from the video against the health-related
question. The majority of the participants utilized
the pre-trained language models (Beltagy et al.,
2020; Zaheer et al., 2020; Choromanski et al.,
2020) to solve the MVAL task as a reading com-
prehension (Rajpurkar et al., 2016) problem. Li
et al. (2022b) attempt to solve the MVAL problem
by introducing the visual highlight prompts into the
pre-trained language model (PLM) for enhancing
the joint semantic representations of subtitles and
video frames. Li et al. (2023) introduce the Cross-
Modal Contrastive Global-Span (CCGS) method
for the video corpus visual answer localization task.

https://bionlp.nlm.nih.gov/
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As an alternative, this study focuses on introduc-
ing new large-scale medical visual answer local-
ization datasets and proposing approaches to ef-
fectively solve the MVAL problem. Specifically,
we proposed an automatic approach to construct
the video, question, and visual answer triplets by
effectively handling the multiple subtasks (select-
ing instructional videos, detecting visual segments,
and generating instructional questions) of the pro-
posed approach. Additionally, we also introduce
an intuitive mono-modal approach for localizing
the answer from the videos by utilizing the cy-
cle consistency loss, which is extended to a mul-
timodal approach as well, where we explored a
variety of visual features to represent the video
frames.

3. Generating MVAL Dataset

This section describes our methodology for auto-
matically creating a large medical instructional vi-
sual answer localization dataset.

3.1. Video-question-answer Triplets
This subsection deals with choosing the medi-
cal instructional videos and determining the visual
segments in videos that could serve as the vi-
sual answer to the medical or health-related ques-
tions. Furthermore, we describe our methodology
for generating medical instructional questions from
the subtitles of the videos.

3.1.1. Selecting Medical Instructional Videos

In the first step of generating video-question-
answer triplets, we aim to select the medical
videos that can be used in subsequent steps of
the dataset creation. We leverage the videos from
‘Personal Care and Style,’ ‘Health,’ and ‘Sports
and Fitness’ categories within the HowTo100M
(Miech et al., 2019) dataset. To be included in
a medical instructional visual answer localization
dataset, (1) a video should describe a health-
related topic, such as diseases, medical condi-
tions, symptoms, drugs, treatments, medical ex-
ams, and procedures, etc., (2) a video should
clearly demonstrate a step-by-step medical proce-
dure providing enough details to reproduce the pro-
cedure and achieve the desirable results. We ob-
served that the automatic video category labeled
in the HowTo100M dataset was not always accu-
rate. Moreover, some of the videos were also
not instructional in nature, which hindered the de-
velopment of the medical instructional visual an-
swer localization dataset. To address this issue,
we utilized the MedVidCL, a video classification
dataset from Gupta et al. (2023), which has a to-
tal of 4, 217 training videos annotated for ‘Medi-

cal Instructional,’ ‘Medical Non-instructional’ and
‘Non-Medical.’ We fine-tune the BigBirdBase (Za-
heer et al., 2020) model on the training set of the
MedVidCL dataset by extracting the video subti-
tles, which yield the F1-score of 94.28% on the test
set of MedVidCL. The fine-tuned video classifica-
tion model was used to label the subset (‘Personal
Care and Style,’ ‘Health,’ and ‘Sports and Fitness’
categories videos) of the HowTo100M videos into
medical instructional videos. This process yielded
15, 664 medical instructional videos that we used
in the subsequent steps of the dataset creation.

3.1.2. Detecting Visual Answer Segments

Having the videos obtained in the previous stage,
we consider a medical instructional video V with
raw subtitle/caption list CV = {c1, c2, . . . , cm} and
corresponding time-stamps TV = {t1, t2, . . . , tm}
of length m, where ci is the ith span of subtitle
having the time stamps ti. The issue with the
raw subtitles is that they are not segmented and
often overlap with the previous subtitles. To al-
leviate this issue, we concatenated the subtitle
list CV and formed a sequence of words WV =
{w1, w2, . . . , w|WV |}. In the next step, we hy-
pothesize that the subtitle describing a visual an-
swer in the video corresponds to a particular topic.
Towards this, we aim to obtain the topic-aware
segment from the WV , and utilize the DeepSeg-
ment 2 model to segment the WV into k topic-
aware segments SV = {s1, s2, . . . , sk}, next, we
align the time-stamps TV to the topic-aware seg-
ments and obtain the aligned time-stamps T̂V =
{t1, t2, . . . , tk}. With the topic-aware segments SV

and corresponding aligned time-stamps T̂V of the
video V , Our goal is to identify topics that describe
visual answers in the videos and subsequently di-
vide the input sequence into contiguous segments
representing distinct topics. We propose two ap-
proaches for detecting visual segments: (1) XLNet-
CRF Model, and (2) XLNet-Prompt Model, which
are described below:

