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Abstract
In recent research, significant advancements have been achieved in tool learning for large language models. Looking
towards future advanced studies, the issue of fully autonomous tool utilization is particularly intriguing: Given only a
query, language models can autonomously decide whether to employ a tool, which specific tool to select, and how to
utilize these tools, all without needing any tool-specific prompts within the context. To achieve this, we introduce a
unified, efficient, and scalable framework for fine-tuning language models. Based on the degree of tool dependency,
we initially categorize queries into three distinct types. By transforming the entire process into a sequential
decision-making problem through conditional probability decomposition, our approach unifies the three types and
autoregressively generates decision processes. Concurrently, we’ve introduced an “instruct, execute, and reformat”
strategy specifically designed for efficient data annotation. Through end-to-end training on the annotated dataset
comprising 26 diverse APIs, the model demonstrates a level of self-awareness, automatically seeking tool assistance
when necessary. It significantly surpasses original instruction-tuned open-source language models and GPT-3.5/4 on
multiple evaluation metrics. To address real-world scalability needs, we’ve enhanced our framework with a dynamic
rehearsal strategy for continual learning, proven to require minimal new annotations to exhibit remarkable performance.

Keywords: large language model, tool learning, autonomous, end-to-end learning

1. Introduction

In recent years, Large Language Models (LLMs)
have made significant strides in natural language
processing tasks, showcasing impressive capabil-
ities and achieving state-of-the-art performance
in various domains. These models leverage mas-
sive amounts of pre-training data and sophisticated
training methods to generate coherent and contex-
tually relevant outputs. However, despite these
advancements, LLMs remain fundamentally con-
strained by the information they can store in fixed
weights and the challenges posed by limited con-
text. Consequently, a new research trend has
emerged, aiming to address these challenges by
allowing LLMs to leverage external tools. For exam-
ple, WebGPT (Nakano et al., 2021) and Internet-
augmented language models (Lazaridou et al.,
2022) both employ search engines to access com-
prehensive information and generate more refined
responses. Visual ChatGPT (Wu et al., 2023) and
HuggingGPT (Shen et al., 2023) harness the power
of LLMs to control AI models and effectively handle
tasks involving multiple modalities.

The aforementioned studies focus primarily on
the strategies and techniques involved in how to
utilize various tools for language models. As il-
lustrated in Figure 1, whether a language model
should utilize tools for a given problem and select-
ing which tool is typically predetermined by man-
ual prompts. Following this research path, Gorilla

*Corresponding Author: Yin Zhang.

Instruction: You are  a helpful assistant. Answer the 
following questions as best you can. You can use external 
tools. Specifically, you have access to the following API: 
Weather. The API queries must adhere to the following 

structure:{“location” : string, “days” : integer}

Whether: blue.        Which : pink.     How: orange.

Figure 1: Using weather queries as an example, we
showcase the prevailing methods of tool utilization.

(Patil et al., 2023) and ToolLLM (Qin et al., 2023)
have significantly expanded the number of tools
by integrating with external retrieval systems. To
further enhance the autonomy of tool usage in lan-
guage models, GPT4Tools (Yang et al., 2023) and
ToolAlpaca (Tang et al., 2023) explicitly provide
multiple tools relevant to specific scenarios in the
context, such as multimodal tools, and then fine-
tune the models, enabling the language models to
autonomously decide whether or which tool to use.
However, for these methods, even aside from some
potential drawbacks, such as additional retrieval
steps leading to cumulative errors, the limited con-
text length making it difficult to expand the number
of tools, the language model itself still plays a pas-
sive role, requiring external prompts to guide the
model in problem-solving.
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Method End to End Learning Advantage
Whether Which How Efficient Scalable Autonomous

Toolformer (Schick et al., 2023) ✓ ✓ ✓ ✓
TRICE (Qiao et al., 2023) ✓ ✓ ✓
Gorilla(Patil et al., 2023) ✓ ✓ ✓

ToolLLM (Qin et al., 2023) ✓ ✓ ✓
GPT4Tools(Yang et al., 2023) ✓ ✓ ✓ ✓ ✓
ToolAlpaca (Tang et al., 2023) ✓ ✓ ✓ ✓ ✓

Our Work ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparative analysis of various studies. ’Autonomous’ implies that there is no need to include
any tool-related information in the prompt, as the model fully internalizes the knowledge and ability to use
the tools.

