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ABSTRACT
Contemporary NLP has rapidly progressed from

feature-based classification to fine-tuning and
prompt-based techniques leveraging large lan-
guage models. Many of these techniques re-
main understudied in real-world, clinically en-
riched spontaneous dialogue. We fill this gap
by systematically testing the efficacy and perfor-
mance of varied NLP techniques on transcribed
speech collected from patients with bipolar disor-
der, schizophrenia, and healthy controls taking a
focused, clinically-validated language test. We ob-
serve impressive utility of feature-based and lan-
guage modeling techniques, finding that these ap-
proaches may provide a plethora of information ca-
pable of upholding clinical truths about these sub-
jects. Building upon this, we establish pathways
for future research directions in automated detec-
tion and understanding of psychiatric conditions.

1. Introduction

The use of NLP to support mental healthcare
has gained prominence recently with research
focusing on a variety of conditions including
schizophrenia (Kalbitzer et al., 2014; Krishna et al.,
2012), mood disorders (Lin et al., 2016; Pantic
et al., 2012), personality disorders (Rosen et al.,
2013), eating disorders (Mabe et al., 2014) and
others (Turcan and McKeown, 2019a; Tadesse
et al., 2019; Zirikly et al., 2019a; Morales et al.,
2018). The promising capabilities of these ap-
proaches have been demonstrated using a range
of techniques—for instance, Singhal et al. (2022)

showed that LLMs with sizes up to 540B parame-
ters can encode clinical and medical knowledge.
Most NLP work towards mental health support
has thus far focused on social media (e.g., Twit-
ter (Kang et al., 2016) or Reddit (Yan et al., 2019))
rather than clinically-enriched data, extracting and
annotating user data based on social features
deemed relevant by technical researchers but not
necessarily validated by clinicians. Consequently,
the question of whether these reported NLP tech-
niques hold relevance for clinical data still requires
thorough investigation. In this paper, we compre-
hensively and empirically investigate this question
using a clinically enriched dataset drawn from ac-
tual patient dialogues and their performance on
standardized clinical tests.

Our dataset includes patient-psychologist con-
versations between 644 participants categorized
based on their status as healthy control (HC) par-
ticipants or participants with schizophrenia (SZ) or
bipolar disorder (BD). Each participant engaged in
a focused test during which they conversed for ap-
proximately four minutes across two scenarios. A
previous paper introducing this dataset (Aich et al.,
2022) established a feature-based performance
benchmark, but did not provide details about fea-
ture importance or participant demographic trends,
nor did it apply more contemporary LLM-based
models to the task. Our contributions are:

• We systematically and comprehensively an-
alyze these features and their significance
across age and gender demographics.

• We assess feature-based statistical signifi-
cance and importance when differentiating be-
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tween feature groups.

• We use an encoder-based topic model to ex-
tract relevant topics from participant dialogue
to visualize and confirm clinical observations.

• We show that large language model (LLM) set-
tings can find patterns in subject dialogue.

Taken holistically, our work demonstrates how a
range of more traditional and recent NLP methods
can be leveraged to understand and work with clin-
ically enriched spontaneous dialogue.

2. Data

We collected our data by audiorecording 644 par-
ticipants as they took a standardized clinical test
known as the social skills performance assess-
ment (SSPA) (Patterson et al., 2001b). The SSPA
is a conversational test designed to delineate so-
cial skills across multiple dimensions. Our partici-
pants were recruited based on their confirmed di-
agnoses of specific clinical conditions and medical
histories, with the exception of those categorized
as healthy controls (Aich et al., 2022). Participants
were thus grouped into three categories: peo-
ple with schizophrenia (referred to as SZ hereon;
n=247), people with bipolar disorder (BD; n=286),
and healthy controls (HC; n=110).

The SSPA has proven to be a useful and bias-
free assessment and a strong predictor of social
performance, and it has served as the basis of clin-
ical rehabilitation-based work (Leifker et al., 2010;
Miller et al., 2021). It includes two improvisational
scenes, each of which involve a participant con-
versing with an interviewer (a trained psychologist).
The scenes probe for specific but different informa-
tion. The conversations were audiorecorded and
later transcribed, and the transcribed dialogues
were annotated by clinical professionals across dif-
ferent social skills dimensions corresponding to
content relayed in the conversation.

