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Abstract

Conversational Tree Search (Väth et al., 2023) is a recent approach to controllable dialog systems, where domain
experts shape the behavior of a Reinforcement Learning agent through a dialog tree. The agent learns to efficiently
navigate this tree, while adapting to information needs, e.g., domain familiarity, of different users. However, the
need for additional training data hinders deployment in new domains. To address this, we explore approaches
to generate this data directly from dialog trees. We improve the original approach, and show that agents trained
on synthetic data can achieve comparable dialog success to models trained on human data, both when using a
commercial Large Language Model for generation, or when using a smaller open-source model, running on a
single GPU. We further demonstrate the scalability of our approach by collecting and testing on two new datasets:
ONBOARD, a new domain helping foreign residents moving to a new city, and the medical domain DIAGNOSE,
a subset of Wikipedia articles related to scalp and head symptoms. Finally, we perform human testing, where no
statistically significant differences were found in either objective or subjective measures between models trained on
human and generated data.
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1. Introduction

While the breakthroughs of modern Large Lan-
guage Models (LLMs) have made the creation of
new dialog systems much easier, controlling their
generated output remains an open challenge. This
makes LLMs especially unsuitable for sensitive do-
mains, e.g., legal or medical domains, where users
must be able to implicitly trust the system’s output.
In such domains, dialog designers usually have
the choice between implementing an FAQ-retrieval
system or a hand-crafted dialog system.

FAQ systems directly match user queries to
question/answer pairs curated by domain experts,
allowing close control of outputted texts (Wu et al.,
2005). However, as they are single-turn systems
and cannot ask clarifying questions, they are only
able provide general answers, rather than person-
alized content for a specific user and their situation.
Including information for multiple cases in one
answer would make them unapproachably long,
while adding FAQs for each case, would make re-
trieval challenging. Retrieval accuracy itself is an
open challenge (Thakur et al., 2021), creating a
trade-off: Either providing a single, possibly incor-
rect answer to a user’s question, or providing mul-
tiple answers and shifting the burden of selecting
the correct one to the user, which might be chal-
lenging for users unfamiliar with the domain.

Dialog systems, in contrast, allow for turn-based
interactions, which can provide shorter, personal-
ized answers, as well as support users new to a do-
main without enough experience to formulate pre-
cise questions. However, such systems either suf-
fer from longer interactions (for handcrafted sys-

tems), or require large amounts of training data
(Raghu et al., 2021) and lack transparency and
controllability (Gao et al., 2018) (in the case of ma-
chine learning approaches), making them less suit-
able for low-resource settings (Zhang et al., 2020)
or sensitive domains (Cohen, 2020).

Väth et al. (2023) address this problem by
proposing a new type of hybrid dialog task bridging
these two interaction styles, called Conversational
Tree Search (CTS). In this task, dialog experts first
define a dialog tree. An agent then learns to ei-
ther walk the user through each node in the tree, or
to skip over parts not required to answer a user’s
more specific question. In this way, the agent is
able to adapt its behavior to the user’s preferred in-
teraction style, supporting both specific and vague
user queries, without sacrificing the controllability
required in sensitive domains.

However, CTS still requires that dialog design-
ers collect a corpus of real-user utterances, which
poses a barrier to scaling this approach to new
domains, especially for large and complicated do-
mains. The goal of this paper is to remove this
barrier by exploring how CTS can scale to new do-
mains through the use of synthetically generated
training data.

Concretely, we seek to answer the following re-
search questions:

• (RQ1) How can we effectively generate data
for a zero data approach to training CTS
agents?

– (RQ1.1) How can we analyze the quality
of generated data?
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– (RQ1.2) How do agents trained on gen-
erated data perform in simulation, com-
pared to agents trained on human data?

– (RQ1.3) How well do the data generation
techniques transfer to new domains?

• (RQ2) How does a CTS agent trained on gen-
erated data perform with real users compared
to an agent trained on human data?

To address these questions, we investigate how
LLMs can be leveraged to automatically generate
training data for new domains, while at the same
maintaining the controllability aspect of the CTS
task. We compare the quality of different data gen-
eration schemes by evaluating the performance
of Reinforcement Learning (RL) agents trained on
the synthetic data. Then, we test scalability of our
approach to new domains in simulation using mul-
tiple generative LLMs. Finally, we perform user
testing to verify the transferability to real-world use
cases. All code and data is publicly available.1

Our main contributions are: 1) Creating two new
datasets, ONBOARD and DIAGNOSE. 2) Improv-
ing the training procedure for the CTS agent, in-
creasing absolute dialog success by more than
18%. 3) Introducing a new prompting method
for generating diverse data, and demonstrating
that automatic diversity and answerability metrics
can provide insights for downstream dialog per-
formance. 4) Demonstrating that our generation
techniques scale to new domains, where agents
trained on synthetic data show comparable (no sta-
tistically significant difference) or better dialog suc-
cess than agents trained on human data. 5) Show-
ing that success of agents in simulation translates
to successful interactions with real users, with no
statistically significant differences.