We take the consideration even further, aspiring
for large language models to achieve completely
autonomous tool usage by fully internalizing vari-
ous tool knowledge. Given only a query, language
models can autonomously decide whether to em-
ploy a tool, which specific tool to select, and how
to utilize these tools, all without needing any tool-
specific prompts within the context. A detailed com-
parison reveals that, solely from the perspective of
problem-setting, Toolformer (Schick et al., 2023)
and TRICE (Qiao et al., 2023) focus on issues
similar to what we are addressing. However, their
methods have several shortcomings, such as the
low efficiency of the self-supervised dataset con-
struction method adopted by Toolformer (Schick
et al., 2023), the limited types of tools examined,
for instance, TRICE (Qiao et al., 2023) only investi-
gated one calculator tool, and both lack discussion
and analysis of scalability.

In pursuit of autonomous tool utilization, we pro-
pose a unified, efficient, and scalable framework.
Specifically, our contributions are encapsulated as
follows:

1. We’ve categorized queries into three precise
and reasonable categories based on the ex-
tent of tool-reliance: 1. Directly solvable is-
sues, like translations; 2. Challenges needing
validation, such as intricate mathematical com-
putations; 3. Unsolvable due to inherent limi-
tations, exemplified by real-time queries. By
transforming the entire process into a sequen-
tial decision-making problem through condi-
tional probability decomposition, our approach
unifies the three types and autoregressively
generates decision processes.

2. Serving our framework, we have pioneered an
“instruct, execute, and reformat” strategy for
efficient dataset construction. Beginning with
foundational seed queries, we enhance them
via self-instruction. Subsequently, we guide a
language model to devise the API call, taking

cues from both the query and the tool instruc-
tions, as depicted in Figure 1. If the API call
is executed successfully, a dedicated crowd-
sourcing team evaluates the data instance. In
the concluding phase, we meticulously refor-
mat the data to adhere to specified require-
ments by transitioning tool instructions from
an input to an output role.

3. Considering real-world scenarios, we further
extend our framework with a dynamic bal-
anced rehearsal strategy for continual learn-
ing, which starts with a focus on new API
categories, gradually increasing the propor-
tion of old API categories until the balance is
achieved. Experiments indicate that our frame-
work requires minimal new tool-annotated data
to exhibit remarkable performance while main-
taining its existing tool capabilities.

4. Experiments show that the fine-tuned model
exhibits a degree of self-awareness and
can automatically seek tool assistance
when needed and dramatically surpasses
instruction-tuned both open-source language
models and GPT models in tool selection,
accurate tool usage, and overall problem-
solving efficacy. Further ablation shows that
our unified framework can effectively promote
the model’s learning across different tools.

2. Related Work

2.1. Instruction Tuning
Recent research (Ouyang et al., 2022; Chung et al.,
2022) indicates that pre-trained language models,
when fine-tuned with task-specific instruction data,
excel at following natural language directives and
accomplishing real-world tasks. In particular, mod-
els such as InstructGPT (Ouyang et al., 2022) and
FLAN-T5 (Chung et al., 2022) have shown remark-
able results through instruction-based fine-tuning.
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The self-instruction methodology, as presented by
Wang et al. (2022), posits that language models
can bolster their aptitude for instruction adherence
using self-generated instructional data. This con-
cept has further motivated the utilization of data
from powerful language models like Davinci 1, Chat-
GPT2, GPT-4 (OpenAI, 2023) to refine open-source
language models, such as Alpaca3.

2.2. In-Context Tool Learning
LLMs have shown impressive in-context learning
capabilities (Dong et al., 2022). This has paved
the way for integrating tools by offering contextual
tool descriptions and demonstrations (Paranjape
et al., 2023; Gou et al., 2023; Hsieh et al., 2023;
Chen et al., 2023). Building upon this, the intro-
duction of reasoning chains has facilitated the tack-
ling of more intricate problems. This methodol-
ogy has catalyzed the creation of widely recog-
nized industry solutions, such as ChatGPT plug-
ins 4 and Langchain 5, with proven applications in
significant research areas. Furthermore, PaLM-
SAYCAN (Brohan et al., 2023) and PaLM-E (Driess
et al., 2023) leverage high-level robotics APIs to
command robots to execute real-world objectives.
There have also been promising advances in the
deployment of LLMs as coordinators of multiple
neural models in multimodal reasoning tasks (Surís
et al., 2023; Wu et al., 2023; Shen et al., 2023).