The first scene seeks to facilitate a friendly inter-
action, to assess the social appropriateness with
which the participants introduce themselves and
engage in conversation. The participant is asked
to imagine that they have just moved into a new
neighborhood and must introduce themselves to
a new neighbor. The second scene seeks to fa-
cilitate a confrontational interaction. Participants
are given a focused, defined objective: They are
told to imagine that they have a leaky pipe in their
apartment which has not been fixed for a while,
and they need to complain to their landlord and
get it fixed. Dual annotation by clinical profession-
als across the SSPA skills dimensions achieved
strong (κ > 0.8) inter-annotator agreement scores.

In our earlier work (Aich et al., 2022), we estab-
lished dataset validity using a binary classification

Group A Group B

Positive Score Personal pronouns
Preposition Authentic
Drive Diction
Achieve Linguistic
Cognition Function
Cause i-pron
Discrepancy Friend
Non Fluency Quantity
Filler Words Certitude
All Punctuations Sad Emotion

Death
Moral
Adjectives

Table 1: Features showing statistically significant
differences between age groups, indicating the
group with higher feature values.

benchmark to discriminate between pairs of sub-
ject groups. The classifier was trained using 138
extracted linguistic features. We only ran experi-
ments using half of the data (n=300 subjects), and
since our focus was on data validation and estab-
lishing proof of concept, we did not study individual
feature importance or significance. Here, we per-
form a more thorough set of experiments across
the full SSPA dataset to deepen our insights re-
garding this task. We incorporate metadata per-
taining to age and gender demographics, and ex-
periment with LLM-based methods to demonstrate
the ability of contemporary NLP approaches to re-
veal clinical patterns in a rich dataset.

3. Analysis of Linguistic Differences
Between Participants

We sought to discern and differentiate the linguis-
tic patterns among participants across Age, Gen-
der, and Diagnoses. To do so, we extracted our
original 138 linguistic features (Aich et al., 2022)
and studied their group-level differences. Briefly,
these features include temporal, sentiment, psy-
cholinguistic, lexical, and emotional characteris-
tics. Examples of specific features within these
groups include the recorded time taken to com-
plete a task or utterance, the overall sentiment of
a conversation, features derived from specific lex-
icons or tools such as the Linguistic Inquiry and
Word Count (Boyd et al., 2022a, LIWC), and vari-
ous measures of lexical diversity (Mass, 1972).

3.1. Age
For age-based analysis, we grouped participants
into two categories depending on whether they
were greater than or equal to 50 years old: Group
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Female Male

Numbers Universal Quantifiers
Negative Tone Insight
Positive Tone Discrepancy
Swear Words Focus Present
Time Focus Future
Social Behavior Netspeak
Conflict Non Fluency
Exclamation Punctuation
TTR Maas Lexical Diversity
Summer Female
Anticipation Male
Conjunctions
Herdan
Dugast

Table 2: Features showing statistically significant
differences between gender groups, indicating the
group with higher feature values.

A (age < 50) and Group B (age ≥ 50).1 We com-
puted standardized t-tests to find features with sig-
nificantly different values between the two groups,
allowing us to determine the association between
linguistic traits and age and more fully understand
how this demographic dimension may influence
predictive models trained on the SSPA data. In Ta-
ble 1, we highlight features that were found to have
significantly different values between groups, indi-
cating the group for which the feature value was
higher. We observe that participants in Group A
used more cognition-related words than those in
Group B, aligning with Koch et al. (2022) which
demonstrates a negative correlation between age
and causation.

3.2. Gender
For gender-based analyses, we divided partici-
pants into two groups: male and female.2 We
tested feature correlation with both genders, and
features with the highest correlation were com-
pared using t-tests to assess group-level statisti-
cal significance. We show the dominant groups for
statistically significant features in Table 2. We ob-
serve that males used more universal quantifiers
(e.g., “all” or “nothing” words), present tense and
future tense words, exclamations, and anticipatory

1This division reflects that used to originally define
elderly SSPA participants (Patterson et al., 2001a).

