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Abstract
Similar to humans, animals make extensive use of verbal and non-verbal forms of communication, including
a large range of audio signals. In this paper, we address dog vocalizations and explore the use of self-
supervised speech representation models pre-trained on human speech to address dog bark classification
tasks that find parallels in human-centered tasks in speech recognition. We specifically address four tasks:
dog recognition, breed identification, gender classification, and context grounding. We show that using speech
embedding representations significantly improves over simpler classification baselines. Further, we also find
that models pre-trained on large human speech acoustics can provide additional performance boosts on several tasks.
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1. Introduction

Until recently, “what humans do” has been consid-
ered the most widely accepted definition of intelli-
gence (Tomasello, 2019), but a large body of re-
cent work has demonstrated that there are numer-
ous other forms of non-human intelligence (Bridle,
2022; Call and Carpenter, 2001; Biro et al., 2003).
While there are several new studies demonstrat-
ing plant intelligence (Wohlleben, 2016; dos San-
tos et al., 2024) most of the research to date has
focused on the intelligence of animals (De Waal,
2016; Grandin and Johnson, 2009). Forms of ani-
mal intelligence range from memory (Matzel and
Kolata, 2010) and problem-solving (Seed and Call,
2010), all the way to the use of tools (St Amant and
Horton, 2008) and communication (Seyfarth and
Cheney, 2003; López, 2020).

Like humans, animals use both verbal and non-
verbal forms of communication, including audio sig-
nals such as calls, songs, or hisses; visual signals
such as facial expressions, tail moves, or postural
gestures; chemical cues; tactile cues; and biolu-
minescence. In general, the study of animal com-
munication has been mainly addressed in fields
such as biology, ecology, and anthropology, includ-
ing, for instance, prairie dogs (Slobodchikoff et al.,
2009), birds (Thorpe, 1961) or body movement in
bees (Al Toufailia et al., 2013). Only recently we
have started to see research that leverages ad-
vances in machine learning (Bergler et al., 2019;
Jasim et al., 2022; Maegawa et al., 2021).

Focusing specifically on animal vocal communi-
cation, a recent study (Andreas et al., 2022) high-
lighted three main questions to be answered to
increase our understanding of how animals com-
municate: (1) What are the phonetic and perceptual
units used by animals? (phonemes); (2) What are
the composition rules used to combine those units?
(morphology, syntax); and (3) Do those units carry

meaning and, if so, how do we map the sound units
to their meaning? (semantics, pragmatics).

In this work, we explore the third question and
specifically attempt to understand the semantics of
dog vocalizations. We use a state-of-the-art human
speech representation learning model and show
that such models can predict the context of a bark.

This paper makes three main contributions. First,
we introduce a dataset and a set of tasks for
dog bark classification. We draw parallels be-
tween human speech classification tasks and dog
bark classification tasks, including dog recogni-
tion, breed recognition, gender identification, and
context grounding. Second, through several ex-
periments, we show that we can leverage models
developed for human speech processing to ex-
plore dog vocalizations and demonstrate that these
can be used to significantly enhance performance
on several dog bark classification tasks. Finally,
through this work, we hope to open new opportu-
nities for research in the area of animal communi-
cation, which can leverage the extensive expertise
available in the NLP community.

2. Related Work
Animal Communication Datasets. Compared
to human languages, there are significantly fewer
datasets available for animal communication.
The largest library of animal vocalizations is the
Macaulay Library at the Cornell Lab of Ornithol-
ogy,1 which includes audio, photos, and videos of
2,674 species of amphibians, fish, mammals, and
more, with the main focus of the library on birds.
Another large library of animal vocalizations is the
Animal Sound Archive2, which covers 1,800 bird