XLNet-CRF Model: This approach utilizes the
pre-trained XLNet (Yang et al., 2019) model to
encode the segments and make the decision by
using the conditional random field (Lafferty et al.,
2001) based tagger to tag the boundaries of the
visual segments.
(1) Segment Encoding: This module takes the
segments SV = {s1, s2, . . . , sk} as input and pro-
cesses them, and returns the encoded represen-
tation of the segment. Particularly, we obtain the
hidden state representationHi of each segment si
of token length |si| using the last layer of XLNet

2https://github.com/notAI-tech/
deepsegment/tree/master

https://github.com/notAI-tech/deepsegment/tree/master
https://github.com/notAI-tech/deepsegment/tree/master
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model. Thereafter, we choose (using operation
Select (; last)) the hidden state representation of
the last token as the segment representation. For-
mally:
H1, . . . , Hk = XLNet(s1, . . . , sk), where Hi ∈ R|si|×d

h1, . . . , hk = Select([H1, . . . , Hk], last)
(1)

(2) Segment Sequence Processing: This step
aims to process the encoded segments in the form
of a sequence. However, the hidden state repre-
sentations {h}i=k

i=1 of the segments obtained in the
previous step do not hold the inherent notion of
the segment order. To tackle this, we first intro-
duce the positional information of the segments in
the form of positional embedding. Specifically, we
augmented the positional embedding pi into the
segment representation hi to obtain the position-
aware segment representation h∗i . Formally:

h∗
1, . . . , h

∗
k = (h1 + p1), . . . , (hk + pk), (2)

To process the segment representation {h∗}i=k
i=1 ,

we employed a Transformer-Encoder layer
(Devlin et al., 2019), which utilizes the attention
mechanism (Vaswani et al., 2017) to transform
segment hidden states into rich and context-aware
segment representations.
u1, . . . , uk = Transformer-Encoder(h∗

1, . . . , h
∗
k)

(3)

Given the context-aware segment representations
U = {u}i=k

i=1 ∈ Rk×d, we use a feed-forward net-
work to project each segment representation ui
into c-dimensional (exhibits the B-Seg, I-Seg and
O tags) score l as follows:

l = WU + b, where W ∈ Rd×c,b ∈ Rc (4)

(3) CRF-based Segment Tagging: The output
score l obtained in the sequence processing step
does not account for the dependencies across out-
put labels. Segment labeling is one such task in
which the label assigned to the preceding segment
plays a crucial role in guiding the current segment
to make accurate predictions. To achieve this, we
utilized the CRF, which models the tagging deci-
sions jointly. More formally, given the segments
SV and prediction y = {y1, y2, . . . , yk}, the score S
is computed as follows:

S(SV , y) =

k∑
i=2

M [yi−1][yi] +

k∑
i=1

li[yi] (5)

where M is the matrix that contains the transition
score between two subsequent labels. To train the
network, the model maximizes the log probability
of the correct segment sequence. In the testing
phase, a sequence of predicted labels y∗ that max-
imize the score S is chosen as the final segment
label sequence.

XLNet-Prompt Model: Inspired by the success
of prompting (Liu et al., 2023) that aims to bridge
the gap between pre-training and fine-tuning of the
language model, we also explore prompt-based
fine-tuning to tag the boundaries of the visual seg-
ments.
(1) Prompt Tuning: For the task of detecting vi-
sual segments, we develop prompts, which are a
set of template T (; ) and label words V. For each
segment si ∈ SV , we apply a prompt template and
convert si into prompt input spi for XLNet model.
The prompt template usually has a [MASK] token,
which needs to be filled by a label word v ∈ V .
We fed the prompt input spi into the XLNet model
and computed the hidden state representation of
h[MASK]
i . Thereafter, we compute the probability

that label v can fill the [MASK] token. Formally,

sp1, . . . , s
p
k = T (s1, . . . , sk),

H1, . . . , Hk = XLNet(sp1, . . . , s
p
k)

h[MASK]
1 , . . . , h[MASK]

k = Select([H1, . . . , Hk],[MASK])

p([MASK] = v|spi ) =
exp(hv

i .h
[MASK]
i )∑

v̂∈V exp(hv̂
i .h

[MASK]
i )

, ∀v ∈ V

(6)

Finally, we map the segment labels ‘B-Seg,’ ‘I-Seg,’
and ‘O’ to the label words V to obtain the segment
label.
(2) Template and Label Words: We performed a
series of experiments with multiple templates for
the visual segment detection task. With the su-
pervised data, the pre-trained language model can
be fine-tuned to maximize the log-likelihood of the
correct segment labels. The label words used for
the label to token mapping are as follows: ‘B-Seg’:
‘first,’ ‘I-Seg’: ‘next,’ ‘O’: ‘other.’