2. Related Work

2.1. Task-oriented Dialog Systems
While open-domain dialog systems allow users to
freely talk about any topic without a concrete goal,
task-oriented dialog systems focus on helping a
user reach a specific goal. Many task-oriented
dialog systems use a slot-filling approach, where
the dialog system tries to fill values for a selec-
tion of slots, e.g. cuisine type, that are necessary
to reach that goal from the user (Bobrow et al.,
1977). While slot filling approaches can allow
hand-crafted dialog policies to follow pre-defined
dialog flows (Lucas, 2000), or can help efficiently
narrowing down searches across e.g. database

1https://github.com/DigitalPhonetics/
conversational-tree-search/tree/
generated_v3

rows, such as finding restaurants or getting trip rec-
ommendations (Louvan and Magnini, 2020), they
are usually unable to perform semantic searches
over the dialog domain and in cases of learned sys-
tems, unable to follow a dialog-designer controlled
flow.

2.2. Adaptive Dialog Systems

Research into adaptive dialog systems aims to bet-
ter align dialog system output with user expecta-
tions. Much research in this area uses genera-
tive models to adapt linguistic style, e.g., adjusting
utterances depending on users’ emotional states
(Ma et al., 2020) or personalities (Yang et al., 2018;
Firdaus et al., 2023). However, generative models
are by their nature difficult to control (Dušek and
Kasner, 2020). Some approaches even adapt the
complexity of language (Janarthanam and Lemon,
2014). In order to adapt underlying system behav-
ior, however, additional cues have usually been
required, e.g. social cues like laughter (Ritschel
and André, 2018), or explicit fine-tuning by the user
(Chen and Pu, 2012; Narducci et al., 2018). How-
ever, eliciting such social cues is difficult for text-
based systems and asking for explicit feedback
places extra burden on the user.

2.3. Controllable Dialog Systems

In sensitive domains, it is crucial subject-experts
maintain control of dialog flow to ensure correct-
ness of system outputs. However, purely hand-
crafted systems struggle to handle the breadth
of possible user inputs. To this end, several hy-
brid approaches have been investigated. Early ap-
proaches involved hand-crafting the set of actions
allowed at a given dialog turn (Williams, 2008).
More recent approaches expand on this idea for
neural systems (Williams et al., 2017; Liang and
Yang, 2018; Razumovskaia and Eskenazi, 2019),
where the action space can be constrained using
masks, e.g., by automatically converting expert
designed dialog trees into hybrid code networks
(Shukla et al., 2020). While such approaches help
control dialog agent behavior, they do not provide
a mechanism for skipping portions of a dialog irrel-
evant to a user, which leads to longer interactions
that can be frustrating for users with more domain
familiarity.

2.4. Data Generation and Augmentation

Common data augmentation approaches include
lexical substitution (Wei and Zou, 2019), where to-
kens are inserted, deleted or substituted with se-
mantically similar replacements, as well as back-
translation (Sennrich et al., 2016) where data is

https://github.com/DigitalPhonetics/conversational-tree-search/tree/generated_v3
https://github.com/DigitalPhonetics/conversational-tree-search/tree/generated_v3
https://github.com/DigitalPhonetics/conversational-tree-search/tree/generated_v3
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automatically translated into other languages be-
fore being translated back to the source language.
While such approaches can help to expand an ex-
isting dataset, they still require seed data, which
may not exist for new domains.

To address this, research in, e.g., the field of low-
resource Question Answering (QA) has started ex-
ploring the role of LLMs in data generation (Puri
et al., 2020; Chen et al., 2023). Given a text, LLMs
can be prompted to generate questions about it,
e.g., by asking the model to generate a question
for which a given named entity is the answer (Li
et al., 2023).

However, LLMs are black-box algorithms and
suffer from hallucination (Azaria and Mitchell,
2023; Peng et al., 2023; Manakul et al., 2023). As
such, it is difficult to guarantee that the generated
questions are logical, natural, or answerable by
the original text. Moreover, commonly used auto-
matic evaluation metrics for text generation do not
necessarily correlate with human judgment (Nema
and Khapra, 2018). In light of this, we explore dif-
ferent generation strategies and techniques for an-
alyzing the artificial data quality, rather than trust-
ing a single metric.