2Participants may hold diverse gender identities. We
asked participants to self-report their own gender, and
all except one reported their gender as Male or Female.
The remaining participant wrote “3,” and we excluded
this participant’s data from analyses reported in this sub-
section since a single data point is an insufficient basis
from which to draw conclusion.

speech. We observed that females had higher
insight scores, discrepancy in speech, and senti-
ment and affect in speech. These findings sup-
port clinical observations such as that of Fast and
Horvitz (2016), which shows that women verbalize
more cognition and can more easily characterize
non-dogmatic language.

3.3. Diagnoses

To analyze features across diagnostic groups (BD,
SZ and HC), we first computed mean values for
each feature, for each group, and then extracted
features that exhibited statistically significant dif-
ferences between their group-based means. We
elaborate on this process below.

3.3.1. Determining Feature Significance

We extracted 138 linguistic attributes from the
SSPA dataset, all of which were represented as
normally distributed continuous values. Ross and
Willson (2017) suggest that having a sample size
greater than or equal to 30 decreases the chance
of making a Type 2 error, and in our case each
diagnostic group had > 30 samples. Each of
the three groups was also independent of the oth-
ers, thus satisfying all assumptions for the analy-
sis of variance (ANOVA) test (Parab and Bhalerao,
2010). We perform one-way ANOVA tests to an-
alyze the differences between groups of partici-
pants with different mental health diagnoses.

In ANOVA, a large F-value suggests that the
group means are more spread out, indicating that
at least one group might be significantly different
from the others; conversely, with small F-values
the data points within each group are more dis-
persed, making it harder to detect significant differ-
ences. The ANOVA test derives a p-value by com-
paring the resulting F-value with the F-distribution
using the appropriate degrees of freedom (Bewick
et al., 2004). If the p-value is less than a specified
threshold (typically < 0.05), the null hypothesis is
rejected, suggesting a statistically significant differ-
ence between at least one pair of the group means.
We used the statsmodels module in Python to
implement the ANOVA test.

3.3.2. Differentiating Diagnostic Groups

While one-way ANOVA identifies whether there
are any significant differences among the group
means, it does not specify which groups differ from
each other. To pinpoint the groups with differing
means, we conducted a post-hoc Tukey’s HSD
(Honestly Significant Difference) on the significant
features since it shares the same assumptions
as ANOVA. Tukey’s HSD evaluates all possible
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(a) WC1, Scene 1 (b) CTTR, Scene 1 (c) Joy, Scene 1 (d) Cause, Scene 1

(e) Auxiliary Verb, Scene 1 (f) Achieve, Scene 1 (g) WC1, Scene 2

Figure 1: Distribution of features across diagnostic groups.

pairs of group means, determining which specific
groups’ means differ significantly (Glen, 2016).

3.3.3. Feature-Related Hypotheses

Several studies have investigated linguistic fea-
tures for diagnosis of schizophrenia and bipolar
disorder, giving rise to our hypotheses as follows:

• H1: Voleti et al. (2019) identified language
features related to the SSPA that could suc-
cessfully distinguish members of a clinical
group that participated in the task (AUC=0.96),
and also between subjects within the clinical
group with SZ and BD (AUC=0.83). This moti-
vates our hypothesis that further investigation
into linguistic features could help uncover un-
derlying characteristics of SZ and BD.

• H2: Park et al. (2018) examined lexical di-
versity of six active communities on Reddit.
Three were related to mental health, includ-
ing SZ and BD (r/depression, r/schizophrenia,
r/bipolar), while the others were selected
as controls and focused on unrelated topics
(r/happy, r/loseit, r/bodybuilding). They found
that members of r/bipolar and r/schizophrenia
communities obtained poorer lexical diversity
scores compared to the other communities,
but they did not observe a significant differ-
ence between r/bipolar and r/schizophrenia.
We hypothesized that lexical diversity of the
BD and SZ groups could be better character-
ized and differentiated through an analysis of
corrected type-token ratios (CTTR). CTTR of-
fers a standardized measure of lexical diver-
sity that is less influenced by the overall text
length, achieved through the application of the
square root of twice the number of tokens (Tor-
ruella and Capsada, 2013).