Training and Evaluation of Models: To train
the models, we utilize the MedVidQA dataset,
where video, question, and visual answer seg-
ment’s beginning and end time-stamps are pro-
vided. We followed the strategy discussed above
to transform the video subtitle into segments and
marked each segment as start (‘B-Seg’), interme-
diate (‘I-Seg’), or other (‘O’) segments. The Med-
VidQA dataset has a total of 2, 710, 1, 450, and
1, 550 visual segments in training, validation, and
test sets, respectively. We train XLNet-CRF and
XLNet-Prompt models on the training set of the
MedVidQA dataset, tune the hyper-parameters on
the validation set, and evaluate the performance
on the test set of the MedVidQA and MVAL task
(Gupta and Demner-Fushman, 2022) (1, 530 vi-
sual segments) datasets. While collating the sub-
titles and segmenting them based on DeepSeg-
ment, we observed that some text from the seg-
ment may fall in the previous and next segments.
Therefore, while computing the true positive for
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the segment label, we relax it via a window of
w ∈ {1, 2, 3}. Given a window of size w, we con-
sider the predicted segment a correct segment if it
is off byw segments to either left or right in the seg-
ment sequence. Following this, we evaluated the
XLNet-CRF models with multiple competitive ap-
proaches and reported the performance in Table 2.
For the XLNet-Prompt approach, we experimented
with multiple approaches and obtained the best
F1-score of 0.5212 and 0.5905 (w=3) with prompt
“This is the [MASK] step <SEG> ” on the Med-
VidQA and MVAL test datasets, respectively. The
detailed performance comparison of the XLNet-
Prompt model on multiple templates is reported in
Table 1.

3.1.3. Generating Instructional Questions

Given the visual answer segments Sa
V =

{s1, s2, . . . , sr} and aligned timestamps T̂ a
V =

{t1, t2, . . . , tr} of length r of video V detected us-
ing the approaches discussed in Section 3.1.2, the
goal of this component is to generate instructional
questions focusing on medical or health-related
topics. Toward this, we built parameterized ques-
tion generation models and optimized the parame-
ters using the segment-question pairs available in
the MedVidQA dataset. We explored monomodal
and multimodal approaches to generate instruc-
tional questions by utilizing the respective modality
from the video. Considering an answer segment
si ∈ Sa

V and respective timestamp ti = (tsi , t
e
i ),

where s and e denote the start and end times-
tamp, in the vision-based monomodal approach,
we consider the frames fi = {fsi , f

s+1
i , . . . , fe

i }
spanning between tsi and tei in the video V and
train a Transformer-based encoder-decoder (Enc-
Dec) model to generate the question. For the
language-based monomodal approach, we collate
all the sub-segments from si and form the se-
quence si = {w1

i , w
2
i , . . . , w

|si|
i } and fine-tune the

pre-trained language models (PEGASUS, BART,
and T5) on the MedVidQA dataset to generate
the question. For the multimodal experiment, we
fine-tune the UniVL (Luo et al., 2020) pre-trained
language-vision model by using the frames fi and
si from the MedVidQA dataset. We have reported
the performance from monomodal and multimodal
approaches in terms of BLEU (Papineni et al.,
2002), and BERTScore (Zhang et al., 2019b) in
Table 3. It can be observed from Table 3 that the
T5 model outperformed other approaches on the
BLEU-4 metric, which has been a standard evalua-
tion metric for question generation (Du et al., 2017;
Gupta et al., 2020; Dong et al., 2019) task. There-
fore, we consider the T5-based question generator
to generate the instructional question.

3.2. HealthVidQA: large-scale Medical
Instructional VideoQA dataset

We have utilized the procedure outlined ear-
lier and created two large-scale Health Video
Question Answering (HealthVidQA) datasets:
HealthVidQA-CRF and HealthVidQA-Prompt. In
the HealthVidQA-CRF, we used the XLNet-CRF
approach to identify the visual segments and
used the T5-based question generation approach
to generate instructional questions. The second
dataset (HealthVidQA-Prompt) used the prompt-
tuning approach to identify the visual segment.
Similar to the former dataset, T5-based question
generation was used to generate the instructional
questions. We present the dataset analysis and
human evaluation in the following subsections.

