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Abstract

Despite being widely spoken, dialectal variants of languages are frequently considered low in resources due to lack
of writing standards and orthographic inconsistencies. As a result, training natural language understanding (NLU)
systems relies primarily on standard language resources leading to biased and inequitable NLU technology that
underserves dialectal speakers. In this paper, we propose to address this problem through a framework composed of
a dialect identification model that is used to obtain targeted training data augmentation for under-represented dialects,
in an effort to debias NLU model for dialectal cohorts in NLU systems. We conduct experiments on two dialect rich
non-English languages: Arabic and German, using large-scale commercial NLU datasets as well as open-source
datasets. Results show that such framework can provide insights on dialect disparity in real-world NLU systems and
targeted data argumentation can help narrow the model’s performance gap between standard language speakers
and dialect speakers.
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1. Introduction

As large language models (LLMs) continue to
advance the NLP technology with impressive
performance on variety of tasks at the fingertips
of millions of people every day, it is important
to ensure equity of performance of NLP systems
for speakers of different languages and language
varieties, i.e., dialects. Prior research has shown
that biases exist in these models against certain
languages or dialects (Deas et al., 2023; Khondaker
et al., 2023) and such bias can start even at the
tokenizer level (Petrov et al., 2023) or data quality
filters that are applied to data sources prior to the
model training (Gururangan et al., 2022) which may
put languages of certain demographic groups at
an advantage over others. The performance bias
is further exacerbated for dialectal varieties.

Dialectal variants pose a unique challenge to
language models. Unlike standard languages
which have written resources like books, articles,
and Wikipedia, the backbone for language
models, dialects often lack writing standards and
come with considerable differences in phonetics,
vocabulary, morphology and syntax compared to
their corresponding standard language. These
differences are not static and are caused
by regional, social, cultural and/or economic
factors. Dialectal bias may further marginalize
and disenfranchise certain groups by pushing
them away from a technology that does not
understand their mother tongue dialect. This is
also true for voice assistant (VA) systems that are
powered by language models to perform natural
language understanding (NLU) tasks, such as
intent recognition and entity extraction, which are
responsible for interpreting users’ requests and

guiding the VA’s response. In households, the
common location for VAs, dialectal language is
more likely to be used. With the recent advances in
conversational AI, dialectal support in VA systems
is in fact expected. As these products strive to
reach the level of true companionship, they should
be able to conduct more natural conversations with
users in the language variety of their choice.

In general, biases are inherent in the training data
used for pretraining and finetuning (Le et al., 2022;
Berthelot et al., 2019; Ng et al., 2020; Gururangan
et al., 2022; Le et al., 2023; Garrido Ramas et al.,
2022), and dialectal bias is no different. Efforts
to address the dialectal disparity have focused on
annotated data collection for dialect varieties (Van
Der Goot et al., 2021; Plüss et al., 2023; Dogan-
Schönberger et al., 2019; Bouamor et al., 2018; El-
Haj, 2020; Aepli et al., 2023) or data augmentation
through rule-based transformations (Dacon et al.,
2022; Ziems et al., 2022, 2023). In a real-world
VA system, often samples of user traffic data are
annotated and fed back to the model to improve its
performance. The dialectal makeup of live traffic
data and the information about NLU performance
on dialectal cohorts may not be readily available.

In this paper, we build upon the recent works and
shed light on dialectal bias from a different angle of
a real-world VA system scenario where the dialectal
user cohort is unknown. The contributions are as
follows:

• We propose a semi-supervised framework for
addressing dialectal bias for intent recognition
and entity extraction in VA scenarios. The
framework consists of a dialect identification
model that identifies dialectal cohorts from
both training and evaluation data enabling



16488

Figure 1: The dialect identification (DID) model is used to segment training data into standard language
(SL) and dialectal language (DL). The annotated DL segment of the training data is used to finetune a
generative MLM model that is used to augment the training data with more dialectal data to debias the
training data of the NLU model.

disparity performance analysis, as well as a
generative masked language model (MLM)
finetuned on the dialectal subset of the training
data for data augmentation and debiasing the
training data.

• We conduct experiments on two languages
with high dialectal richness, Arabic and
German, using the proposed framework.
Both languages have large populations of
speakers and exhibit significant linguistic
diversity, including differences in vocabulary
and text.

• We evaluate the performance of dialect-
debiased models for intent recognition and
entity extraction (I-E) tasks on two large-scale
VA dataset as well as two smaller annotated
datasets, and show that our proposed dialect-
based debiasing framework can help narrow
the performance gap for speakers of both
German and Arabic dialects.

• We perform further ablation studies to test our
design choices and the assumptions made
in our experiments. These studies reveal
that improvements gained are due to dialect
debiasing and are not driven by the volume
of training data and these improvements can
be seen on independently annotated test sets.
Moreover, we conduct additional experiments
on LLMs of variable sizes and architectures
and demonstrate that our proposed dialect
debiasing impact is transferable to larger
LLMs.