1https://www.macaulaylibrary.org
2https://www.tierstimmenarchiv.de/

webinterface/

https://www.macaulaylibrary.org
https://www.tierstimmenarchiv.de/webinterface/
https://www.tierstimmenarchiv.de/webinterface/
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Context # segments Duration (sec)
Very aggressive barking at a stranger (L-S2) 2,843 2,778.66
Normal barking at a stranger (L-S1) 2,772 2,512.92
Barking due to assault on the owner (L-A) 829 956.58
Negative grunt (during the presence of a stranger) (GR-N) 637 746.60
Negative squeal (during the presence of a stranger) (CH-N) 298 546.72
Sadness/anxiety barking (L-TA) 288 200.27
Positive squeal (during gameplay) (CH-P) 91 150.49
Barking during play (L-P) 76 51.21
Barking due to stimulation when walking (L-PA) 62 84.06
Barking in fear at a stranger (L-S3) 54 45.08
Positive grunt (during gameplay) (GR-P) 51 79.56
Barking arrival of the owner at home (L-H) 24 26.20
Barking that is neither playful nor strange (L-O) 9 9.50
Non-dog sounds (voices, TV, cars, appliances, etc.) (S) 8,755 14,304.05
Total 16,789 22,491

Table 1: 14 types of dog vocalizations together with the corresponding number of segments and duration.
species and 580 mammal species.

There are also several datasets related to ma-
rine mammals. Ness et al. (2013) presented a
large dataset of over 20,000 recordings of Orca
vocalizations. The Watkins Marine Mammal Sound
Database3 contains 15,000 annotated sound clips
for more than 60 species of marine mammals.

Specifically for dog vocalizations, one of the most
popular datasets was introduced by Pongrácz et al.
(2005). It includes twelve Mudi dogs and consists
of 244 recordings. Another dataset is the UT3
database Gutiérrez-Serafín et al. (2019), with 74
dogs and 6,000 individual audios. Neither of these
datasets is publicly available.

Computational Approaches to Animal Commu-
nication Analysis. Several studies have applied
machine learning to animal communication, most of
which used Convolutional Neural Networks (CNNs)
to classify bird calls Maegawa et al. (2021); Jasim
et al. (2022), primate species Pellegrini (2021);
Oikarinen et al. (2019), multi-species classifica-
tion of birds and frogs LeBien et al. (2020), or orca
sounds (Bergler et al., 2019). Ntalampiras (2018)
used various methods to transfer the signal from
music genre identification to bird species identifi-
cation.

Specifically for dogs, there have been several
studies studying dog vocalizations (Pérez-
Espinosa and Torres-García, 2019; Pérez-
Espinosa et al., 2015; Gutiérrez-Serafín et al.,
2019). Our work is more closely related to (Yin
and McCowan, 2004), where the contexts in which
barking occurs are predicted, along with individual
dog recognition. The results of the experiments
of Hantke et al. (2018) confirmed that one can
predict the context of the bark. Molnár et al. (2009)
also finds that the barks include information about
the individual dog, as well as information about
the context. However, no pre-trained models for
dog vocalizations are currently available. To our
knowledge, we are the first to use neural acoustic
representations for tasks on dog vocalizations, and

3https://cis.whoi.edu/science/B/
whalesounds/index.cfm

we are also the first to explore the use of human
speech pre-training.

3. Dataset

We use a dataset consisting of recordings of 74
dogs, collected in Tepic (Mexico) and Puebla (Mex-
ico), at the homes of the dogs’ owners. A sub-
set of this dataset was previously used by Pérez-
Espinosa et al. (2018). The dog vocalizations were
recorded while being exposed to different stimuli
(e.g., stranger, play, see Table 1). The record-
ings were conducted using a video camera Sony
CX405 Handycam; in this work, we only use the
audio recordings, obtained using the built-in mi-
crophone on the camera. The audio codec is A52
stereo with a sampling rate of 48,000 Hz and a bit
rate of 256 kbps. The protocol for obtaining the dog
vocalizations used in this study was designed and
validated by experts in animal behavior from the
Tlaxcala Center for Behavioral Biology in Mexico.