3.2.1. Dataset Analysis

The HealthVidQA-CRF has 23, 345 video-question-
answer triplets from 11, 683 medical videos. Each
video has an average of 2 visual answer segments
of a duration of 73.39 seconds. The average gener-
ated question length is 9.58 words with a maximum
length of 19 words. To benchmark the dataset,
we split the HealthVidQA-CRF dataset into the
train (18, 754), validation (2, 355), and test (2, 236)
sets. We have also performed the analysis of the
HealthVidQA-Prompt dataset. The HealthVidQA-
Prompt dataset has 52, 771 video-question-answer
triplets from 13, 990 medical videos. We observed
that each video has an average of 3.77 visual an-
swer segments of a duration of 33.88 seconds.
For the generated questions, the statistics match
the HealthVidQA-CRF question. On average, the
generated question length is 9.72, with a mini-
mum and maximum length of 5 and 19, respec-
tively. We observe that the HealthVidQA-Prompt
dataset has shorter segments, thus a shorter sub-
title length, which leads to more visual segments
in this dataset.

3.2.2. Human Evaluation

We have followed an automated way to create the
dataset, which could lead to noisy samples. In
the dataset creation process, the possible causes
of the errors could be in (1) selecting medical in-
structional videos, (2) detecting segment contain-
ing a visual answer, (3) generating valid instruc-
tional questions and (4) alignment of generated
question and predicted segment. To assess the
quality of the dataset, we devise a series of human
evaluations to assess the aforementioned causes
of the errors. In our human evaluation setups, we
randomly choose 308 samples from the generated
datasets, and a total of three annotators judge the
questions, segments, and videos to provide the as-
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Id Template MedVidQA MVAL
F1-Score

(w=1)
F1-Score

(w=2)
F1-Score

(w=3)
F1-Score

(w=1)
F1-Score

(w=2)
F1-Score

(w=3)
1 [MASK] <SEG> 0.4014 0.5016 0.5701 0.3747 0.4769 0.5380
2 [MASK] [SEP] <SEG> 0.3152 0.4535 0.5130 0.3463 0.4361 0.4918
3 <SEG>[SEP] [MASK] 0.3142 0.4226 0.5098 0.2985 0.4152 0.5401
4 This is the [MASK] step where <SEG> 0.2983 0.4275 0.4885 0.4225 0.4945 0.5583
5 This is the [MASK] step where[SEP] <SEG> 0.3283 0.4740 0.5279 0.3821 0.4864 0.5596
6 This is the [MASK] step <SEG> 0.3381 0.4642 0.5212 0.4064 0.5418 0.5905
7 This is the [MASK] step [SEP]<SEG> 0.3217 0.4896 0.5710 0.3595 0.5064 0.5807
8 [MASK] I am going to <SEG> 0.3042 0.4474 0.5124 0.3825 0.4854 0.5602
9 [MASK] I am going to [SEP] <SEG> 0.2861 0.4536 0.5343 0.2766 0.4188 0.5051

Table 1: Performance comparison of the prompt-based segment detection approach on the test set of
the MedVidQA and MVAL datasets.

Models MedVidQA MVAL
w=1 w=2 w=3 w=1 w=2 w=3

BERT-CRF (Devlin et al., 2019) 0.3671 0.5191 0.6184 0.2923 0.4725 0.5712
ALBERT-CRF (Lan et al., 2020) 0.2981 0.4417 0.5854 0.2475 0.3997 0.4951
ELECTRA-CRF (Clark et al., 2020) 0.4110 0.5671 0.6225 0.3028 0.4167 0.5667
RoBERTa-CRF (Liu et al., 2019) 0.3860 0.5643 0.6462 0.3192 0.3974 0.5097
XLNet-CRF (Yang et al., 2019) 0.4183 0.5256 0.6112 0.3216 0.4904 0.5901

Table 2: Performance comparison (window-based F1-score) of
the CRF-based segment sequence labeling on the test set of
MedVidQA and MVAL datasets.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 BERTScore
Enc-Dec (Vaswani et al., 2017) 32.48 17.81 9.980 6.670 64.12
UniVL (Luo et al., 2020) 40.39 24.98 16.18 11.40 68.90
PEGASUS (Zhang et al., 2020b) 42.46 28.87 20.06 14.70 71.49
BART (Lewis et al., 2019) 43.06 28.53 19.22 13.71 69.59
T5 (Raffel et al., 2020) 43.97 30.42 20.99 15.43 70.23

Table 3: Performance comparison of the multiple language and
vision models on medical instructional question generation on
the test set of MedVidQA.