A recent approach in the dialog community
trains a model for generating synthetic dialog acts
and user utterances for flowchart-grounded trou-
bleshooting dialogs (Zhan et al., 2023). While this
method also relies on the domain representation
in form of a structured graph, our generation ap-
proach does not require any model training, nor
any training data besides the domain graph itself.
Additionally, CTS is not limited to the specific task
format of trouble-shooting dialogs.

2.5. Conversational Tree Search

The goal of CTS, as outlined by Väth et al. (2023),
is to train an RL agent to traverse a dialog tree,
guiding a user to the answer for a given question.
By using fixed system outputs (which can be per-
sonalized via a template mechanism), and by pre-
venting skipping between branches of the dialog
tree, the CTS task allows subject-experts to main-
tain controllability.

At the same time, the trained agent can adapt
its behavior to different interaction styles, based
on the users’ utterances. CTS proposes two sub-
tasks: guided mode and free mode, representing
the extreme cases of information seeking scenar-
ios, as well as the interpolation between. Guided
mode supports users unable to formulate their in-
formation need as a specific question, by guiding
them step-by-step through each node in the dialog
graph (e.g., new users not familiar with a domain).
In contrast, free mode aims to support users with a
specific question by learning to skip over as many

Figure 1: Example of the CTS agent adapting its
behavior based on the information content of the
initial user utterance (Väth et al., 2023).

nodes as possible, while still clarifying the informa-
tion need enough to deliver an appropriate and per-
sonalized answer. Figure 1 shows three example
dialogs for the same user goal, and how a CTS
agent would adapt to each scenario, deciding to
output or skip nodes as needed.

Training is performed against a simulated user,
which represents the RL environment. For each
simulated dialog, a random goal node is drawn
which the simulated user is trying to reach, by ask-
ing questions or responding to system requests.

3. Datasets

To investigate the scalability of our data genera-
tion techniques, we examine the performance of
the CTS agent on three new datasets, and com-
pare to the original REIMBURSE dataset from
Väth et al. (2023). In contrast to the REIMBURSE
dataset, the goal of all new datasets is to serve as
a zero-data test-bed for testing training and testing
models on data generated directly from the nodes
themselves. While we do provide a test and a train
set, like that in REIMBURSE, the goal of this is to
allow for the training of reference models to act as
a benchmark for models trained entirely on gener-
ated data.

3.1. REIMBURSE
The REIMBURSE dataset as proposed by Väth
et al. (2023) is a German language dataset for the
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Dataset Split #Nodes Tree
Depth

Max. Node
Degree

#User
Questions

Avg. User
Questions

#Answer
Paraphrases

Avg. Answer
Paraphrases

REIMBURSE Train 123 32 14 279 3.5 246 3.4
Test 173 2.2 162 2.2

REIMBURSE-En Train 123 32 14 279 3.5 246 3.4
Test 173 2.2 162 2.2

DIAGNOSE Train 98 10 6 219 2.9 298 3.0
DIAGNOSE Test 150 2.0 298 3.0
ONBOARD Train 88 15 9 141 2.4 175 3.1
ONBOARD Test 117 2.0 152 2.7

Table 1: Overview of original REIMBURSE, translated REIMBURSE-En, and newly created ONBOARD
and DIAGNOSE datasets (numbers rounded to one decimal).

CTS task. It is a challenging real-world dataset in
the travel reimbursement domain, created with do-
main experts. Along with the dialog tree, questions
and answer paraphrases were collected from real
user interactions. These questions and answer-
paraphrases have been split into a train and test
set which can each be used by the provided user
simulator to generate an arbitrary number of simu-
lated dialogs. A breakdown of the dataset statistics
can be found in Table 1.

Although we do not train any new models on this
dataset, we use it as a benchmark to compare the
performance of our agents to.

3.2. REIMBURSE-En

In order to make the CTS task more accessible
to a wider audience, we choose to translate the
REIMBURSE dataset to English. Additionally, this
opens up more options for language models and
resources, which might not have been available for
the original German data. This dataset represents
a direct translation of the REIMBURSE dataset,
sharing all of the same characteristics, in order to
allow for comparisons to the findings of the original
CTS paper. The translation was performed manu-
ally by a bilingual domain-expert in order to obtain
a faithful and factually correct English equivalent.
Dataset statistics are shown in Table 1.

3.3. DIAGNOSE

The DIAGNOSE dataset was created for the med-
ical domain. It was designed to help users identify
different medical conditions based on symptoms,
as well as to find out more about treatment options
and risk factors. The dataset is based on a small
subset of Wikipedia articles about conditions re-
lated to scalp and head symptoms. DIAGNOSE
was designed to be comparatively easy. Even
though the node texts contain a large amount of
domain-specific vocabulary, the dialog tree has a
lower maximum node degree and a shallower tree
depth than REIMBURSE-En. Additionally, the di-
alog graph for this domain does not contain any

variable- or logic nodes. A breakdown of dataset
properties can be found in Table 1.