• H3: Chrobak et al. (2022) performed verbal
fluency tests (VFT) on BD, SZ and HC groups,
and analysis of Semantic VFT revealed that
the SZ group showed lower word count than
the HC group. Similarly, we hypothesized that
the SZ group uses fewer words compared to
other groups during both scenes.

• H4: Deng et al. (2018) observed that both
the BD and SZ groups scored lower than HC
in cognitive tests of verbal comprehension,
executive functioning, and working memory,
with SZ performing worst. Accordingly, we hy-
pothesized that individuals in the BD and SZ
groups would face challenges in causal rea-
soning, especially in Scene 2 when they con-
front the landlord.

Together, these studies motivate our feature
comparison and highlight an advantage of using
NLP for this purpose: although observational evi-
dence may suggest an important conclusion, com-
putationally extracting features representing this
phenomenon and studying them at scale allows re-
searchers to empirically ground these findings.

3.3.4. Results and Inferences

After conducting ANOVA and Tukey tests, we in-
vestigated feature significance across all pairs of
the BD, SZ and HC groups to accept or reject our
hypotheses. We also visualized the score distribu-
tions for each feature within each group, facilitating
conclusions about language usage patterns within
those groups. Table 3 describes features found to
be significantly different across all groups, and Fig-
ures 1a-1g depict distributions of the correspond-
ing features using box plots. Extra ANOVA details
are in Table 4
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Feature Description Category Source Scene

WC Total word count Psycholinguistic Boyd et al. (2022b) 1, 2
cttr Corrected type-token ratio Lexical Diversity Carroll (1964) 1

joy Words associated with the emotion
‘joy’ Emotion Mohammad and

Turney (2013b) 1

cause Causal words signifying a
cause-and-effect relationship Psycholinguistic Boyd et al. (2022b) 1

auxverb Number of auxiliary verbs Psycholinguistic Boyd et al. (2022b) 1
achieve Words that reflect accomplishment Psycholinguistic Boyd et al. (2022b) 1

Table 3: Details of features that are significantly different across all the diagnostic groups.

Six features differentiated all three diagnostic
pairs (BD vs. HC, BD vs. SZ and HC vs. SZ) for
Scene 1 , and only one feature distinguished these
pairs for Scene 2. When examining the feature
score distributions, we observed that:

• HC exhibited a more diverse vocabulary in
their speech compared to both BD and SZ.
Among BD and SZ, BD demonstrated greater
lexical richness.

• HC used a higher word count than both BD
and SZ. When comparing BD and SZ, BD
used more words.

• HC expressed higher levels of joy than the
other groups. Between BD and SZ, SZ used
less words associated with joy.

• SZ used fewer words related to causality
and reasoning compared to both BD and HC.
Within BD and HC, HC used causal words
more frequently.

• HC used more auxiliary verbs than BD, and
BD used more auxiliary verbs than SZ.

• HC displayed a higher sense of achievement
in their language. Among BD and SZ, SZ
used fewer words related to success and
achievement.

Table 5 summarizes the diagnostic feature anal-
yses across both scenes. Statistical tests iden-
tified a larger number of significant features in
Scene 1 than Scene 2. Six Scene 1 fea-
tures showed differences across all group pairs,
whereas only one feature (WC.1) was significantly
different across all pairs in Scene 2. Despite this,
a similar number of features discerned either one
and two significant group pairs in both scenes, and
differentiating between BD and HC always proved
more challenging than distinguishing SZ. Weiner
et al. (2019) suggests that the link between mood
states and linguistic capabilities in BD is intricate,
with certain BD phases exhibiting linguistic traits
akin to HC. Consequently, BD individuals not in

Feature F df p

Achieve 13 2 0.000003
Auxverb 3.02 2 0.004
Anticipation 18.4 2 1.15e-08
All punctuation 6.18 2 0.0002
Big Words 3.95 2 0.001
Cause 19.0 2 9e-09
Drives 6.56 2 0.0001
Joy 24 2 6.1e-11
Max time 11.8 2 0.000009
Surprise 7.5 2 0.00002
Trust 16.4 2 1e-7
WPS 6.3 2 0.001

Table 4: More Features from ANOVA

acute mood episodes may retain similar linguistic
functions to HC, leading to comparable language
patterns. Notably, in Scene 2, the linguistic behav-
ior of SZ deviated significantly from that of either
BD or HC in over 90% of the significant features.