2. Related Works

Disparity of dialectal cohorts Recent works have
highlighted the disparity in dialect performance
by state-of-the-art language models and even

by LLMs. Models like ChatGPT, GPT-4, GPT-
3 underperform on African American English
for counterpart language generation task and
masked span prediction task, when compared
to standard English (Deas et al., 2023). Similar
performance gaps have been shown on Arabic
dialects (Khondaker et al., 2023). (Petrov et al.,
2023) shows that dialectal bias exists even at the
tokenizer level, when a monolingual German BERT
tokenizer (Scheible et al., 2020) results in better
tokenizer parity1 for English than for Swiss German
dialects.

Efforts to address the dialectal disparity have
mainly taken one of two routes: data augmentation
and/or data collection. For the latter, extensive
efforts have been put in curating datasets targeted
for dialects in several languages, such as Arabic
dialects (e.g., Egyptian, Gulf, Levant) (Bouamor
et al., 2018; El-Haj, 2020), German (Swiss and
South Tyrolean) (Van Der Goot et al., 2021; Plüss
et al., 2023; Dogan-Schönberger et al., 2019),
and English (African American) (Ziems et al.,
2022, 2023). On the data-augmentation front,
VALUE (Ziems et al., 2022, 2023) develops a
linguistic rule-based framework for augmenting
task-specific training data for English dialects and
(Srivastava and Chiang, 2023) proposes rule-based
transformation and language style disentanglement
for African American English dialect.

Debiasing training data Bias is inherent
in the training data, mostly due to lack of
coverage. Debiasing can be done by unsupervised
(Garrido Ramas et al., 2022) or semi-supervised
learning (SSL) methods (Le et al., 2022; Berthelot
et al., 2019; Ng et al., 2020; Garrido Ramas
et al., 2022). SSL methods rely on existing
unlabeled data for the target language. When

1Tokenizer parity is a metric proposed to assess how
fairly a tokenizer treats equivalent sentences in different
languages (Petrov et al., 2023).
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there is no data, or the information about how
much coverage of this data exists is not available,
other methods should be sought out. (Dacon
et al., 2022; Ziems et al., 2022, 2023) utilize their
rule-based transformation to debias the training
data by transforming standard seed utterances to
different English dialects. (Srivastava and Chiang,
2023) addresses the data scarcity problem of
dialects by inducing character-level noise during
finetuning BERT to improve cross-lingual transfer
learning in zero-shot setting on unseen dialects.
(Held et al., 2023) proposes to train adapters
with sequence and token level alignment loss
between standard English and a target dialect.
These task-agnostic dialect adapters can be added
before the task-specific standard-English adapter
to improve dialect robustness for the target task.
These approaches assume prior knowledge of
dialectal sub-populations or relies on annotated
data which could be absent in many cases. In
this paper, we introduce a two-stage dialect-based
debiasing framework for real NLU systems. It
includes a dialect-identification model to detect
dialectal cohorts, and an MLM-based generator
trained on identified dialectal data, which is then
used to augment and retrain the NLU model.

3. Dialect-based debiasing

Performance bias is inherent in the composition
of the pretraining and training data. Even when
deliberate effort is made to include and annotate
data for the expected target language and dialects,
the actual makeup of linguistic and dialectal user
cohorts can be different. This is because when
an NLU system is up and running online, what
and how users decide to speak and ask these
systems could be different, particularly when the
systems are deployed to a wider regional or even
global audience. It is common for NLU systems
to improve over time through error resolution or
active user feedback, by annotating erroneous
utterances and feeding them into the training data
to boost model performance. However, it would be
preferable to preemptively detect performance bias
before erroring out online and causing bad user
experiences.

To this end, we propose a dialect-based
debiasing approach, illustrated in Figure 1,
consisting of two main parts: 1) Dialect cohort
extraction through a dialect identification (DID)
model trained on a smaller set of dialect tagged
dataset, e.g. parallel corpus of transcribed dialectal
and standard speech2, and 2) Synthetic data
generation using a masked language model (MLM)

2The dataset used for training the DID model need
not be collected from NLU systems (i.e., intent and entity
labeling is not needed).

finetuned on the identified dialectal training data
and trained to generate novel examples by masking
part of the annotated training samples (Le et al.,
2022). The generative MLM model is then used to
augment the training data with dialectal utterances
in order to boost the performance of the model for
dialectal cohorts.