An example node and associated questions can
be seen below:

NODE TEXT: Anemia symptoms include fa-
tigue, pale skin and gums, blue color in
the whites of the eyes, brittle nails, ir-
ritability, dizziness, sore tongue, short-
ness of breath, unusual food cravings,
and headache.

QUESTION 1: What are symptoms of anemia?
QUESTION 2: How do I know if I have anemia?
QUESTION 3: Is a sore tongue a common

symptom of anemia?

3.4. ONBOARD
The ONBOARD dataset provides users with infor-
mation about moving to a new city in a foreign
country, and the legal and financial steps they
will need to undertake, i.e., setting up bank ac-
counts, acquiring health insurance, applying for re-
quired visas or residence permits, etc. This do-
main presents an additional challenge as it con-
tains code-switching for topics related to legal is-
sues, in order provide users with official names for
documents, concepts, and institutions. Similar to
the REIMBURSE dataset, the dialog tree for ON-
BOARD contains multiple variable nodes and sev-
eral logic nodes. A breakdown of the dataset statis-
tics can be found in Table 1.

An example of a a dialog node and test ques-
tions is given below.

NODE TEXT: The registration office will pro-
vide you with a confirmation of your regis-
tration [Meldebestätigung], which you will
need for opening a bank account and for
obtaining a residence permit (if applica-
ble).

QUESTION 1: Where do I get confirmation that
I’ve registered my address?

QUESTION 2: What do I need the confirmation
of registering my address for?
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4. Dialog Agent Implementation

For our RL dialog agent, we follow the architecture
and training process outlined in (Väth et al., 2023)
with the following changes:

1) We swap the original language model for
an MPNET (Song et al., 2020) based Sentence-
Transformer (Reimers and Gurevych, 2019), as
the new datasets we introduce are in English, and
it reports the highest average performance of pre-
trained Sentence-Transformers for English.

2) In contrast to free mode, rewards for guided
mode only considered whether the agent moved
to the correct next node, rather than checking that
a global goal was reached by the end of the dia-
log. After analyzing conversations between CTS
agent and user simulator obtained by the original
implementation, we believe it is more realistic that,
even in guided mode, users would have a consis-
tent question they wanted answered. Therefore,
we now draw global goals for guided mode users
(a node anywhere in the graph) instead of choos-
ing one of the immediate neighboring nodes as
the next goal each turn. We then assign a large
reward to reaching the global goal. At the same
time, we keep a small positive reward for skipping
to the correct follow-up node along the sampled
trajectory, as a sequence of locally correct deci-
sions (reaching a correct immediate neighbor) im-
plies global correctness (reaching the correct goal
node). These changes result in a harsher evalu-
ation metric for dialog success, since e.g. in a 5-
step dialog, following a correct trajectory, but miss-
ing the final goal in the last turn, will now result in
a failed dialog (0% success) instead of a partially
successful dialog (80% success), which we con-
sider to be more realistic.

3) Finally, the original CTS agent was trained
jointly on navigating the graph and on predicting
the appropriate interaction style (intent). Here, we
scale the loss of the interaction style prediction ob-
jective down to 0.1 to emphasize learning Q-values
as the main task: L = Lddqn +0.1Lintent. We found
this had no significant impact on the interaction
style prediction F1 score.

4) We tune several other hyperparameters, in-
creasing the batch size from 128 to 256, and the
training steps from 1.5e6 to 2e6.

All hyperparameters for training the dialog agent
are listed in Appendix A.

5. Data Generation Methods

As the user simulator from Väth et al. (2023) re-
quires both, initial user questions and per-node
user responses, we explore methods for gener-
ating both of these types of utterances. We test
these generation methods with a small LLM, and

with a large commercial one, both of which can pro-
cess separate system and user input directives.

5.1. Question Generation
Method 1 The first method, GenV 1, is a naive
prompt instructing an LLM to generate diverse,
FAQ-style questions about a given dialog node’s
text via the system directive. The amount of ques-
tions to generate and the node context are then
given via user input (see Table 2).

Method 2 For GenV 2, we use the same user in-
put, but change the system directive to explicitly
generate shorter questions (Table 2).

Method 3 For the last method, GenV 3, we were
inspired by Li et al. (2023) and Chen et al. (2023),
who use Named Entity Recognition (NER) to steer
question generation. However, these approaches
only generate cloze questions, where the named
entity is the answer, severely limiting the diversity
of generated questions (Puri et al., 2020). There-
fore, we develop a novel mixed method to increase
question diversity. We first generate 3 questions
about the whole node text using the Method 2, to
get a basic coverage of the node. Then, we per-
form NER and explicitly prompt the LLM to gener-
ate three questions about each entity –instead of
forcing the entities to only be the answer– using a
second set of prompts (see Table 2). If the total
number of generated questions is lower than 10,
we generate the difference using Method 2.