4. Impact of Clinical Features

With the rise in use cases for LLMs, we also per-
form experiments showcasing their use with our
clinically enriched data. We conduct topic mod-
eling experiments using an encoder-only BERT
model (Devlin et al., 2018), BERTopic (Groo-
tendorst, 2022), and an encoder-decoder based
Flan Unifying Language Learning (flan-ul2) 20B-
parameter model (Tay et al., 2023).

4.1. Topic Modeling
We selected BERTopic as the backbone for our
topic modeling experiments. BERTopic (Grooten-
dorst, 2022) uses five independent sub-models
to generate topic representations, giving the user
flexibility to modify sub-models according to their
requirements. To create topics from SSPA tran-
scripts, we first separated the transcripts based
on all possible group × scene combinations (HC
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Scene 1 Scene 2

Total features 144 144

Significant features
(p<0.05) 61 52

Features that
differentiate no pairs 2 2

Features that
differentiate 1 pair 28 24

(BD vs. HC) 2 1
(BD vs. SZ) 15 15
(HC vs. SZ) 11 8

Features that
differentiate 2 pairs 25 25

(BD vs. HC, BD vs. SZ) 2 1
(BD vs. SZ, HC vs. SZ) 11 24
(BD vs. HC, HC vs. SZ) 12 0

Features that
differentiate all 3 pairs 6 1

Table 5: Comparative analysis of diagnostic fea-
tures between scene 1 and scene 2.

Scene 1 (SC1), HC Scene 2 (SC2), BD SC1, BD
SC2, SZ SC1, and SZ SC2). For each transcript,
we extracted patient utterances using regular ex-
pressions and combined these utterances in lists
to create patient dialogue subsets.

4.1.1. Building Topic Models

After constructing the subsets, we converted ut-
terances to numerical representations (embed-
dings) using the SentenceTransformers (Reimers
and Gurevych, 2019) framework as it is opti-
mized for semantic similarity at the document (in
our case, utterance) level. We specifically used
the all-mpnet-base-v2 model available on the
HuggingFace model hub. Next, we performed di-
mensionality reduction on the document embed-
dings using UMAP (McInnes et al., 2018), a tech-
nique that retains both local and global features of
the dataset while reducing its dimensions.

With our dimensionality-reduced document em-
beddings, we used HDBSCAN (McInnes et al.,
2017) to cluster our data. We selected HDBSCAN
based on its capability to detect clusters of vary-
ing shapes and outliers when applicable. In our
case, this ensures that utterances from the same
transcript are not compelled to be grouped within
the same cluster. Given the varying degrees of
density and shapes exhibited by HDBSCAN clus-
ters, centroid-based topic representations are not
necessarily anticipated; thus, to create topic repre-
sentations that do not rely heavily on cluster struc-
ture assumptions, we employed a bag-of-words

approach. All words within a cluster were ag-
gregated into a single document (Grootendorst,
2022), and from that bag-of-words representation
we sought to learn what distinguished one clus-
ter from another. We used a class-based TF-IDF
(cTF-IDF) approach for this, focusing on topics
rather than individual documents or words (Groo-
tendorst, 2022). Finally, we trained our topic mod-
els based on these pipelined sub-models.

4.1.2. Experiments and Results

We interpreted generated topics using the
BERTopic visualize_topics() and visual-
ize_documents() functions. visualize_topics()
is inspired by the LDAVis method, which rep-
resents topics in two-dimensional space using
circles to represent topics and the distance be-
tween them to represent topic similarity (Sievert
and Shirley, 2014). Figures 2a–2f depict topic
distributions for each diagnostic group × scene.