Extracting dialectal sub-population from
training data

We train a dialect identification (DID) model as
a multi-class classifier that takes utterance text
and classifies it as a standard language or one
of its dialectal variants. In this work, we focus
on dialectal differences detectable from utterance
text and not those that can only be detected from
phonological differences (speech recognition is out
of scope of this paper). For German (de), we
use SwissDial dataset (Dogan-Schönberger et al.,
2019) to finetune a 9-class classifier corresponding
to 8 Swiss German dialects and a standard German
(de). SwissDial dataset contains 26 hours of
studio-quality recordings by 8 speakers, each
speaking a different German dialect, with both
standard German and Swiss German transcripts.
For Arabic (ar), we build a 3-class classier for
modern standard Arabic (MSA) and two popular
dialects: Egyptian, and Gulf, using internally
collected Amazon Mechanical Turk (mTurk) data.
We experimented with different external Arabic
song lyrics data labeled with dialect tags (El-Haj,
2020), but we opted for using the simple 3-class
model on the mTurk data as it gave a reasonable
performance as shown in Table 10 in the Appendix
shows the performance using different training data
for the ar-DID model. We evaluated the DID models
on the MADAR benchmark dataset (Bouamor et al.,
2018) and xSID dataset (Van Der Goot et al., 2021),
for Arabic and German, respectively; as shown in
Table 1. Note that for MADAR, we only use the
MSA set along with sets from Egyptian speaking
regions (Cairo, Alexandria, and Aswan) and Gulf
speaking dialects (Jeddah, Riyadh, and Doha).

Table 1: Performance evaluation in terms of
accuracy of the dialect identification models for
both de and ar languages, ar model is evaluated
on the MADAR dataset (Bouamor et al., 2018) and
de model is evaluated on the xSID dataset (Van
Der Goot et al., 2021)

Language Standard Dialect
ar 70 77.5
de 87.6 90.4
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Figure 2: Example from xSID data reminder/set_reminder illustrating dialectal differences between South
Tyrolean German (de-st) dialect, Swiss German (gsw) dialect, and standard German. The corresponding
English translation is included for comparison, dialectal variants are in bold. The slot values for the label
reference are colored. The intent for this utterance is reminder/show_reminders.

Figure 3: Example from ar data illustrating dialectal differences between Egyptian Arabic dialect, Gulf
Arabic dialect, and Modern Standard Arabic (MSA). The corresponding English translation is included for
comparison, dialectal variants are in bold. The slot values for the labels Action and ApplianceCategory
are colored. The intent for this utterance is SmartHome/ApplianceOn. Notice the difference in vocabulary
between the dialects and the MSA. The word Light is: �

èZA
	
�B

@/alidhAa/ in MSA, �

HA
�
JJ
ÊË @/allaitat/ in Gluf, and

Pñ
	
JË @/alnoor/ in Egyptian.

Dialect-data augmentation
We adopt the generative MLM approach proposed
in (Le et al., 2022) for generating novel variants
of annotated utterances for intent recognition and
entity extraction tasks. The pretrained model is
finetuned on MLM task using the NLU training data
with the annotation appended to the text to be
utilized by the model when filling in masked tokens.
During inference, the tokens in the seed utterance
are masked with a probability that measures how
replaceable the word is, calculated as the number
of times pairs of utterances in the seed intent differ
only on this word. This probability is calculated
from the training data. In this work, the generator
model is finetuned using utterances identified as
dialectal by our DID model; the same utterance set
is then used as the seeds for generation. We set
the target to one inference per masked token in the
seed utterance. Table 8 in the Appendix lists the
total number of generated utterances per dataset
and compare it to the original training data. We also
look at the uniqueness and novelty of the generated
utterances, listed in Table 9 in the Appendix, which
shows that at least 72% of the unique utterances
generated are not in the baseline training data
across the target datasets.

4. Experiments

We evaluate the effectiveness of our proposed
debiasing process with three sets of experiments.
Two experiments are conducted on real-world VA
commercial system, for both German and Arabic;

in these systems there is no control over which
dialects of the supported language the users
choose to speak, i.e., we do not have ground
truth labels of the dialect ID for the training or test
utterances. The third experiment is conducted on
(Van Der Goot et al., 2021) xSID4.0 benchmark;
to emulate the target scenario, we shuffle the
combined standard and dialectal German training
and validation partition and split them 90:10;
training:validation partitions and use the DID model
to segment them into dialectal and standard
cohorts. For xSID experiment, we keep the test
sets as is and use their dialect IDs as their ground
truth3.

Setup - For finetuning the DID and NLU models
we use DistilmBERT (Sanh et al., 2019) pretrained
model which includes Arabic and German. For
finetuning the MLM generator we use a pretrained
monolingual BERT base models (Antoun et al.,
2020) for Arabic and (Staatsbibliothek, 2020) for
German, because we want the model to generate
utterances in our target language, and since the
pretrained models were pretrained for MLM task
but on different dataset, the finetuned models
would be able to create word substitutions that
have not been seen in the rest of the training
data and introduced more variability into the
augmentation data as pointed out in (Le et al., 2022)
Implementation details and hyperparameters are
provided in Appendix A.1.