5.2. Response Generation
To generate responses, we extract all nodes re-
quiring user input from the dialog graph. Then,
we instruct the LLMs to generate 5 paraphrases
for each possible answer prototype, in the context
of the full node text (Table 3; A). Additionally, to
mimic different user interaction styles, we instruct
the LLMs to generate 5 paraphrases of the the re-
sponses using only keywords (Table 3; B).

6. Experimental Setup

6.1. RQ 1.1: Analysis of Generated Data
We generate data using the methods described
in sections 5.1 and 5.2. We use two different
LLMs: ChatGPT (gpt-3.5-turbo, via API) 2 and a
LLAMA-based (Touvron et al., 2023), instruction
fine-tuned and quantized model 3 that fits onto a

2https://platform.openai.com/docs/
models/gpt-3-5

3https://huggingface.co/TheBloke/
upstage-llama-30b-instruct-2048-GPTQ

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://huggingface.co/TheBloke/upstage-llama-30b-instruct-2048-GPTQ
https://huggingface.co/TheBloke/upstage-llama-30b-instruct-2048-GPTQ
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Method Role Context Prompt

V1 System Node text

You are a truthful assistant, generating diverse FAQ-style questions given some facts.
The generated questions should be answerable using the given fact only, without
additional knowledge. The questions should also be human-like. Try to vary the
amount of information between questions. Present the results in a numbered list.

User Node Text Generate 10 FAQ-style questions about the given facts: “{NODE TEXT}”.

V2 System Node Text

You are a truthful assistant, generating diverse FAQ-style questions given some facts.
The generated questions should be answerable using the given fact only, without
additional knowledge. The questions should also be short and human-like. Try to vary
the amount of information between questions. Present the results in a numbered list.

User Node Text (same as V1)

V3 System Node Text (same as V2)
User Node Text, NER Generate 3 questions about the entity “{NER}” from the fact: “{NODE TEXT}”

Table 2: Prompt templates for generating synthetic question data.

Method Role Context Prompt

A System Node text
You are generating semantically similar paraphrases for a given response to some
question. The generated response paraphrases should be human-like and short, using
frequently used words and phrases only. Present the results in a numbered list.

User Node Text Generate 5 paraphrases for the response “{RESPONSE TEXT}” to the question
“{NODE TEXT}”

B System Node Text You are shortening a given response to some question into a keyword-like prompt.
Present the results in a numbered list.

User Node Text, NER Generate 5 options for shortening the response “{RESPONSE TEXT}” to the question
“{NODE TEXT}”

Table 3: Example of prompting method for generating synthetic user response data.

single NVIDIA GeForce RTX 3090 graphics card.
GenV 3 uses Stanza (Qi et al., 2020) for NER.

To calculate question similarity, we use the
Sentence-Transformer model from section 4. An-
swer confidence scores are calculated with a QA
model 4 pretrained on the SQUAD2.0 dataset (Ra-
jpurkar et al., 2018), using a generated question
and associated node text that is supposed to con-
tain the answer as inputs. Finally, we measure di-
versity using Self-BLEU (Zhu et al., 2018) scores.

6.2. RQ 1.2: Human Data vs. Synthetic
Data

For automatic evaluation, we use the updated CTS
user simulator (section 4) with 500 randomly cho-
sen dialog goals on the REIMBURSE-En test split.
We evaluate not only the combined success rate
(average between guided and free mode success),
but also present a metric representing the user’s
perceived dialog length, which counts only the
nodes shown to the user.

6.3. RQ 1.3: Method Generalizability

To evaluate how well our data generation method
generalizes to new domains, we perform addi-
tional evaluation in simulation, analogous to (sec-
tion 6.2), using the test splits of the new datasets
ONBOARD and DIAGNOSE.

4https://huggingface.co/deepset/
roberta-large-squad2

6.4. Human Evaluation (RQ 2)
To understand how performance of an agent
trained on generated data translates to real-world
users, we recruit 44 participants from the crowd-
sourcing platform Prolific5 to take part in hu-
man evaluation. Participants were native English
speakers with varying experience with business
travel (self-rating between 2 and 5 on a 5 point
Likert-scale). They were compensated at the plat-
form recommended rate of 9£/hour. The experi-
ment took roughly 20 minutes.