In Scene 1, we observed that HC discussed
fewer topics when introducing themselves com-
pared to BD and SZ. Most of the less frequent
topics were closely related to more common top-
ics, forming large clusters that were distant from
each other. This suggests that individuals in the
HC group tend to stay focused and on-topic dur-
ing their conversations. In contrast, BD and SZ
exhibited a different pattern, being less direct in
their communication and often diverging from the
main topic. On average, the BD group discussed
a greater number of topics, and the distances be-
tween these topics were larger. We can infer that
BD patients tend to become more easily distracted
during their conversations and convey a wider
range of information compared to other groups.

In Scene 2, patients were specifically asked to
confront their landlords. This task focus reduced
the number of discovered topics across all groups.
We observed that participants in the HC group pre-
dominantly explained their concerns to the land-
lord by adhering to a single topic, whereas people
in the BD and SZ groups often strayed to different
topics and lost focus while addressing their issues.

4.2. Theme Identification
The ability of LLMs to generalize and pick up in-
formation in context has improved rapidly (Brown
et al., 2020), and this process removes the need
to backpropagate and update weights like in su-
pervised fine-tuned settings. This saves training
time and allows us to leverage compute resources
for direct inference. We identify topical themes by
prompting an encoder-decoder architecture. The
flan model which extends t5, flan-ul2, has been
proven useful and reliable for summarization tasks
(Raffel et al., 2023). This model also provides a
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(a) BD Subjects, Scene 1 (b) BD Subjects, Scene 2 (c) HC Subjects, Scene 1

(d) HC Subjects, Scene 2 (e) SZ Subjects, Scene 1 (f) SZ Subjects, Scene 2

Figure 2: Topic visualizations with intertopic distance maps.

large receptive field of 2048 which makes it ideal
for our zero-shot task setting.

We frame theme identification similarly to text
summarization, with the inputs being the top-
ics produced by BERTopic and the output being
theme titles. We use the following prompt and pro-
vide seven phrases (topic words identified by the
topic model) as demonstrated below:

For these given phrases identify a
theme that captures all the phrases.

Phrase 1
Phrase 2
.
.
Phrase 7

We then expect the model to return a theme
consisting of a word or short phrase capturing the
essence of the input phrases. We use flan-ul2
with PEFT-LoRA (Mangrulkar et al., 2022) and 8-
bit quantization to account for GPU limitations. In-
ference is run on 7 T4 GPUs. The results are
shown in Table 6.

From the identified themes, we observe that for
Scene 1, the HC group quickly understands the
task at hand, generally referring to a new neighbor-

hood. We also observe that members of the BD
group appear to discuss topics that are closely re-
lated but tangential to introductions, such as their
cat or landlords. For members of the SZ group we
observe a clear difference from the other groups.
The first theme is Don’t know what to say, which
may align with catatonic behavior observed in peo-
ple with schizophrenia (Jain and Mitra, 2020).

For Scene 2, we observe a similar pattern. Mem-
bers of the HC group quickly discuss Tenant rights,
whereas members of the BD and SZ groups reach
the same theme later. We observe that HC partici-
pants can consistently maintain focus as opposed
to other groups, as demonstrated through both the
visualizations and the identified topic themes.

5. Discussion and Conclusion

In this paper we systematically investigated the re-
liable and trustworthy use of NLP methods for clin-
ically enriched data. We studied patients’ ages,
genders, and clinical diagnoses in concert with
their transcribed speech in a clinically validated
spontaneous speech task. Through a study of
138 language features, we assessed feature im-
portance and found that certain features are more
associated with certain demographic traits. We
also conducted multi-faceted statistical tests to dis-
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Subject
+ Scene Topic Theme

BD
Scene 1

Topic 0 My Cat
Topic 1 Landlord
Topic 2 Welcome

HC
Scene 1

Topic 0 New Neighborhood
Topic 1 Okay
Topic 2 I am

SZ
Scene 1

Topic 0 Don’t know what to say
Topic 1 Landlord
Topic 2 Nice to meet you

BD
Scene 2

Topic 0 how long will it take
Topic 1 Tenant Rights
Topic 2 leak

HC
Scene 2

Topic 0 Tenant Rights
Topic 1 Okay
Topic 2 Thank You

SZ
Scene 2

Topic 0 Water
Topic 1 Tenant Rights
Topic 2 Leak

Table 6: FLAN-UL2 theme identification.

cover which features reliably differentiate between
diagnostic groups. We also demonstrate that the
original set of 144 features can be reduced to 25
without performance reduction, helping us know
which features are noisy and which are relevant.