3Note that de-dialects do not have train partition in the
xSID data. This means that the dialects are low resource
in the training data.
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Table 2: Absolute SemER scores for baseline and debiased model and relative (% change) SemER
between the two models on the German (de) xSID (Van Der Goot et al., 2021). Lower values indicate
better performance and bold Overall relative % change values indicate improvement in the debiased
model with respect to baseline.

Test subset All de-standard de-dialect

Domain
Model Baseline Debiased %(relative) Baseline Debiased %(relative) Baseline Debiased %(relative)

Alarm 0.28 0.23 -18.26 0.28 0.24 -13.48 0.28 0.22 -20.65
Books 0.18 0.17 -5.72 0.16 0.18 10.13 0.20 0.17 -12.01
CreativeWorks 0.37 0.34 -8.06 0.25 0.26 2.87 0.43 0.38 -11.26
Events 0.53 0.55 3.56 0.38 0.39 3.76 0.61 0.63 3.52
Music 0.46 0.35 -22.40 0.41 0.36 -11.58 0.48 0.35 -26.95
Reminder 0.39 0.36 -8.48 0.40 0.41 2.40 0.39 0.33 -14.10
Reservations 0.38 0.35 -8.75 0.32 0.34 7.37 0.41 0.35 -15.13
Weather 0.31 0.29 -6.52 0.46 0.47 1.03 0.23 0.20 -14.04
Overall 0.36 0.32 -10.27 0.36 0.35 -1.11 0.36 0.30 -14.87

Evaluation datasets - For the main NLU task
we use three different datasets for evaluating
the intent classification and slot filling task. For
German (de) language, we evaluate it on (Van
Der Goot et al., 2021) xSID4.0 benchmark for
intent classification and slot filling which includes
standard German and St. Galler-Dütsch dialect
(de-gsw) and a very low-resource Austro-Bavarian
German dialect, South Tyrolean (de-st): 8 domains,
15 intents, 33 slots and 500 test utterances for each
of the standard and dialectal de variants. xSID
dataset was created as parallel corpus for English
utterances extracted at random from benchmarks
Snips (Coucke et al., 2018) and the Facebook
dataset (Schuster et al., 2019). We also use a large-
scale dataset from a real-world VA commercial
system of 1.3M utterances spanning 22 domains,
351 intents, and 327 labels.

For Arabic (ar) language, we evaluate the NLU
tasks on a large-scale dataset consisting of a total
144K ar utterances annotated from real-world VA
commercial system. This test dataset spans 22
domains, 307 intents, and 246 entity labels. We
also evaluate the NLU model on a smaller dataset
that spans the same domains which we collect
using Mechanical Turk (mTurk) and evaluated by
native speakers for the target MSA (24K utterances)
and two dialect versions Gulf and Egyptian (24K
utterances). Figures 2 and 3 show examples of
annotated utterances from German and Arabic
datasets that highlight the orthographic differences
in dialects when compared to their corresponding
standard language.

5. Results and discussion

To evaluate the the performance of the models for
I-E tasks we use the semantic error rate (SemER)
metric. The semantic error measures how many
mistakes are done in entity recognition and slot
filling, and is calculated by SemER = D+I+S

C+D+S (Su
et al., 2018), where D=deletion, C+D+S I=insertion,

S=substitution and C=correct-slots. An intent
recognition error is counted as a substitution. In the
presented results, Overall refers to micro-average,
i.e., where all utterances have equal contribution to
performance, and Average performance is macro-
average performance per domain, where each
domain has equal weight regardless of its size. The
performance is reported as a relative change to the
baseline.

Baseline underperforms on dialectal
cohorts

We evaluate the effectiveness of our proposed
method to reduce the dialectal bias in a real-world
VA scenario, in which the makeup of dialectal
cohorts is unknown. We use our trained DID model
to extract the dialect subgroup of the NLU test set
to evaluate the performance of the model (later
in the results we also test this assumption with
human annotated data in Table 6). To reduce
the noise in dialects extraction for test data, we
apply the DID model on the carrier phrase of the
utterance and not the full utterance text. This
is to prevent entities such as song and video
names from skewing the inference of the DID model
towards one category over the other. We define
the carrier phrase as any token labeled as Other or
not-a-name related entity (e.g., todo and question
entities), for example the utterance "Remind∥Other
me∥Other to∥Other drop∥todo off∥todo rent∥todo"
will retain all its tokens before DID inference, but an
utterance like "Can∥Other you∥Other play∥Other
Nickelback∥artist" will be stripped of "Nickleback"
token before running inference. Note that this
carrier phrase extraction can result in no tokens,
for example for verbless utterances with only entity
names; these utterances are then filtered out from
our evaluation datasets. We filter these utterances
from the standard and the dialectal evaluation
subsets only, but we keep them under the All
category to track the overall model performance.
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Table 3: Relative SemER difference (% change) between baseline and debiased model, on the Arabic
(ar) and German (de) large-scale commercial dataset. Dialect-based debiasing shows improvements
on dialectal cohorts extracted by the DID model (de/ar-dialect test subsets). Negative values indicate
improvement (Full results in the Appendix).