Study Design We asked each participant to in-
teract with either a CTS agent trained on real data
or one trained on generated data in the REIM-
BURSE domain. Apart from demographic infor-
mation, we ask for previous experience with dia-
log systems and with business travel. During the
experiment, participants were asked to complete
three conversations with their assigned dialog sys-
tem. Each conversation, they were randomly as-
signed a new goal, covering one of three expected
interaction styles: 1) “open” goals representing a
general/vague information need, 2) “easy” goals
representing a concrete information need, and 3)
“hard” goals representing a concrete information
need requiring personalized information to cor-
rectly answer. Personalized information refers to
the user’s specific circumstances, e.g. trip dura-
tion or funding organization, which can change
the dialog flow. Between each dialog, users were

5https://www.prolific.com

https://huggingface.co/deepset/roberta-large-squad2
https://huggingface.co/deepset/roberta-large-squad2
https://www.prolific.com
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asked to rate their subjective perception of dialog
length and how well their question was answered.
After the interaction, they were asked rate the us-
ability of the dialog agent, how much they trusted it,
and its reliability. For more details see Appendix B.

6.4.1. Evaluation Metrics

The perceived dialog length was measured on a
5-point scale from 1 (much too short) to 5 (much
too long). Perceived success was measured on a
4-point scale, where users were asked to rate how
well their question had been answered from 1 (not
at all) to 4 (completely). Additionally, the objective
dialog length and success condition were logged
for each dialog. Usability of the dialog agent was
measured using the Universal Measure of User Ex-
perience scale developed by Finstad (2010). User
trust was measured using the reliability and trust
subscales from Körber (2018)).

7. Results & Discussion

Before testing performance of agents trained on
generated data, we first verify our changes to the
CTS agent. As the hyperparameters for the origi-
nal agent were tuned on the German dataset, for
fairness, we report the original CTS agent’s perfor-
mance on both English and German (Table 5).

Our changes to the CTS agent improve the
combined success rate by over 10% compared to
the original agent on the German REIMBURSE
dataset and 18% for the English REIMBURSE-En.
It should be noted that the actual improvement
over the German agent is likely larger, as the suc-
cess metric reported for German comes from (Väth
et al., 2023), rather than the new and harsher met-
ric we use for English (section 4).

7.1. RQ 1: Transitioning to a Zero Data
Approach

RQ 1.1 Analyzing the quality of generated data
Looking at the question lengths between human
data and data generated by GENV 1 (Figure 2),
we observe that the generated questions seem to
be longer than human questions. When manually
inspecting the generated questions, we also find
them to be much less natural than those from the
human data.

We amend the original prompt used, creating
GENV 2, to explicitly ask for short outputs (subsec-
tion 5.1) in an effort to align the syntax of the gen-
erations better with the human data. This change
to the prompt shifts the distribution of question
lengths more towards the human training distri-
bution, and qualitatively yields more natural utter-
ances. However, it still does not ensure that the
artificial data is semantically similar to human data.

Figure 2: Smoothed density plot of question
lengths from human data and generated data.

Figure 3: Smoothed density plot of question simi-
larities between human generated training data.

To investigate how semantically similar the gen-
erated questions are to human data, we calculate
the pair-wise similarities between all human and
generated questions for each node from the dialog
graph, and then average the similarities across all
nodes (Figure 3). Here, we see that the GenV 2

data is still quite distinct from the human data.
When manually inspecting the generations, we

find that generated questions tend to focus only on
one part of the node text, making them lack diver-
sity and omit topics real users might ask about. To
address this, we develop the novel two-step GenV 3

prompt, steering the model to explicitly ask about
all named entities in a node (subsection 5.1). We
see that doing so significantly (p < 1.82e − 11) in-
creases the similarity of the generated (avg.: 0.52)
to the human training data than GenV 2 (avg.: 0.47),
as measured with a standard t-test.

We also look at the diversity of the generated
questions. The self-BLEU scores (Table 4) show
that the GenV 3 data are the most diverse. This
metric can be used to analyze the quality of the
generated data even in the absence of human
comparison data.

Training Data n-1 n-2 n-3 n-4 n-5
Human 0.78 0.68 0.60 0.54 0.49

V1 0.95 0.92 0.87 0.83 0.80
V2 0.95 0.90 0.85 0.80 0.76
V3 0.85 0.78 0.71 0.66 0.62

Table 4: Self-BLEU scores for different n-gram
sizes on human and generated data.
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Model Training
Data

Avg. Perceived
Length (guided)

Avg. Perceived
Length (free)

Success
(combined)