The dataset includes recordings of 48 female
and 26 male dogs, mostly of three breeds: 42 Chi-
huahua, 21 French Poodles, and 11 Schnauzer.
For mixed breeds, we first selected the breed men-
tioned. We focused on these breeds since they
are among the most common domestic breeds in
Mexican households. Given time and resource con-
straints during the data collection process, these
breeds allowed for a broader choice of participants.
The dog’s average age is 35 months, ranging be-
tween 5 to 84 months old.

Stimuli. Dog vocalizations were induced by ex-
posing them to several stimuli, with the participation
of the owner and/or an experimenter. To illustrate,
the following represent examples of situations used
during the data collection: the experimenter repeat-
edly rings the home doorbell and knocks the door
hard; the experimenter simulates an attack on the
owner; the owner speaks affectionately to the dog;
the owner stimulates the dog using the objects or
toys with which the dog normally plays; the owner
performs the normal routine that precedes a walk;
the owner ties the dog on a leash to a tree and

https://cis.whoi.edu/science/B/whalesounds/index.cfm
https://cis.whoi.edu/science/B/whalesounds/index.cfm
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Figure 1: Data collection for the stimulus “playing
with toy”; the owner stimulates the dog using the
toys with which the dog normally plays.

walks out of sight (see Figure 1 as an example);
and others. The dogs are recorded while react-
ing to these stimuli, resulting in recordings lasting
between 10 sec to 60 min.

Data Processing and Annotation. The record-
ings are automatically segmented into shorter seg-
ments ranging between 0.3 to 5 sec in length.
The segmentation is performed using a threshold
to separate between sound and silence or back-
ground noise; the threshold was identified using
the short-time energy and spectral centroid aspects
of the acoustic signal. Only the sound segments
are used for the experiments. Each of the resulting
segments was manually annotated using the infor-
mation associated with the stimulus. One of the
fourteen contexts was assigned to each segment;
if the audio did not have any dog-related sounds, it
was assigned a Non-dog sound label.

Table 1 shows the fourteen labels used in the
annotation, along with the corresponding statistics
for the number of segments and total duration.

4. Dog Bark Classification Tasks

Using acoustic representations of dog barks, we
explore several fundamental tasks, including the
recognition of individual dogs; the identification of
the breed of a dog; the identification of a dog’s
gender; and the grounding of a dog bark to its
context. These tasks have counterparts in human
speech analysis, such as speaker identification or
grounded language analysis.

Leveraging human speech for acoustic dog
bark representations To create acoustic repre-
sentations of the dog vocalizations in the dataset,
we fine-tune a pre-trained state-of-the-art self-
supervised speech representation model. We use
Wav2Vec2 (Baevski et al., 2020), which uses a self-
supervised training objective to predict masked la-
tent representations, pre-trained on the Librispeech
corpus (Panayotov et al., 2015). Wav2vec2 uses
960 hours of unlabeled human-speech data to learn
how to represent audio signals as a sequence of
discrete tokens. Some of those discrete tokens are
masked, similar to the process used to train the
BERT contextual embedding model (Devlin et al.,
2018). In Wav2Vec2, the learning of discrete units
and unmasking are happening simultaneously.

We use an open-source implementation of
Wav2Vec2 from HuggingFace (Wolf et al., 2019).
We experiment with two model versions: (1) a
model trained from scratch, using the dog vocaliza-
tions dataset in Section 3; (2) a model pre-trained
on 960 hours of unlabeled human speech data,
and fine-tuned on dog vocalizations.

Experimental Setup. All the experiments use a
ten-fold cross-validation setup. Specifically, for the
tasks of breed identification, gender identification,
and grounding, we use grouped ten-fold validation,
with individual dogs being the group variable. That
is, we leave 7-8 dogs as a test dataset and train
on the remaining dogs’ vocalizations, to control for
any confounding information. For the dog recog-
nition task, given the goal to recognize individual
dogs, the model has to see each class (i.e., each
dog) during the training, and thus all 74 individual
dogs have to be present in both the training and
test datasets. We note that this particular way of
cross-validating might enable easier learning for
the model and does not prevent shortcut learning,
which is a common drawback for all author identifi-
cation tasks. Therefore even Wav2Vec2 pretrained
from scratch performs relatively well, and the per-
formance boost is more pronounced than for other
tasks.