Arabic German
Domain All ar-standard ar-dialect All de-standard de-dialect
Knowledge -8.5 -12.0 -6.8 -4.33 -2.39 -11.52
Events -1.67 -7.14 -3.58 3.41 -0.20 9.90
Communication -0.4 -0.3 -3.3 11.88 5.48 -4.87
SmartHome -0.7 1.3 -0.3 2.91 1.57 1.50
Music 2.0 2.9 2.0 2.61 -0.65 -0.20
Notifications -3.1 -7.3 -1.3 -1.84 -4.87 1.20
Weather 10.9 27.7 1.4 -7.30 -7.94 -6.38
Overall -0.94 -1.04 -1.53 1.56 0.05 -1.32

Table 4: Dialectal cohorts disparity with respect to
standard language. Relative difference in baseline
performance on extracted dialectal cohorts with
respect to standard cohorts shows disparity overall
for two of the datasets (ar) and (de) while xSID
shows on-par overall performance with average
performance disparity. Higher values indicate more
performance bias against dialectal cohorts.

Dataset
Method xSID (de) de ar
Average 14.26 8.74 -14.53
Overall 0 20.56 14.51

We reserve this cleaning step only for the evaluation
dataset and not for the cohort extraction from
training. It should be noted that this is only applied
to the unlabeled ar and de evaluation data and not
to the xSID data, because it is already annotated
with Language/Dialect tags. For each of the
experiments, we evaluate the model performance
on three test sets: All: which contains all the
test set utterances unfiltered and uncategorized,
standard: a subset of All set which contains
utterances that are labeled or classified as standard
language, and dialect: a subset of All set which
contains utterances that are labeled or classified
as dialectal variants. Table 4 shows the relative
SemER performance between standard language
cohorts and dialectal cohorts for the baseline model
on the three datasets, with clear bias towards
standard language on the three datasets, with the
exception of macro-average on ar, indicating that
dialectal cohorts outperform on some of the smaller
domains.

Dialect-based debiasing reduces disparity

Table 2 shows the SemER performance of
the debiased models relative to baseline for
xSID dataset. Results are averaged on three
runs of each baseline and debiased models.
Improvements on the xSID dialectal test set

(combined St. Galler-Dütsch dialect (de-gsw) and
Tyrolean (de-st) dialects) are -14% overall. This
improvement is not coming at a cost to the standard
German test set, which slightly improve by -1%. We
also see improvements on the internal VA datasets,
ar and de, Table 3 shows that debiasing still
improves performance of the DID-extracted cohorts
but the boost in performance is modest compared
to the xSID dataset, this could be because of the
feedback loop that is employed in VA systems that
learns from samples of traffic. Table 3 lists the
overall performance and a few domains for brevity,
the full results for all domains are given in the
Appendix Tables 11 and 12.

Improvements are not driven by training
data volume
To further analyze whether the improvements are
due to the augmented data or only because of
the added training data volume, we run another
set of experiments with simple upsampling to the
same size of augmented data of debiased models
from previous experiment. Table 5 shows that our
method is consistently better than upsampling.

Table 5: Relative SemER difference between
baseline and debiased model on the dialectal
subset. Dialect-based debiasing consistently
outperform random upsampling for dialectal
cohorts on the three datasets. Negative values
indicate improvement.

Dataset
Model de-dialect (xSID) de-dialect ar-dialect
Random upsampling -6.76 -0.96 16.57
Dialect-based debias -14.87 -1.32 -1.53

Performance boost still exists on
independently annotated test set
Another assumption we questioned is the use
of the same DID model for extracting dialectal
cohorts from training and evaluation datasets and
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whether the same improvements can be seen on an
independent set that was not extracted by the same
model used to debias the training data. For German
language, we evaluated the debiased model on
the xSID labeled test sets in the previous section
(results in Table 2). For Arabic, we test the same
model on internally collected mTurk dataset that is
labelled with language/dialect tags4. Table 6 shows
that similar improvements can be seen on both
the DID-model extracted cohorts and the human
annotated mTurk set.

Table 6: The dialect-based debiasing for Arabic
shows improvements on both dialectal cohorts
extracted using the DID model and on mTurk
collected data annotated with dialect IDs by native
speakers.