Later, we showed that unsupervised topic mod-
eling using encoder-based LLMs reveals clinically
supported patterns. For instance, we see that
members of the HC group exhibit better focus and
more conciseness, relation, and close clustering
among discussion points as opposed to members
of the BD or SZ groups, as supported by detailed
visuals and analyses. Finally, we prompted the
flan-ul2 model to identify themes from conversa-
tions in each subject group. Across both scenes
and all groups we observed that HC participants ar-
rived at desired topics more quickly and remained
focused on them over the long term. Members
of the other groups, and especially SZ, seemed
less on-target, with many participants seeming un-
sure of what to say or how to start a friendly scene.
This was also replicated in the more confronta-
tional Scene 2.

An overarching outcome of this study was the
observation that feature engineering and language
modeling approaches carry separate but comple-
mentary advantages when analyzing this data. For
instance, protected data such as ours cannot be
run on remote servers (e.g., those used to serve
OpenAI APIs) which record data logs. However,
engineering many features and then intelligently

reducing that feature set to statistically significant
subgroups shows us which characteristics best
discriminate between groups. While some fea-
tures are better for understanding demographic
splits of age or gender, others are better for un-
derstanding diagnostic labels or for (importantly)
upholding known clinical truths. NLP in healthcare
has often been plagued by explainability issues,
but we observed that modern and older meth-
ods are able to beautifully and visually showcase
patterns in data that have been previously sug-
gested in clinical studies. Even completely unsu-
pervised approaches such as our theme identifica-
tion technique show how properly used LLMs can
provide us with useful insights. While we still ques-
tion whether some LLM predictions can be trusted,
we can trust clinically-grounded insights for which
LLMs validate previously hypothesized patterns in
latent spaces of rich data. We conclude by hop-
ing this leads to future work towards informed NLP
use in clinical spaces, advancing progress toward
explainable and reasonable conclusions.

6. Limitations

In this paper, we studied how NLP may be lever-
aged to analyze clinically enriched spontaneous
speech. Our participant size, although large com-
pared to contemporary relevant studies, was lim-
ited compared to that seen in many NLP task do-
mains. We reported results over all participants,
but note that a larger sample size would enable
additional conclusions; it may also lead to slightly
different performance distributions.

We did not add any new features beyond those
introduced in our prior work (Aich et al., 2022),
and preserved the full dataset from that prior work.
Due to resource constraints, we used a language
model with 20B parameters for our prompting-
based theme identification, although it is known
that models less than 40B-65B do not always
perform optimally in prompting settings. Finally,
we did not use any models that required running
an API on a remote server since this would vio-
late user privacy by relaying sensitive data and
phrases to a third-party source. All models were
run and experiments conducted locally.

7. Ethical Considerations

This paper uses real human data from generous
participants. We do not intend for this paper to be
interpreted as understanding the medical complex-
ities and nuances of lifelong psychiatric illnesses
such as schizophrenia or bipolar disorder. Our
findings merely show how NLP techniques can pro-
vide a new perspective to the understanding and
interpretation of the effects of these illnesses.
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Data is stored in secure servers on laboratory
computers with multi-factor authenticated security
systems. At any point, only approved entities
have access to the data. This data was originally
collected under an approved Institutional Review
Board (IRB) protocol at the University of Califor-
nia San Diego, and all uses of the data in this pa-
per are in keeping with the data use provisions of
that protocol. We refer readers to Aich et al. (2022)
for a detailed description of the data collection and
preservation procedures.
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