HealthVidQA-CRF HealthVidQA-Prompt

Medical-Instructional Videos
Yes No Yes No

81.61 18.39 81.61 18.39

Segment Containing Visual Answer
Yes No Partial Yes No Partial

82.04 6.59 11.38 75.45 5.99 18.56

Question Generation Assessment

Correct Incorrect Partial
Correct Correct Incorrect Partial

Correct
77.38 13.10 9.52 62.59 35.97 1.44

Segment Question Alignment
Yes No Partial Yes No Partial

75.45 5.99 18.56 46.67 27.41 25.93

Table 4: Comparison of the human
evaluation scores (on multiple criteria)
for the datasets created using XLNet-
CRF and XLNet-Prompt approaches.

sessment. Our human scores are the agreement
scores amongst the annotators.
1. Medical Instructional Videos: Getting the
medical instructional videos is the first step of the
dataset creation pipeline; therefore, we performed
the human evaluation and asked the annotators to
mark the videos whether they were medical instruc-
tional or not.
2. Segment Containing Visual Answer: This
evaluation assesses whether the predicted seg-
ment contains a visual answer to any medical in-
structional questions. We asked the annotators to
mark ‘Yes’ if the segment contains a complete il-
lustration of a particular procedure, ‘No’ if the seg-
ment does not contain any illustration, and ‘Partial’
if the segment contains a partial illustration of a par-
ticular procedure.
3. Question Generation Assessment: With this
evaluation, we evaluated the quality of the gen-
erated question. Towards this, we asked annota-
tors to mark the question as ‘Correct’ if the ques-
tion is a well-formed and valid instructional ques-
tion,‘Partial Correct’ if the question belongs to ei-
ther well-formed, has minor errors or valid instruc-
tional question, and ‘Incorrect’ if the question is ei-

ther grammatically, semantically or pragmatically
incorrect.
4. Segment Question Alignment: This evalua-
tion assesses whether the visual segment and cor-
responding generated question are aligned with
each other. We asked the annotators to mark the
segment-question pair as ‘Yes,’ or ‘Partial’ if the
segment contains a complete or partial illustration
as a visual answer to the generated instructional
question, ‘No’ otherwise.

We performed the human evaluation on both
the created datasets HealthVidQA-CRF and
HealthVidQA-Prompt. The detailed human eval-
uation is depicted in Table 4. From the human
evaluation, we observe that the HealthVidQA-
CRF dataset is more accurate compared to
the HealthVidQA-Prompt dataset; therefore, we
chose HeathVidQA-CRF for benchmarking the
medical visual answer localization task. We
believe the HealthVidQA-Prompt dataset has
some noise, but it can be helpful for training in
low-resource settings (Fang and Cohn, 2016),
bootstrapping (Papadopoulou et al., 2022), and
building a scalable model (Cavinato et al., 2023).
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4. Approaches to Visual Answer
Localization

4.1. Cycle-Consistent Answer
Localization (CCAL)

We proposed an approach to effectively locate
the visual segments that contain the answer to
the given medical instructional question. With
the success of the reading comprehension-based
approaches (Gupta and Demner-Fushman, 2022)
for the medical visual answer localization task,
we followed the reading comprehension-based ap-
proach where the task aims to locate the start and
end timestamps in the video where the answer to
the medical question is being shown or the ex-
planation is illustrated in the video. Inspired by
cycle-consistent training (Shah et al., 2019), given
a medical instructional question Q, video V and
corresponding subtitle S, and visual answer times-
tamp T = (T s, T e), we first employed a text-based
reading comprehension model f with parameters
θ, which takes question Q and subtitles S and pre-
dict the start and end time stamps of the answer
T̂ ← f(Q,S; θ), where T̂ = (T̂ s, T̂ e). Using the
predicted answer T̂ and subtitle S of video V , we
utilize a question generation model g with param-
eters ϕ, and generate question Q̂ ← g(S, T̂ ;ϕ).
Our hypothesis is that if the reading comprehen-
sion model f predicts the answer T̂ correctly for
the question Q, then the generated question us-
ing T̂ and subtitle S will be semantically and syn-
tactically similar to Q. Now, we will describe the
specifics of the reading comprehension model f
and question generation model g.