Test subset
Annotation method All ar-standard ar-dialect
DID model annotated -0.56 -0.12 -1.02
Human annotated -0.94 -1.04 -1.53

Dialect-based debiasing improves larger
models

To further explore whether our proposed method
is effective for LLMs beyond BERT-like models,
we conduct ablation studies to evaluate its
effectiveness on different model architectures and
larger model sizes. We finetune large pretrained
language models (LLMs) with decoder-encoder
and decoder-only seq2seq architectures of size
5B (Rosenbaum et al., 2022a; FitzGerald et al.,
2023), 7B, 20B (Soltan et al., 2022) and 30B5.
Using these pretrained LLM models, we finetune a
baseline model and a debiased model to generate
the labeled utterances directly without adding a
classification head for the intent recognition and
entity extraction tasks. We run these experiments
on the xSID dataset (Van Der Goot et al.,
2021). Table 7 below shows the semantic error
performance of the debiased models relative to
their baseline for varying model sizes. Results
illustrate that the proposed dialect-based debiasing
still provides improvements when coupled with
LLMs of different sizes. All four seq2sq LLM
models improve on the dialectal test data with larger
improvements observed for the 5B and 7B models.
Full per-domain results are provided in Table 13 in
the Appendix.

4This dataset is different than that used to train the
DID model and was annotated by language experts.

5The 7B and 30B are decoder-only seq2seq models,
while the 5B and 20B are encoder-decoder seq2seq
models.

Table 7: SemER performance on dialectal test
set of xSID dataset (Van Der Goot et al., 2021)
for different LLMs. The dialect-based debiasing
provides improvements on LLM models of different
sizes (size is in terms of number of model
parameters in billions (B)).

Model size baseline debiased %(change)
5B 0.41 0.33 -19.51%
7B 0.31 0.27 -12.90%
20B 0.34 0.32 -5.88%
30B 0.24 0.23 -4.17%

6. Conclusion

Dialectal varieties of languages pose a significant
challenge for language models due to the lack of
standardized writing and evolving nature influenced
by regional, and cultural contexts. In this paper,
we tackle the issue of under-representation of
dialects in real-world voice assistant systems. We
propose a framework that employs a simple dialect
identification (DID) model along with an MLM data
generation technique to mitigate biases in the
model’s training data. With the aid of DID, we
extract dialectal cohorts from evaluation data as
well, which can shed a light on existing model
biases. We conducted experiments on two non-
English languages with rich dialectal diversity,
Arabic and German. Our results demonstrate
that dialect-based debiasing effectively narrow the
performance gap for dialectal speakers without
adversely impacting standard speaker cohorts.
Moreover further experiments and analysis showed
that performance gains are consistent across both
human-annotated and model-extracted test sets
and that these improvements are transferable to
varying model sizes and architectures.

Limitations and Ethical Considerations

Limitations - There are a number of limitations for
this work. First, our dialect identification is based
on utterance text and will not capture phonological
differences that do not appear in the text, e.g.,
the word schedule is pronounced as /skedjul/
in Standard American English vs. /shedjul/ in
British English, however, it has the same text.
Our method can detect dialectal differences from
context, vocabulary, spelling ("color" vs. "colour")
or syntax.

Secondly, as NLU relies on automatic speech
recognition (ASR) output, the accuracy of the
dialect id would be limited by ASR errors. Like
NLU, ASR also struggles with dialect recognition
due to the same challenges discussed in this paper.
For example, the utterance "shut up" in Gulf Arabic
is I.

�
�
�
�@/itshub/ and if returned the similar sounding
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I. k. @/edjab/, which means "answer" in standard
Arabic, DID model will misrecognize the text as
standard Arabic and not dialectal. However, in
such cases, even intent recognition and slot filling
may be different, in our example NLU would return
PickUpCall intent and not Silent intent.

Finally, in this work we considered only dialectal
vs. standard language. More fine grain studies
can be done on each of the dialects supported by
these languages, e.g., Swiss dialect can be further
categorized based on regions in Switzerland, each
with its linguistic differences (Dogan-Schönberger
et al., 2019). Similarly, Arabic dialects can
be categorized into 25 dialects based on the
regions/countries (Bouamor et al., 2018). We
leave this for future work. Further future work
include exploring other generation approaches that
are not limited by masked token generation the
one adopted in this paper (Kumar et al., 2022;
Rosenbaum et al., 2022b).
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Table 8: Augmented data sizes using generative MLM model compared to training data volume for each
of the experiments on the three datasets

Train data Dialectal training data (seed) Generated data
Dataset Size Size % of Train data Size % of Train data % of seed dialectal data
xSID 44,507 4,661 10.47 4,541 10.2 97.4
de 16,301,859 7,252,648 44.49 5,156,459 31.6 71.1
ar 1,423,139 847,422 59.55 285,546 20.1 33.7

Table 9: Novelty and uniqueness of the generated data to augment the dialectal training data compared to
training data. Comparison is based on utterance text and novel utterances means that they do not appear
in the training data. At least 43.2% of total generated utterance are novel and atleast 72.7% of the unique
generated utterances are novel across the experiments on the three datasets.