2.3. Supervised Tool Learning
Nevertheless, methods based on in-context learn-
ing exhibit certain drawbacks. Even for today’s
state-of-the-art LLMs such as GPT-4, there are
challenges to generating accurate input arguments
and eliminating the tendency to hallucinate the
wrong usage of an API call. The alternative ap-
proach emphasizes the fine-tuning of LLMs to uti-
lize tools. REALM (Guu et al., 2020), RAG (Lewis
et al., 2020), RETRO (Borgeaud et al., 2022), and
Atlas (Izacard et al., 2022) equip LLMs with an ex-
ternal retriever. TALM (Parisi et al., 2022) adapts
these models for a handful of universal tools, such
as QA models, calculators, and translators. Recent
works mirroring our timeline are also advancing in
this direction. Gorilla (Patil et al., 2023) and Tool-
LLM (Qin et al., 2023) have significantly expanded
the number of tools by integrating with external
retrieval systems. While GPT4Tools (Yang et al.,
2023) and ToolAlpaca (Tang et al., 2023) finetune

1https://platform.openai.com/docs/models/gpt-3
2https://chat.openai.com/
3https://crfm.stanford.edu/2023/03/13/alpaca.html
4https://openai.com/blog/chatgpt-plugins
5https://www.langchain.com/

models to independently assess the need and se-
lection of tools, there remains a requisite to explic-
itly provide all relevant tools and usage directives
within the context. Diverging from these methodolo-
gies, our approach takes innovation a step further.
We envision large language models that are capa-
ble of fully autonomous tool utilization without any
tool-specific prompts in the context, achieved by
thoroughly internalizing diverse tool knowledge.

3. Framework

3.1. Problem Formalization
Let’s first agree on the abbreviations for the terms:

• Y denotes the target response.
• X stands for the query.
• We determines whether to use the tool.
• Wi indicates which tool to use.
• H indicates how to use the tool.
The aforementioned studies focus primarily on

the strategies and techniques involved in how to
utilize various tools for language models. The de-
cision of whether a language model should deploy
a particular tool, and which one to choose, is often
guided by manual prompts. This decision-making
process can be encapsulated by the following equa-
tion:

P (Y | We,Wi,H,X) (1)
In the near future, as the array of tools avail-

able to language models expands, the task of dis-
cerning and choosing the right tool from a vast
array will undoubtedly become more challenging.
While retrieval modules such as the BM25 and GPT
embeddings often facilitate this selection process,
they are not perfect. These modules sometimes
fail because they lack comprehensive end-to-end
optimization, sometimes leading to the selection
of inappropriate tools. Such shortcomings can re-
sult in error propagation, with subsequent outputs
failing to correct initial missteps. More critically,
we assert that language models have untapped
potential. Considering more advanced models or
intelligent agents, they should be capable of in-
dependent decision-making. Specifically, in the
absence of clear tool directives in a user’s query,
they should autonomously determine the neces-
sity of a tool, identify the most fitting one for the
query, and ascertain the correct method of invo-
cation. This process can be represented by the
following formula:

P (Y,We,Wi,H | X) (2)

3.2. Unified Conditional Probability
Decomposition

Based on the degree of reliance on tools when
solving problems with a large language model, we
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Instruction: You are  a helpful assistant. Answer the 
following questions as best you can. You can use 
external tools. Specifically, you have access to the 
following API: Weather. The API queries must adhere to 
the following structure:{“location” : string, “days” : 
integer}

Query:  What is the temperature trend in Paris, France 
for the next 5 days?

Reply: {“location”: “Paris, France”, “days”: 5}

Reformat

Query:  What is the temperature trend in Paris, France 
for the next 5 days?

Reply: As a language model, I cannot solve this 
problem by myself and require the assistance of external 
tools. I choose the Weather API. The calling format is 
{“tool”: “Weather API”, “input”: {“location”: “Paris, 
France”, “days”: 5}}

Previous Method Ours

Figure 2: Comparison of specific data instances using the previous methods and our method.

divide queries into three categories:

• Solvable Problems: These are issues that the
large language model can address compre-
hensively in theory. They primarily encompass
pure natural language processing tasks such
as translation, sentiment analysis, and sum-
marization.