4.1. Dog Recognition
We formulate this task as classifying a single audio
segment as belonging to one of the 74 dogs in
the dataset. According to (Molnár et al., 2006)
humans struggle to discriminate between individual
dog barks, but machine learning methods, even
unsupervised, can perform rather well (Yin and
McCowan, 2004). This task is similar to identifying
speakers, where many datasets (Nagrani et al.,
2017; Chung et al., 2018) and methods (Huang
et al., 2023; Ding et al., 2020) already exist.

Table 2 shows the results, where we apply the
Wav2Vec2 model to dog identification. Our results
are in line with the results from (Pérez-Espinosa
et al., 2018; Molnár et al., 2009), and demonstrate
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that effectiveness of acoustic representations to
discriminate between individual dogs. Further, we
find that a model pre-trained on human speech
significantly outperforms the model trained from
scratch.

Given the differences between human speech
and animal vocalizations, we still need more work to
understand how pre-training on human speech im-
proves the performance on dog vocalization tasks.
We believe that the pre-training on human speech
enables the model to learn abstract vocalization
structures, which in turn are beneficial for under-
standing animal vocalizations. This hypothesis is
supported by previous studies showing that pre-
training on seemingly unrelated tasks can be ben-
eficial, for instance, pretraining on symbolic music
data and applying it to natural language data pro-
vides significant performance improvements due to
the ability of the neural networks used by the model
to represent abstract syntactic structure (Papadim-
itriou and Jurafsky, 2020). Similarly, in computer vi-
sion, pre-training on ImageNet (object recognition)
data is found to improve radiography processing
(Jabbour et al., 2020).

Method Accuracy
Majority 5.03%
Wav2Vec2 (from scratch) 23.74%
Wav2Vec2 (pre-trained) 49.95%

Table 2: Accuracy for the dog recognition task.

4.2. Breed Identification
In this task, we aim to predict the breed of a
dog. Our dataset contains mostly three breeds:
Chihuahua, French Poodle, and Schnauzer. We
hypothesize that different breeds have different
pitches so the acoustic model should be able to
identify those differences, independent of the con-
text. This experiment is related to previous work
(LeBien et al., 2020; Oikarinen et al., 2019). The
task is similar to human accent recognition, where
given audio files in a single language (i.e., English)
the goal is to classify the accent of a speaker (e.g.,
USA vs. UK vs. India), with several approaches
proposed in previous work (Ayrancı et al., 2020;
Honnavalli and Shylaja, 2021; Sun, 2002).

The results are shown in Table 3. Wav2Vec2
trained from scratch outperforms most baselines.
As before, we obtain an additional significant
boost in performance when pre-training on human
speech data. The variation in individual breeds can
be explained by the unbalanced number of obser-
vations per breed, with Chihuahua being the most
common breed in our dataset (57%), followed by
French Poodle (28%) and Schnauzer (15%).

4.3. Gender Identification
The goal of this task is to probe whether it is pos-
sible to predict the gender of a dog from vocaliza-
tions. This is a task analogous to the prediction of

demographics (e.g., age, gender) from language
or speech, with many previous studies conducted
on this topic (Qawaqneh et al., 2017; Saraf et al.,
2023; Gupta et al., 2022; Welch et al., 2020).

Table 5 shows the results. The Wav2Vec2 model
trained from scratch performs better than the base-
line model, with no further improvements obtained
with Wav2Vec2 pre-trained on human speech. In-
terestingly, we do see an improvement brought by
human speech pre-training on the female class,
for which we have significantly more data in our
dataset (67.95% female vs 32.04% male by total
duration). We found that gender identification is
the most difficult task among all the tasks we pro-
pose. We hypothesize that the model trained from
scratch focuses on learning acoustic features, while
the pre-trained wav2vec attempts to learn short-
cuts and overfits quickly. We noticed that it often
predicts just the majority class (female) so that F1
increases for female and decreases for male, while
the overall accuracy is almost the same as for the
majority baseline.