Generated data Novel generated data % Novel data in the generated data
Dataset Total size Unique size Total size Unique size % of Total % of Unique
xSID 4,541 4,061 3,333 2,952 73.4 72.7
de 5,156,459 2,008,097 2,228,550 1,536,653 43.2 76.5
ar 285,546 98,275 136,833 76,873 47.9 78.2

A. Appendix

A.1. Training details

DID models for both ar and de are trained by
finetuning DistilmBERT (Sanh et al., 2019) with
the ADAM optimizer for 40 epochs and batch size
of 256 with early stopping based on the f1 scores
on the validation set with patience 4 and threshold
0.001.

The I-E models are trained by finetuning
DistilmBERT (Sanh et al., 2019) for a joint-
task objective with two-layer MLP for the intent
recognition task and two-layer MLP plus a CRF
layer for the entity extraction (similar to the
architecture used in (Abboud et al., 2022)). The
models are trained with the ADAM optimizer for 65
epochs (for de model we reduce that to 10 epochs
due to the large size of the training data) and
batch size of 256 with early stopping based on the
SemER values on the validation set with patience
4 and threshold 0.001. For further details about the
pretrained models, we refer the reader to (Sanh
et al., 2019; Antoun et al., 2020; Staatsbibliothek,
2020).

Table 10: Performance evaluation in terms of
accuracy of the dialect identification models for
ar language on the MADAR dataset (Bouamor
et al., 2018) for models trained with mTurk collected
data, open-source Habibi (El-Haj, 2020) data, or a
combination of both.

Standard Dialect
Habibi 44.0 32.1
mTurk 70.0 77.5
mTurk+Habibi 57.0 64.8

A.2. Pretrained models and language
resources

DistilmBERT (Sanh et al.,
2019) https://huggingface.co/
distilbert-base-multilingual-cased is a
distilled version of multilingual BERT model is
trained on the concatenation of Wikipedia in 104
different languages (including Arabic and German).
The model has 6 layers, 768 dimension and 12
head, with a total of 134M parameters.

Both GermanBERT (Staatsbibliothek, 2020) and
AraBERT (Antoun et al., 2020) are BERT base
models (Devlin et al., 2019) with 12 encoder layers,
768 hidden dimensions, 3072 hidden size, and
12 attention heads, and pretrain for a Masked
Language Model (MLM) task. GermanBERT is
pretrained on 2.3B tokens from German Wikipedia
dump, EU Bookshop corpus, Open Subtitles,
CommonCrawl, ParaCrawl and News Crawl and
AraBERT is pretrained on 8.6B tokens from Arabic
Wikipedia dump, and other Arabic Corpus and
news articles.

MADAR dataset (Bouamor et al., 2018)
(Bouamor et al., 2018) is a large parallel corpus
of 25 Arabic dialects by city in addition to the
pre-existing parallel set for English, French
and Modern Standard Arabic (MSA), targeting
applications of Dialect Identification (DID) and
Machine Translation (MT) and not NLU tasks. We
use it to evaluate our DID ar models. MADAR
dataset is not used for training.

xSID dataset (Van Der Goot et al., 2021) (Van
Der Goot et al., 2021) was designed for Intent
recognition and slot filling in 13 languages from
6 language families, including standard German
and Swiss German (St. Galler-Dütsch (de-gsw)).
The dataset covers 8 domains, 15 intents, 33 slots.
The SID4LR shared task, which focuses on Slot
and Intent Detection (SID) for digital assistant data
(Aepli et al., 2023) expanded the xSID dataset

https://huggingface.co/distilbert-base-multilingual-cased
https://huggingface.co/distilbert-base-multilingual-cased
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to cover another low-resource German language
variety; the South Tyrolean (de-st) dialect. We
only use the xSID 4.0 sets from German language:
de, de-st and de-gsw for training and testing I-E
recognition models.

SwissDial (Dogan-Schönberger et al., 2019)
(Dogan-Schönberger et al., 2019) dataset contains
26 hours of studio-quality recordings by 8 speakers,
each speaking a different German dialect, with both
standard German and Swiss German transcripts
originally intended for ASR model training, but we
use it for DID training in this paper.

A.3. Augmented data details
We adopt the MLM generation method proposed in
(Le et al., 2022). In (Le et al., 2022), the authors aim
to debias the training data to match online traffic
distribution and use a clustering method to select
the target seed utterances. In this work, we set
the seed utterances to the training data portion
identified as dialectal by the DID model. Table
8 lists the total number of generated utterances
per dataset and compare it to the original training
data. Note that not every seed utterance would
result in a generated utterance as it depends on the
carrier phrase (if any) and masked token probability.
Further, not all generated utterances are unique
or novel. We look at the quality of generated
utterances in terms of uniqueness and novelty.
Table 9 shows that atleast 72% of the unique
utterances generated are novel and are not in
the baseline training data. Note that the reason
uniqueness of xSID generated data is higher than
ar and de datasets is because the uniqueness of
the training data is higher.