Dialog Mode
Prediction F1

Dialog Mode
Prediction Consistency

Original human (GER) n/a n/a 62.58% 0.85 1.0
Original human (EN) n/a n/a 55.28% 0.86 0.87
Ours human (EN) 13.56 2.95 73.86% 0.94 0.96
Ours V1 (LLAMA) 13.53 3.41 64.17% 0.98 0.97
Ours V2 (LLAMA) 11.71 3.65 65.02% 0.98 0.95
Ours V3 (LLAMA) 12.89 3.45 69.44% 0.96 0.95
Ours V1 (ChatGPT) 13.02 3.65 64.35% 0.98 0.97
Ours V2 (ChatGPT) 14.55 3.71 66.67% 0.95 0.97
Ours V3 (ChatGPT) 12.87 3.59 68.41% 0.98 0.97

Table 5: Simulation results on REIMBURSE(-En) test splits of original CTS agent (German), our improved
agent (English), and our CTS agent trained on generated data only (English).

In conjunction with diversity, we estimate the av-
erage “answerability” via QA confidence scores of
the generated questions, given the node text as
answer. Here, we also see that the improvements
from GenV 3 and GenV 2 together also significantly
(p < 0.0003) increase the average answerability,
from an average of 0.36 with naive prompt to 0.42
with GenV 3, according to a t-test.

When looking at downstream performance (Ta-
ble 5), we see that improvements in these metrics
also lead to higher dialog success, suggesting they
can be used as an indicator of generation quality.

RQ1.2: Human Data vs. Synthetic Data To in-
vestigate whether synthetic data can be a viable
alternative to human data, we compare agent per-
formance in simulation. From Table 5, we see that
the best performing agent trained on artificial data
(GenV 3: 69.44% success) performs comparably to
the best performing agent trained on human data
(CTSours: 73.86% success). Using a standard t-
test, we find no statistically significant difference.

RQ1.3: Generalizing to new domains To test
of the scalability of our generation methods, we an-
alyze model performance on two new domains. As
each of these has their own challenges (section 3),
we compare each model trained on generated data
to a baseline trained on human data.

When looking at Table 6, the agent trained on
data generated by LLAMA is again nearly able
to match the performance of the model trained
on human data for the DIAGNOSE dataset, while
the model trained on data generated by ChatGPT
surpasses it. On the other hand, the ONBOARD
dataset may present a more challenging domain,
due in part to the code-switching present in the dia-
log nodes. Despite this, the model trained on data
from ChatGPT nearly reaches the performance of
models trained on human data.

Based on this, we find that the generation tech-
niques do appear to scale to new domains, as t-
tests show no statistically significant differences
between the best synthetically trained agents and
the agents trained on real data in any domain.

7.2. RQ 2: Human Evaluation

7.2.1. Generated vs. Real Data

After performing human evaluation, we find that
there are no statistically significant differences (us-
ing a standard t-test) between either subjective or
objective measures of success or dialog length (Ta-
ble 7). Additionally, we find no difference in the re-
ported trust, reliability, or usability scores between
either group. This suggests that there is no human-
observable loss in performance when using gener-
ated data compared to real data, either in terms of
objective metrics or subjective metrics.

7.2.2. Human Evaluation vs. Simulator

Finally, to validate our updated user simulator, we
additionally compare the objective performance
metrics from the human evaluation (Table 7) to
those obtained in simulation (Table 5). We find
that the success rates between the simulated and
human dialogs are very comparable (73.86% and
77.59% respectively for the model trained on hu-
man data, and 69.44% and 72.73% for the model
trained on generated data). We perform statistical
analysis using Welch’s t-test to account for the dif-
ference in sample size, and find no significant dif-
ference, regardless of the source of training data.

Based on this, we conclude that results from
simulation translate well to real human interaction,
suggesting the simulator can be a good proxy for
real user evaluation. We therefore expect the re-
sults reported in (Table 6) will translate to similar
performance with real users.

8. Conclusion

In this paper, we present two new and publicly
available datasets, ONBOARD, providing help for
moving to a new city in a foreign country, and DI-
AGNOSE, a medical domain. The datasets each
consist of a dialog tree and human-collected text
inputs.

We apply a harsher, more realistic evaluation
metric and improve on the agent training method
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Domain Training Data Avg. Perceived Length (guided) Avg. Perceived Length (free) Success (combined)
DIAGNOSE human 6.42 2.29 76.31%
DIAGNOSE V3 (LLAMA) 6.62 2.95 71.08%
DIAGNOSE V3 (ChatGPT) 5.65 2.46 85.12%
ONBOARD human 7.88 2.98 73.61%
ONBOARD V3 (LLAMA) 7.91 3.52 63.38%
ONBOARD V3 (ChatGPT) 7.60 3.58 70.72%

Table 6: Performance of CTS agents trained on human and generated data on the new domains DIAG-
NOSE and ONBOARD in simulation.