4.4. Grounding
In this task, we predict the context of the bark;
i.e., we determine the association between a dog
vocalization and its surrounding. Because of the
highly skewed label distribution (see Table 1), we
focus on the contexts for which more examples are
available: very aggressive barking at a stranger (L-
S2); normal barking at a stranger (L-S1); negative
squeal (in the presence of a stranger) (CH-N); neg-
ative grunt (in the presence of a stranger) (GR-N).
We do not include barking due to assault on the
owner (L-A) because in early experiments we found
that the model cannot distinguish it from the very
aggressive barking at a stranger (L-S2).

Human language grounding is the mapping of
language symbols such as words to their corre-
sponding objects in the real world. There have
been several works showing that animals ground
their vocalizations as well. For instance, the vocal-
izations of prairie dogs are grounded and used to
transmit the characteristics of the predators (e.g.,
color or size) (Slobodchikoff et al., 2009). Other
work has also demonstrated that it is possible to
predict call types for marmoset monkeys (Oikari-
nen et al., 2019) also shows. We hypothesize that
dog vocalizations are related to their context, and
therefore can be grounded.

Table 4 shows the results. Similar to the pre-
vious experiments, both Wav2Vec2 models out-
perform the majority baseline, with the Wav2Vec2
pre-trained on human speech leading to the most
accurate results.

5. Conclusion
In this paper, we explored the use of pre-trained
self-supervised speech representation models to
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F-1 measure
Method Acc. Chihuahua French Poodle Schnauzer
Majority 58.76% 61.49% 6.59% 6.78%
Wav2Vec2 (from scratch) 60.18% 74.42% 14.96% 5.79%
Wav2Vec2 (pre-trained) 62.28% 74.47% 36.11% 14.88%

Table 3: Accuracy and F-1 measure for dog breed identification.
F-1 measure

Method Acc. L-S2 CH-N GR-N L-S1
Majority 56.37% 41.31% 0.00% 0.00% 30.39%
Wav2Vec2 (from scratch) 58.45% 49.26% 21.26% 78.20% 48.64%
Wav2Vec2 (pre-trained) 62.18% 49.66% 45.26% 90.70% 51.13%

Table 4: Accuracy and F-1 measure for context grounding.

F-1 measure
Method Acc. Female Male
Majority 68.70% 74.73% 7.76%
Wav2Vec2 (from scratch) 70.07% 76.54% 19.29%
Wav2Vec2 (pre-trained) 68.90% 79.31% 7.10%

Table 5: Accuracy and F-1 measure for dog gender
identification.

address dog barking classification tasks. We
specifically addressed four tasks that find paral-
lels in human-centered speech recognition tasks:
dog recognition, breed recognition, gender identi-
fication, and context grounding. We showed that
acoustic representation models using Wav2Vec2
can significantly improve over simpler classifica-
tion baselines. Additionally, we found that a model
pre-trained on human speech can further improve
the results. We hope our work will encourage oth-
ers in the NLP community to start addressing the
many research opportunities that exist in the area
of animal communication. The dataset used in this
work, along with the baselines that we introduced,
are publicly available by request from humber-
top@ccc.inaoep.mx.

6. Limitations

In this work, we focused on only one species, do-
mestic dogs, and only three breeds. More species
are required to understand how modern compu-
tational methods can be used for studying animal
vocalization. In the future, we are planning to ex-
tend our work to birds and marine mammals, since
those species have a large amount of data avail-
able.

We also focused on only one neural network ar-
chitecture, Wav2Vec2. While it is a popular archi-
tecture for human speech processing, other archi-
tectures might be more suitable for studying animal
vocalizations. Also, we used supervised learning
in this work, since the dataset was manually anno-
tated. The majority of the datasets are not anno-
tated and thus would require semi-supervised or
unsupervised learning, which is more challenging.
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