A.4. Full per-domain results
Tables 11 and 12 list the performance per domain
sorted by size from largest (top) domains to
smallest (bottom). Overall, the de-biased model
reduces dialectal disparity. Note the varying
performance across domains, which could be
due to two reasons: 1) the size of the domain;
smaller domains are subject to higher fluctuations
in performance (e.g., larger relative changes can
be seen in small domains like Gallery and News) as
opposed to larger domains such as Knowledge and
General; and 2) the dialectal variation of utterances
within a domain; some domains cover wider
variety of utterances (e.g., general Q/A utterances
supported under the Knowledge domain) such
domains are more likely to benefit from dialectal-
debiasing. On the other hand, domains with
less utterance diversity such as Music, which
supports simple command utterances such as “play
a song by Nickelback” are less likely to benefit from
dialectal debiasing.

Table 11: Relative SemER difference (% change)
between baseline and debiased model, on the
Arabic (ar) large-scale commercial dataset. Dialect-
based debiasing shows improvements on dialectal
cohorts extracted by the DID model (ar-dialect test
subset). Negative values indicate improvement

Test subset
Domain All ar-standard ar-dialect
Music 2.03 2.95 1.95
General 0.57 1.24 -1.99
Knowledge -8.54 -12.05 -6.79
SmartHome -0.72 1.30 -0.34
Notifications -3.12 -7.33 -1.33
Communication -0.41 -0.28 -3.32
OriginalContent -3.63 -5.07 -2.86
Events -1.67 -7.14 -3.58
Weather 10.88 27.67 1.35
Translation 5.48 17.92 -4.81
Movies 2.71 0.77 10.20
Apps -11.67 -2.70 11.91
Books -5.18 -4.06 -5.17
Help 4.22 11.33 -0.61
FoodAndHealth 2.77 6.33 2.31
News 34.69 24.40 46.13
Shopping -0.83 1.57 -1.28
LocalSearch 3.11 0 1.85
Gallery -9.98 -20.52 -29.99
Car -15 -26.31 0
Overall -0.94 -1.04 -1.53

Table 12: Relative SemER difference (% change)
between baseline and debiased model, on the
German (de) large-scale commercial dataset.
Dialect-based debiasing shows improvements on
dialectal cohorts extracted by the DID model (de-
dialect test subset). Negative values indicate
improvement

Test subset
Domain All de-Standard de-dialect
General 1.58 2.44 2.12
Music 2.61 -0.65 -0.20
SmartHome 2.91 1.55 1.50
Shopping 4.77 3.28 7.66
Knowledge -4.33 -2.39 -11.52
Notifications -1.84 -4.87 1.20
Communication 11.88 5.48 -4.87
Weather -7.30 -7.94 -6.38
LocalSearch -5.72 -8.54 -9.90
Events 3.41 -0.20 9.90
Books 6.15 1.37 9.54
News 3.11 5.01 0.35
Movies 1.64 3.48 -9.85
OriginalContent -9.10 -11.04 2.92
FoodAndHealth -9.53 -14.22 6.36
Apps -0.37 -3.61 2.27
Help 1.58 3.29 -3
Translation -10.70 -16.84 -4.91
Car 18.63 27.76 0
Gallery 39.54 33.74 0
Overall 1.56 0.44 -1.32
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Table 13: Per-domain absolute and relative SemER differences (% change) between baseline and
debiased model for different LLM model size, on the dialectal xSID dataset (Van Der Goot et al., 2021).
Model sizes are in terms of Billions (B). Negative relative values indicate improvement.

5B 7B 20B 30B

Domain
Model size baseline debiased %(change) baseline debiased %(change) baseline debiased %(change) baseline debiased %(change)

Alarm 0.31 0.25 -19.35% 0.23 0.18 -21.74% 0.22 0.23 4.55% 0.14 0.16 14.29%
Books 0.24 0.20 -16.67% 0.17 0.17 0% 0.23 0.20 -13.04% 0.25 0.14 -44.0%
CreativeWorks 0.32 0.23 -28.13% 0.24 0.22 -8.33% 0.42 0.53 26.19% 0.23 0.20 -13.04%
Events 0.66 0.56 -15.15% 0.57 0.50 -12.28% 0.42 0.57 35.71% 0.46 0.44 -4.35%
Music 0.45 0.39 -13.33% 0.41 0.36 -12.20% 0.42 0.35 -16.67% 0.29 0.30 3.45%
Reminder 0.54 0.38 -29.63% 0.35 0.29 -17.14% 0.49 0.32 -34.69% 0.26 0.25 -3.85%
Reservations 0.49 0.46 -6.12% 0.35 0.28 -2 0% 0.43 0.43 0% 0.26 0.25 -3.85%
Weather 0.31 0.24 -22.58% 0.23 0.18 -21.74% 0.18 0.17 -5.56% 0.16 0.17 6.25%
Overall 0.41 0.33 -19.51% 0.31 0.27 -12.90% 0.34 0.32 -5.88% 0.24 0.23 -4.17%
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