4.1.1. Reading Comprehension Model

Our reading comprehension model deals with
the subtitle S of the video V , question Q =
{qq, q2, . . . , q|Q|} to predict the answer span in
the subtitle. To effectively encode the longer
subtitle S, we use the pre-trained Longformer
model (Beltagy et al., 2020) to encode the sub-
title S = {s1, s2, . . . , sn} having n subtitles.
Specifically, we concatenate all the words from
the subtitles and formulate the word sequence
W = {w1

1, . . . w
|s1|
1 , . . . , w1

n . . . w
|sn|
n }. Following

the fine-tuning of the question-answering model,
we packed the question Q and subtitle word se-
quence W to form a single-word sequence C. We
fed the word sequence C to the Longformer model
and obtained the hidden state hi for each token
ti ∈ C. Thereafter, a linear layer is employed on
the top of the hidden state to compute the span
start logit and span end logit. We predict the start
and end positions of the tokens; thereafter, we
map these tokens to their corresponding subtitle
and extract their time stamp. We call the predicted

start and end positions of the time stamp of the
answer as T̂ = (T̂ s, T̂ e). We train the network by
maximizing the log-likelihoods of the correct start
and end positions of the answer. We denote the
loss function of the network as Lf (T, T̂ )

3.

4.1.2. Question Generation Model

With the predicted start and end positions of the
time stamp of the answer as T̂ = (T̂ s, T̂ e), we map
them to their corresponding word sequence Ŵ in
W and pass the word sequence Ŵ to BART (Lewis
et al., 2019) to generate the instructional question
unlike for the question generation task (cf. 3.1.3),
where T5 was best, here we found that BART per-
formed better in reinforcing the CCAL approach
while generating instructional questions. We call
the generated question Q̂. The question model is
trained by maximizing the log-likelihood of the cor-
rect questionQ. We denote the loss function of the
network asLg(Q, Q̂). We train our proposed CCAL
approach to minimize the following objectives:

L = Lf (T, T̂ ) + Lg(Q, Q̂) (7)

4.2. Multimodal Late Fusion with CCAL
We also benchmark a multimodal late fusion-
based technique combined with the Cycle-
Consistent Answer Localization approach as
discussed in Section 4.1. Our aim is to obtain
visual and language modality at each word of the
word sequence W . Towards this, in the late fusion
multimodal approach, we extracted the frame (one
frame per second) features corresponding to the
video V utilizing a 3D ConvNet (I3D) model, which
was pre-trained on the Kinetics dataset (Carreira
and Zisserman, 2017). Thereafter, for each
word w ∈ W = {w1

1, . . . w
|s1|
1 , . . . , w1

n . . . w
|sn|
n } in

the subtitle, we obtained frame representation
F ∈ R|W |×d by choosing the frame that lies in the
corresponding subtitle time stamp. We consider
F as the input image of dimension |W | × d
and pass this to the vision encoder to encode
the frame representation and obtain the vision
representation as follows: V ← p(F ;ψ), where
V ∈ Rdv and p is the vision encoder of param-
eter ψ. Similar to the reading comprehension
model discussed in Section 4.1.1, we obtained
the hidden state representation hi ∈ Rdl and
concatenated it with the vision representation
V and obtained the multimodal representation
xi ∈ Rdl+dv . Finally, we apply a feed-forward

3While computing the loss for the reading compre-
hension model, we calculate the cross-entropy loss be-
tween expected and predicted positions of the answer’s
starting and ending words within the word sequence de-
noted as W .
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network with relu activation to project the xi
into language encoder dimension dl to use the
pre-trained language model further as used in the
reading comprehension approaches discussed in
Section 4.1.1. The multimodal late fusion with the
CCAL model is trained by following the objectives
listed in Eq. 7. In our experiments, as vision
encoder p, we utilized VIT-Base (Dosovitskiy et al.,
2020), VITMAE(He et al., 2022), VideoMAE-Base
(Tong et al., 2022), VAN-Base (He et al., 2022),
and ConvNext-Base (Liu et al., 2022) vision-based
models.

5. Results and Analysis

Metrics: We evaluated the performance of the
system on the MedVidQA (Gupta et al., 2023)
dataset. Additionally, we evaluated the best-
performing approaches on the test set of the
HealthVidQA-CRF dataset having 2, 236 samples.
Following the previous works (Gupta and Demner-
Fushman, 2022; Awad et al., 2023), we use ”R@1
IoU = µ” and ”mIoU” for the evaluation of visual an-
swer localization. For each test question, we mea-
sure the Intersection over Union (IoU) between the
predicted and ground truth timestamps. ”R@1,
IoU@ = µ” means the percentage of text queries
with an IoU larger than µ. The ”mIoU” refers to the
average IoU for all test questions.

Experimental Setups: We set the maximum to-
ken length of each segment to 128 for the visual
answer segment detection task. The models are
trained with a batch size of 4 with one layer of
transformer encoder. The model parameters are
updated using the AdamW (Loshchilov and Hutter,
2019) optimization algorithm with the learning rate
of 4e− 5 and weight decay of 1e− 4.