Training
Data # Turns Success Perceived

Length
Answer

Satisfaction
Human 6.14 77.59 2.88 2.93

V3 5.27 72.73 2.65 2.73

Table 7: Average objective and subjective perfor-
mance metrics of a CTS agent trained on human
data vs. generated data.

from the original CTS (Väth et al., 2023), increas-
ing dialog success by over 18%.

Given a dialog tree, we explore several zero-
data prompting-based methods for generating
user utterance data to train a CTS agent, devel-
oping a novel two-stage prompting approach to in-
crease question diversity. Through this process,
we find that automatic scores for diversity and an-
swerability can be indicative of downstream dialog
task performance.

Furthermore, we show that there is no statisti-
cally significant difference in objective metrics be-
tween agents trained on human data or on gen-
erated data in the REIMBURSE-En domain. We
verify this both through simulation and through test-
ing with real users. User evaluation further reveals
no statistically significant differences on subjec-
tive metrics (trust, reliability, usability, subjective
length, or subjective dialog success) either. This
suggests that we can effectively generate training
data from a dialog tree, such that CTS agents can
be trained in zero data settings with negligible per-
formance loss. We also find that the size of the
tested LLMs does not result in significant differ-
ences in task performance.

To evaluate how well our techniques scale to
new domains, we further tested agent perfor-
mance on both new datasets we introduced. For
ONBOARD, we again find that performance of
agents trained on generated data is comparable
to that of agents trained on human data. For DI-
AGNOSE, performance can even exceed that of
the agent trained on human data. This suggests
that our methods scale well to new domains.

9. Ethical Considerations

To ensure that users could give informed con-
sent, we provided a detailed description of the task

and research objectives both on the crowdsourc-
ing platform and once they had accepted the task.
In respect of participant privacy, we specifically
did not collect personally identifying data from any
users. To this end, we store all logs and survey
responses using an anonymous hash generated
based on a given username, rather than with the
username itself. In this way, users could log in
again if they needed to take a break in the middle
of the interaction, but we had no way of directly link-
ing any recorded results to, e.g., users’ Prolific ac-
count identifiers. To ensure that participants were
fairly compensated, we followed best practices rec-
ommended by the crowdsourcing platform paying
users at 9£/hr. We additionally used our pilot study
to verify that our estimated time was below the me-
dian time we selected when advertising the task.

10. Limitations

While we try to cover many different real-world use
cases with the presented domains, we cannot ac-
count for the challenges of all possible future do-
mains. Additionally, although our work removes
the necessity to collect training data, creating a
dialog tree is still required (which may be large
for complex domains). Finally, replicating the ex-
act data generated and analyzed in this paper de-
pends on the specific versions of the LLMs used.
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A. Reinforcement Learning Agent Training Parameters

Parameter Value
Optimizer Adam

Learning Rate 1e−4

λ 0.1
Maximum Training Dialog Turns 2M

Max. Gradient Norm 1.0
Batch Size 256

γ 0.99
Exploration fraction of Training Turns 0.99

Exploration Scheme ϵ-greedy
ϵ start 0.6
ϵ end 0.0

Training frequency (w.r.t. dialog turns) 3
Training start (w.r.t. dialog turns) 1280

DDQN Target Network update frequency (w.r.t. training steps) 15
Q-Value clipping 10.0
Munchausen τ 0.03
Munchausen α 0.9

Munchausen Clipping −1
Evaluation frequency (w.r.t. dialog turns) 10000

Evaluation dialogs 500

Table 8: Hyperparameters for training the Reinforcement Learning agents.
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B. User Study

B.1. Data Agreement
Before beginning the experiment, users were provided with a data agreement. Although we did not
collect any personally identifying data, we wanted to make sure that users were aware of what they
would be asked to do, the purpose of the research, what data we would collect and how the data would
be processed.
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B.2. Study Instructions
During the interaction, users were provided with the following interface, on the right side they had an
information goal for which they should find an answer. On the left side, they had a window with their
conversation with the chatbot. Once they felt they had found an answer to their question, they could click
on the button underneath the goal to move on to the next dialog.
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B.3. Interaction Surveys
B.3.1. Pre-Interaction Survey

The survey given to users before the interaction can be seen below. Here they were asked general
questions about their demographics, previous experience with the domain and chatbots.

B.3.2. Post-Dialog Survey

After each interaction, users were asked to rate their perception of the dialog length on a five-point Likert
scale and their perception of how well their question was answered on a four-point Likert scale.
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B.3.3. Post-Interaction survey

The survey given to users after interacting with their assigned style of chatbot can be seen below. Users
were asked to fill out a usability questionnaire (Finstad, 2010) and the trust and reliability subscales from
the trust in automation questionnaire (Körber, 2018).
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