• Verifiable Problems: These are challenges
that the language model might have the ca-
pacity to tackle to a certain extent, but it is
advisable to verify the results. This category
includes complex mathematical reasoning and
factual matters prone to hallucinations. For
such problems, the language model initially
tries to provide an answer on its own, but ide-
ally should be cross-checked with external
tools for confirmation.

• Unsolvable Problems: These are dilemmas
that the language model simply cannot handle
on its own. Examples are real-time queries
and multimodal issues. Without the aid of ex-
ternal tools, the language model is entirely
inept at providing solutions.

Considering the inherent sequential nature of the
three questions, we introduce a unified approach:
by leveraging the decomposition of conditional
probabilities, we unify three types of queries and
cast the entire process as a sequential decision-
making problem. This lets the model autoregres-
sively generate its decisions: first discerning the
necessity of a tool, then choosing the right one,
and finally determining its application method. The
approach can be represented by the following for-

mula:

P (Y,We,Wi,H | X)

= P (We | X)

× P (Wi | We,X)

× P (H | We,Wi,X)

× P (Y | H,We,Wi,X) (3)

To better understand our methodology, Figure
2 illustrates a data instance identified as an un-
solvable problem. Our framework efficiently sim-
plifies the process of end-to-end learning, cover-
ing both the discernment of appropriate tools and
their prime utilization. It is also distinguished by
its significant transparency and interpretability. In
practical applications, tools dealing with the same
type of problems share common templates, foster-
ing mutual enhancement of model convergence
and establishing a foundation for the assimilation
of new tools.

3.3. Efficient Dataset Construction
Relying solely on crowdsourcing for data annota-
tion can incur significant costs, necessitating ex-
perts with in-depth knowledge of distinct API func-
tionalities. Conversely, employing self-supervised
methods such as those described by Schick et al.
(2023) tends to be less efficient. Given the exten-
sive array of tools accessible for language mod-
els, it’s evident that a more cost-effective and effi-
cient approach to dataset construction is impera-
tive. Given these challenges, we have introduced
the “instruct, execute, and reformat” methodology.
As shown in Figure 3, we first use the commonly
known self-instruct method to build the data, and
then construct the desired dataset by reformatting.
Specific steps include:

1. For any given API, our first step involves de-
tailed labeling of seed queries. To illustrate,
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Figure 3: The “instruct, execute, and reformat” methodology for constructing datasets. It begins with
detailed labeling of seed queries for a given API, followed by the application of a self-instruct strategy
to generate more relevant queries. Using in-context learning, the language model is directed to create
an appropriate API invocation. Subsequently, the data is reformatted to adhere to our specifications, as
illustrated in Figure 2. Finally, human evaluation can be conducted on the reformatted data, along with
training the language model to automate tool invocation.

we use the "Get weather today API" as an ex-
ample, with seed queries like: “What is the
current temperature and wind speed in Lon-
don, UK?” and "Can you tell me how windy it
is in Berlin, Germany today?”

2. We then employ a standard self-instruct strat-
egy to proliferate relevant queries.

3. Using the in-context learning approach, the
language model is directed to formulate the
appropriate API invocation based on the query
and provided API instructions.

4. This generated invocation is subsequently ex-
ecuted in the environment to obtain the API’s
responses. Should the method be flawed, ren-
dering the execution unsuccessful, such data
is excluded, drastically reducing the subse-
quent manual intervention.

5. These data, comprising query, API instruc-
tions, generated API invocation, and API re-
sponses, will be reformatted to meet our de-
sired specifications, as depicted in Figure 2.

6. Finally, we can sample the dataset for human
evaluation while concurrently training the lan-
guage model to to learn automatic tool utiliza-
tion.

3.4. Dynamic Rehearsal for Scalability
Given the dynamically evolving nature of real-world
API environments, which are characterized by an
abundant and perpetually expanding collection of
API tools, a limited set of API tools for training, as
utilized in our experiments, is inadequate to mirror
the complexities of the actual scenario. Hence, we
delved deeper into the model’s scalable capabili-
ties in continual learning. We propose a dynamic

balanced rehearsal strategy, which start with a fo-
cus on new API categories, gradually increasing
the proportion of old API categories until balance
is achieved. Below is the formal description :

Let’s define the following variables:

• Cold represents the number of API categories
already learned,

• Cnew represents the number of newly intro-
duced API categories,

• Ctotal represents the total number of API cate-
gories, where Ctotal = Cold + Cnew,

• α(t) represents the proportion of sampling
from old API categories at time t,

• t represents the current training epoch.