We use the large version of pre-trained T5,
BART, and PEGASUS models for question gen-
eration. The transformer-based encoder-decode
model was trained with one layer of encoder and
decoder, each with a hidden state size of 128. We
use the official repository4 of UniVL with the de-
fault hyper-parameters to fine-tune for the question
generation task. The pre-trained language mod-
els are trained with a batch size of 2 with a source
sequence length of 256 and question generation
target sequence length of 20. We use the beam
search to generate the question with beam size
5. The model parameters are updated using the
AdamW optimization algorithm with the learning
rate of 4e− 5 and weight decay of 1e− 4.

We utilized the base version, pre-trained lan-
guage, and vision models (T5, BART, Longformer,
ViT, VideoMAE, ViTMAE, VAN, and ConvNeXt)

4https://github.com/microsoft/UniVL

from HuggingFace (Wolf et al., 2019) to perform
the experiments. For RC and CCAL approaches,
we set the maximum source sequence length to
1024, except for the Longformer model. The Long-
former model was set to 4096. For visual features,
we select one frame from each second of the video
uniformly and extract RGB visual features with the
3D ConvNet that was pre-trained on the Kinetics
dataset (Carreira and Zisserman, 2017). Each pre-
trained Transformer model was trained with the
AdamW optimizer, with a learning rate of 5e − 5
for ten epochs, early stopping with the patience of
three epochs and a batch size of two.

5.1. Effect of HealthVidQA-CRF Dataset
We assess the effect of the created HealthVidQA-
CRF dataset on the models trained and evalu-
ated (cf. Table 8) on the MedVidQA test dataset.
We chose the RC and CCAL models, which are
the best-performing models on the MedVidQA test
dataset. We begin by adding 10% of the created
HealthVidQA-CRF dataset into the training set of
MedVidQA and trained the RC models. With the
10% addition of the HealthVidQA-CRF dataset, we
observe the absolute improvements of the 4.57,
5.23, 9.15, and 6.79 in terms of IoU=0.3, IoU=0.5,
IoU=0.7 and mIoU metrics, respectively. The
significant improvements signify that the created
dataset is capable of providing additional informa-
tive samples, which is required to train an efficient
visual answer localization system.

5.2. Effect of Visual Features
In another analysis, we aim to assess the effect
of the visual features while adding a portion of
the HealthVidQA-CRF dataset to train the visual
answer localization system. Table 5, shows that
multimodal approaches could not outperform the
best-performing monomodal CCAL approach. We
observed from Table 5 that CCAL+VAN obtained
the lowest scores in terms of multiple evaluation
metrics. We wanted to analyze the effect of the
HealthVidQA-CRF dataset on this model. Toward
this, we train the CCAL+VAN model with the 10%
of the HealthVidQA-CRF dataset. The trained
model achieved an absolute improvement of 4.58,
10.46, and 4.08 in terms of IoU=0.5, IoU=0.7, and
mIoU evaluation metric, respectively. These sig-
nificant improvements signify that multimodal ap-
proaches need additional datasets to perform bet-
ter on the task of visual answer localization.

5.3. Performance on HealthVidQA-CRF
We extend our experiments by evaluating the
best-performing monomodal and multimodal on
the test set of the HealthVidQA-CRF dataset.

https://github.com/microsoft/UniVL
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Models IoU = 0.3 IoU = 0.5 IoU = 0.7 mIoU
VSLBase (Gupta et al., 2023) 25.16 8.38 4.51 19.3
VSLQGH (Gupta et al., 2023) 25.81 14.2 6.45 20.12
CCGS (Li et al., 2022a) 67.1 50.32 27.74 47.11
RC (Beltagy et al., 2020) 61.44 47.06 29.41 45.02
CCAL (T5-QG) 67.32 49.67 35.29 50.58
CCAL 71.90 54.9 35.29 52.92
CCAL+ViT 69.28 50.33 31.37 50.24
CCAL+VideoMAE 66.66 49.02 30.07 48
CCAL+ViTMAE 66.66 52.29 33.33 52.2
CCAL+VAN 67.97 47.71 28.1 48.17
CCAL+ConvNeXt 67.97 52.94 32.03 50.12

Table 5: Performance compression of the multiple
monomodal and multimodal approaches on MedVidQA
test dataset. RC referees to the reading comprehension
model. CCAL (T5-QG) denotes the CCAL approach with
T5 as the question generator.

Models IoU = 0.3 IoU = 0.5 IoU = 0.7 mIoU
1 RC 51.11 32.51 17.30 36.39
2 + 10% data 63.01 41.32 23.39 44.76
2 + 20% data 66.41 44.68 25.72 46.96
3 + 50% data 68.52 46.29 26.74 48.01
4 + 100% data 70.04 49.82 30.01 50.35
5 CCAL 53.67 32.82 17.35 37.13
6 + 10% data 62.03 39.53 22.41 43.48
7 + 20% data 66.73 45.84 26.61 47.22
8 + 50% data 68.16 46.33 27.78 48.12
9 CCAL+ConvNeXt 52.45 30.84 16.21 35.19
10 + 10% data 56.57 36.18 20.04 40.48
11 + 50% data 69.14 47.99 29.65 49.1
12 + 100% data 72.05 50.4 30.68 51.07

Table 6: Effect of the portion of the
HealthVidQA-CRF data on the perfor-
mance of the HealthVidQA-CRF test
dataset.

Models IoU = 0.3 IoU = 0.5 IoU = 0.7 mIoU
1 CCAL+VAN 67.97 47.71 28.1 48.17
2 + 10% HeathVidQA-CRF 66.67 52.29 38.56 52.25
3 CCAL+ConvNeXt 67.97 52.94 32.03 50.12
4 + 10% HeathVidQA-CRF 62.09 47.06 30.72 47.54
5 + 20% HeathVidQA-CRF 69.28 54.25 30.72 50.60
6 + 50% HeathVidQA-CRF 66.01 49.67 29.41 48.56
7 + 100% HeathVidQA-CRF 67.32 54.90 37.91 51.77

Table 7: Effect of the portion of the HealthVidQA-CRF
on the performance of the multimodal approaches on the
MedVidQA test dataset.

Models IoU = 0.3 IoU = 0.5 IoU = 0.7 mIoU
1 RC 61.44 47.06 29.41 45.02
2 + 10% data 66.01 52.29 38.56 51.81
3 + 20% data 67.32 54.25 35.95 51.84
4 + 50% data 68.63 52.94 33.99 51.6
5 CCAL 71.90 54.9 35.29 52.92
6 + 10% data 64.05 47.71 34 48.03
7 + 20% data 69.28 52.94 35.95 51.72
8 + 50% data 66.01 52.94 36.60 51.1

Table 8: Effect of the portion of the
HealthVidQA-CRF data on the perfor-
mance of the MedVidQA test dataset.

We performed these experiments in data incre-
mental setup, where we first utilized the Med-
VidQA training set to train the model and validated
its performance on the HealthVidQA-CRF test
dataset. Thereafter, we added the HealthVidQA
dataset in an incremental manner and analyzed
its impact on the model’s performance towards
the HealthVidQA-CRF test dataset. We evalu-
ated the performance of the RC model on the
HealthVidQA test dataset and reported the re-
sults in Table 6. Thereafter, we trained the
model with an additional 10%, 20%, 50%, and
100% of the HealthVidQA dataset along with
the MedVidQA training set and obtained the re-
sults. We also evaluated the performance of
the CCAL+ConvNext model on the HealthVidQA
test dataset. The experimental results show
that with the additional HealthVidQA dataset, the
CCAL+ConvNeXt model outperformed the RC and
CCAL approaches.

5.4. Error Analysis

We analyzed the failed predictions where the over-
lap between the predicted and ground truth seg-
ment was < 0.2 using the CCAL approach. We
categorize the major errors: (1) model falsely
predicted the start segment where the video has
multiple instructions, (2) model could not predict
the specific segment correctly for the fine-grained
questions (‘How to perform rescue breathing on

an infant with a trach tube?’) compare to the
coarse-grained counter-parts (‘How to perform res-
cue breathing on an infant?’), and (3) CCAL model
which focuses on subtitles of the video could not
predict the segment where the visual information is
required, though the multimodal approaches were
able to reduce this type of error.

6. Conclusion

In this work, we presented a pipeline to automat-
ically create medical visual question-answering
datasets focusing on health-related questions and
their visual answers in the videos. With the pro-
posed pipeline, we build two large-scale medical
visual question-answering datasets, HealthVidQA-
CRF and HealthVidQA-Prompt. We performed in-
depth human evaluations on the created datasets,
and the evaluation shows the former dataset is bet-
ter aligned with the human annotations. We also
proposed a monomodal and multimodal CCAL
approach for medical video question-answering
task that achieved state-of-the-art performances
and set competitive baselines for future research.
The detailed experiments and analysis show that
the created datasets help in improving the perfor-
mance of the MedVidQA system. We believe that
the created datasets can be used to provide the so-
lution by pre-training/fine-tuning language-vision
models for medical visual answer localization task.
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Ethics Statement
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presented in this work leverage the existing pub-
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Limitations: The health topics covered in our
datasets are limited to those that are available in
the HowTo100M dataset videos, which may leave
some health topics under-explored.
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