Our goal is for α(t) to start at 0 (initially, there are
only new API categories) and, over time, balance
out between new and old API categories until each
category has an equal chance of being sampled.
This can be achieved as follows:

α(t) = min

(
Cold

Ctotal
, γ · t

)
Here, γ is a hyperparameter that dictates the

amount by which α(t) increases each epoch until
it equals Cold/Ctotal. This strategy ensures that
while the model adapts to new APIs, it gradually
integrates the knowledge of old APIs, achieving
effective continual learning.

4. Experiment

4.1. API and Dataset Details
Table 2 shows our dataset of 26 APIs. Below is a
detailed description of each API:
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Type Domain Task API

Solvable NLP

Translation

Language model itself

Sentiment Analysis
Story Generation
Summarization

Grammar Correction
etc

Verifiable

Reason Math Wolfram Alpha

Fact

Entertainment
Education

Culture and art Bing Search
Politics
Sports

Map

Get route
Get coordinates

Get distance
Search nearby

Unsolvable

Time

Recent Paper Arxiv

Stock
Get daily prices

Get exchange rate
Get open info

Weather Get weather today
Forecast weather

Mutimodal

Image Understanding

Image captioning
Detect the Given Object

Answer Question About The Image
Segment the given object

Remove Something From The Photo

Image Generation

Generate Image Condition On Text
Generate Image Condition On Normal Map
Generate Image Condition On Pose Image

Generate Image Condition On Depth
Generate Image Condition On Sketch Image

Generate Image Condition On Segmentations
Generate Image Condition On Soft Hed Boundary Image

Generate Image Condition On Canny Image

Table 2: Statistical overview of type, domain, task, and API.

• Wolfram Alpha API 6: This API grants develop-
ers access to Wolfram Alpha’s unique knowl-
edge engine for computational tasks.

• Bing Search API 7: It facilitates the retrieval of
factual information across various domains, in-
cluding entertainment, education, sports, and
more.

• Map APIs 8. Designed to support user queries
regarding routes, distances, latitude coordi-
nates, and points of interest in proximity.

• Stock APIs 9: This API provides daily stock
prices, exchange rate information between two
currencies, and opening details for specific
stocks.

6https://www.wolframalpha.com/
7https://www.microsoft.com/en-us/bing/apis/bing-

web-search-api
8https://learn.microsoft.com/en-us/bingmaps/
9https://www.alphavantage.co/documentation/

• ArXiv API 10: Useful for fetching the latest aca-
demic contributions from the arXiv repository.

• Weather APIs 11: Offer real-time weather con-
ditions for any given city and forecast up to N
days ahead.

• Multimodal APIs are constructed based on
a variety of pretrained multimodal models.
For image understanding, these encompass
the following: Image captioning (Li et al.,
2022) , Detect the Given Object (Carion et al.,
2020), Answer Question About The Image(Li
et al., 2022), Segment the given object (Cheng
et al., 2021a), Remove Something From The
Photo(Cheng et al., 2021b; Rombach et al.,
2022a), Regarding image generation models,
stable diffusion (Rombach et al., 2022b) is
used for Generate Image Condition On Text.

10https://info.arxiv.org/help/api/basics.html
11https://www.weatherapi.com/
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Other image generation models primarily orig-
inate from ControlNet(Zhang and Agrawala,
2023). These mutimodal models are collected
from several sources including HuggingFace
Transformers12, Maskformer13, and Control-
Net14.

We generated 1000 GPT-4 query-response pairs
per API, dividing them into 800 training, 100 valida-
tion, and 100 testing pairs. The dataset is publicly
available 15.

4.2. Environment

We’ve established an environment that incorpo-
rates the mentioned API, offering the following ca-
pabilities:

1. Using regular expressions, it extracts tool
names and associated parameters from the
outputs produced by the large language
model.

2. It seamlessly executes tool scripts based on
these tool names and parameters.

3. The content returned by these tools is trans-
formed into text. In the case of images, both
the filename and storage path are recorded.

4. The interpreted results are then fed back to
the large language model.

4.3. Baseline

Without instruction tuning the model according to
the guidelines from Equation 3, simply submitting
a query and expecting that mainstream models will
autonomously decide and output whether, which,
and how to utilize tools proves to be a formidable
challenge. As a result, we turn to a more robust
baseline methodology. When we input a query
into the large language model, we also incorporate
all the tool usage instructions from Table 2. In
our prompt, we explicitly instruct the model first to
ascertain if a tool is necessary, then to select the
appropriate tool, and lastly to decide the correct
invoking method based on the query and chosen
tool. The prompt will be found in the appendix of the
final version. We consider the following language
model: Alpaca, Vicuna, Llama2Chat, GPT-3.5 and
GPT-4. We consider the size of the 7B parameter
for the open-source language model.

12https://huggingface.co/
13https://github.com/facebookresearch/MaskFormer
14https://github.com/lllyasviel/ControlNet
15https://github.com/zhilizju/reformatted-tool-data

Model Whether Which How Success
Alpaca 18.9 10.3 9.3 7.5
Vicuna 45.8 22.3 15.6 13.9
Llama2Chat 56.9 29.7 25.2 23.3
GPT-3.5 72.8 69.9 65.5 62.8
GPT-4 89.7 86.5 82.3 80.4
Ours 98.6 97.6 92.3 91.2

Table 3: Accuracy of 6 models across four critical
aspects.

4.4. Human Evaluation on Reformatted
Dataset

Before training model with the data, we conducted
a human evaluation on a sampled subset of the
reformatted data. It’s worth noting that the major-
ity of cases were found to be correct. Among the
few cases that exhibited common patterns of inad-
equacy, the limitations of certain APIs were iden-
tified as a contributing factor. In such instances,
the queries generated via self-instruction were not
fully suitable for resolving the specific limitations of
the selected API. For example, not all mathemat-
ical questions can be completely and accurately
resolved by the Wolfram Alpha API, leading to API
responses that do not genuinely address the is-
sue. Importantly, the presence or absence of these
types of data does not significantly affect the overall
training process, as the model can still acquire the
"whether, which, how" decision-making process
from these cases.

4.5. Training
Using only 1,000 annotated data for NLP tasks in
our dataset, it is challenging to make the language
model itself good at handling NLP tasks. Therefore,
we chose Alpaca, which already has the capabil-
ity to process NLP tasks, as our base model to
continue training on our dataset. Invoking the lan-
guage model itself means that it directly generates
an answer once it determines that it can solve the
task rather than generating additional commands.
We used the Alpaca training code 16 to fine-tune the
base model on 8 RTX A6000 GPUs. We adopted
a batch size of 128. The learning rate was set at
2e-5 and we trained the model for 3 epochs. The
maximum sequence length is 512 and the weight
decay is 0.

4.6. Model Evaluation
We employ accuracy as our primary evaluation
metric, which includes four critical aspects.

16https://github.com/tatsu-lab/stanford_alpaca
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Figure 4: The performance of different models on various APIs.

• Whether: The ability to ascertain, based on a
given query, whether a tool is necessary.

• When: If a tool is deemed necessary, the pro-
ficiency in selecting the appropriate one.

• How: After choosing the right tool, the capa-
bility to dictate the correct method for its invo-
cation.

• Success: The accuracy of the results after
invocation.

The initial three criteria gauge the prowess of the
language model. The final metric evaluates the
holistic success rate, considering not just the model
but also the ability of integrated APIs. As an ex-
ample, for intricate mathematical problems, the
Wolfram Alpha API may not always yield accurate
results. And the assessment method is human
evaluation. All the experimental results in this pa-
per are the statistical average of five crowd-sourced
workers. It should be noted that when evaluating,
we consider Equation 3. If the model makes a
mistake at any intermediate step, even if the sub-
sequent output is correct, we do not take it into
account.

4.7. Results
Table 3 showcases the accuracy of six distinct
models in four key aspects. The results under-
score two pivotal insights: 1. Empowering large-
scale language models to autonomously deter-
mine ‘Whether’, ‘Which’, or ‘How’ through in-context
learning poses significant challenges, even for the
robust GPT-4. Scrutiny of the data reveals a pri-
mary shortcoming of GPT models in discerning
the necessity for tool usage, attributable mainly to
two factors: (1) Hallucination, manifesting as over-
confidence in responding to real-time and factual

queries, among others; and (2) A disregard for pro-
vided candidate tools, deeming them unprocess-
able, especially in image-related queries. 2. Our
methodology markedly exceeds the baseline, es-
pecially compared to the base model, Alpaca, high-
lighting the profound impact of our proposed end-
to-end training on enhancing model performance
significantly. Figure 4 further delineates the varying
performance of these models in selected APIs. For
a comprehensive view, the Appendix will illustrate
the performance metrics of all APIs in a histogram
format. The above result highlights the model’s
ability to generalize across varied instances within
the same domain and API settings, tested against
a standard dataset.

To present a rigorous analysis of model gener-
alization, we consider two distinct but challeng-
ing scenarios. The first scenario pertains to the
model’s capacity to generalize across different do-
mains while employing the same API. We chose
the Bing Search API as a typical example. The
training data covered four specific domains: En-
tertainment, Culture and Art, Politics, and Sports.
The test was then expanded to an extra domain:
Education, not present in the training data. This
enables us to assess the model’s generalization
in an unknown domain with the same API. The
success rate in trained domains is 92%, compared
to 88% in Education. Despite a minor decline, the
high rate persists, indicating the model’s competent
generalization across diverse domains.

The second scenario involves the model’s gen-
eralization ability within the same type across dif-
ferent APIs. To assess this, we remove two multi-
modal APIs: ‘Detect the Given Object’ and ‘Gen-
erate Image Based on Sketch Image’. It is evident
that the baseline model is incapable of correctly
producing the associated call methods of unseen
API. Therefore, we gauge whether the model can
accurately identify the given queries belongs to un-
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solvable problems. Tests showed a 95% average
accuracy for two unseen APIs, demonstrating our
model’s effective knowledge generalization within
the type.

4.8. Ablation

Method How Success
Ours 92.3 91.2
w/o Whether 78.7 75.4
w/o Which 66.4 62.0
w/o Whether+Which 55.6 52.9

Table 4: An in-depth ablation analysis of our ap-
proach.

Table 4 presents the results of our ablation study.
Removing the modeling of ‘Whether’ and ‘Which’
from end-to-end learning, means that the training
dataset lacks text information for ‘Whether’ and
‘Which’, and the model is tasked directly with pre-
dicting ‘How’, leading to a substantial decline in
performance. This highlights the critical nature of
each step in Equation 3 for the success of the end-
to-end learning process. A unified architecture,
together with a standardized template, significantly
enhances the model’s tool learning efficiency.

4.9. Continual Learning

We explored the model’s scalable potential in con-
tinual tool learning. From Table 2, we selected
three APIs—Get Distance, Generate Image Based
On Sketch Image, and Arxiv—as new tools. The
model was first trained using the training set of
other “old” tools. For each new tool, we provided
only 10 samples and set the total continual learn-
ing dataset to consist of 30 data samples. The
ratio of new to old tools strictly followed the guide-
lines in section 3.4, with γ set at 0.5, over three
training epochs. Surprisingly, Table 5 reveals that
with very few annotated samples of new tools, the
model can swiftly master new tools. We attribute
this to a unified framework and standardized tem-
plate. Additionally, the replay strategy ensures that
the model maintains the effectiveness of previous
APIs. Due to space constraints, an analysis of the
impact of sample size and hyperparameters on the
final results will be included in the appendix of the
final version.

4.10. Functionality Overlap

We explore API functionality overlap, highlighting
differences between general APIs like Bing Search
and specialized map APIs. Prioritizing map APIs

Strategy New APIs Old APIs
without Replay 91.6 84.7
with Replay 91.1 90.88

Table 5: The success rate under the scenario of
continual learning.

for geographic responses is crucial. We have dis-
covered that a meticulously curated balanced train-
ing dataset can accomplish this objective. For in-
stance, Bing Search’s ability to answer questions
across diverse vertical domains is emphasized in
the training dataset. This dataset is then crafted
to include as many of these domains as possible,
thereby reducing the model’s dependency on Bing
Search for geographical queries. Conversely, we
keep queries for a specialized map API strictly
geography-related. Our tests indicate that, with
balanced training data for both, the model favors
the map API for geography queries, employing it
in nearly 98% of these cases.

5. Conclusion

In this paper, we explore full autonomy in tool us-
age within Large Language Models (LLMs). Our
approach unifies different types of queries through
the sequential decision-making framework, em-
ploys an efficient dataset construction method, and
integrates new tools and APIs via a dynamic bal-
anced rehearsal strategy. Experimental results
demonstrate that our model has achieved signifi-
cant success, marking a pivotal effort toward more
autonomous AI systems.
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