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Abstract

Recent advances of incorporating layout information, typically bounding box coordinates, into pre-trained language
models have achieved significant performance in entity recognition from document images. Using coordinates can
easily model the position of each token, but they are sensitive to manipulations in document images (e.g., shifting,
rotation or scaling) which are common in real scenarios. Such limitation becomes even worse when the training data
is limited in few-shot settings. In this paper, we propose a novel framework, LAGER, which leverages the topological
adjacency relationship among the tokens through learning their relative layout information with graph neural networks.
Specifically, we consider the tokens in the documents as nodes and formulate the edges based on the topological
heuristics. Such adjacency graphs are invariant to affine transformations, making it robust to the common image
manipulations. We incorporate these graphs into the pre-trained language model by adding graph neural network
layers on top of the language model embeddings. Extensive experiments on two benchmark datasets show that
LAGER significantly outperforms strong baselines under different few-shot settings and also demonstrate better
robustness to manipulations.
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1. Introduction

Entity recognition is a fundamental task in docu-
ment image understanding which aims at identify-
ing and extracting specific segments of text in the
document which serve as header, question or an-
swer. However, the named entity recognition in doc-
ument images is different from the traditional text-
only counterparts since document images, such as
tables, receipts and forms, involves richer informa-
tion though the layout structure. The complex lay-
out and format of these document images provide
additional information that can be used to enhance
the performance of entity recognition beyond what
is possible with only text. Therefore, they present
an ideal scenario to use multi-modal techniques.

Recent existing methods use large self-
supervised pre-trained models (Xu et al., 2020,
2021; Huang et al., 2022) for named-entity recog-
nition in document images. These approaches
extract the word spans using the standard IOBES
tagging schemes (Marquez et al., 2005; Ratinov
and Roth, 2009) in named entity recognition
tasks. The models inherit the architecture from the
text-only language models, such as BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019), extend
the embedding layer with the layout information,
and build layout-aware attention mechanisms.
These approaches typically leverage the bounding
box coordinates to capture the overall structure
of the document, which is straight-forward and
has proven to be effective. However, we argue
that these coordinates-based approaches fail to
properly cope with image manipulation, such as

shifting, rotation and scaling, which is common
in real life. These image manipulations make
it challenging for coordinate-based approaches
to accurately understand the documents, as the
coordinates can be significantly altered and the
spatial relationships learned by these coordinates
are no longer valid.

Given the aforementioned challenges, we pro-
pose LAGER, a layout-aware graph-based entity
recognition model. Our new framework further ex-
ploits the structural information in these document
images utilizing the topological relationship of the
entities. We make use of graph neural networks
to encode topological relationship in the document.
Such practice has been proven effective in other do-
mains such as the web mining from semi-structured
web pages (Lockard et al., 2019, 2020), where they
build rich representations for text fields on a web
page with graphs. We construct graphs based on
the spatial relationship in the document images
where the entities correspond to the nodes and the
edges are constructed according to heuristics relat-
ing to distance and angles between them. In this
way, the topological relationship of the entities are
explicitly encoded and the resulting graph is robust
to the image manipulations mentioned above. We
use a Graph Attention Network (GAT) (Veličković
et al., 2018) to encode the graph in the latent space
and combine it with the rich representations from
the pre-trained language models. LAGER serves
as an additional component for the existing layout-
aware language models to enhance their robust-
ness to image manipulations and extend their ca-
pacity to handle document images with complex
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layouts. Our approach is particularly useful in few-
shot settings when there is limited data availability
for entity recognition, as the graph-based method
is efficient to train and easier to generalize.

As shown in Figure 1, LAGER extends the archi-
tecture of a layout-aware language model which
we use as a backbone for our framework (Xu et al.,
2021; Huang et al., 2022). We construct graphs
where the nodes correspond to the words in the
documents. The edges are constructed based on
either k-nearest neighbors of the bounding boxes
in space or at multiple angles (the detailed descrip-
tion is given in Section 3.3). The adjacency matrix
of this graph along with the hidden states of the
backbone language model are given as inputs to
the graph attention network (GAT). The enhanced
output embeddings from the GAT are then used to
perform classification.

We validate our model using two benchmarks,
FUNSD (Guillaume Jaume, 2019) and CORD (Park
et al., 2019). Both datasets are from real sce-
narios and fully-annotated with textual contents
and bounding boxes. We compare our model with
strong baselines and also show how our model is
robust to image alterations such as rotations, scal-
ing and shifting. We summarize our contribution
as follows.
• We propose a novel framework LAGER that im-

proves existing language models by utilizing the
topological relationship of the entities in the doc-
ument images with Graph Attention Networks.

• We show that our approach is robust to image
manipulations such as scaling, shifting or rotat-
ing, and it is effective to various layout-aware
language models.

• Extensive experiments on two benchmark
datasets and two backbone models demonstrate
the effectiveness of LAGER under few-shot set-
tings.

Reproducibility. The code and the datasets will
be released on Github1.

2. Related Work

Layout-aware LMs. Given that post-OCR pro-
cessing has huge potential for various downstream
tasks, there are many existing works that have
adapted the pre-training in language models such
as BERT (Devlin et al., 2018) to include layout-
information. LayoutLM (Xu et al., 2020) was the
first to successfully incorporate layout information
in the form of coordinates into the embedding
layer of BERT. Following LayoutLM, there was Lay-
outLMv2 (Xu et al., 2021) which leveraged visual
features and improved alignment between words
and regions on the page. LayoutLMv3 (Huang et al.,

1github.com/prash29/LAGER

2022) like LayoutLMv2 did use visual features but
unified text and image masking objectives. There
have been other multimodal transformer models
such as DocFormer (Appalaraju et al., 2021) which
uses text, vision and spatial features. They com-
bine these features using a novel multi-modal self-
attention layer. MGDoc (Wang et al., 2022) aims
to exploit the spatial hierarchical relationships be-
tween content at different levels of granularity in
document images. They do this by encoding page-
level, region level, and word-level information at the
same time into the pre-training framework.
Few-shot methods. Recently in the Visually-rich
Document Understanding (VrDU) domain, there
have been efforts to build robust models under few-
shot settings. For semi-structured documents such
as business documents, a domain agnostic few-
shot learning approach was used (Mandivarapu
et al., 2021). Using deep canonical correlation, they
were able align the extracted text and image feature
vectors. More recently for entity recognition in doc-
ument images, LASER (Wang and Shang, 2022)
used a label-aware seq2seq framework. They fol-
lowed a new labeling scheme that generates the
label surface names word-by-word explicitly after
generating the entities in few-shot settings.
Graphs in multimodal few-shot settings. Graphs
are an extremely useful and general representation
of data. This is especially true, when there is some
relationship between the data objects in question.
Openceres (Lockard et al., 2019) for the task of
open information extraction from semi structured
websites, utilized graphs for their semi-supervised
learning approach. ZeroShotCeres (Lockard et al.,
2020), as a successor to OpenCeres used a graph
neural network-based approach to build rich rep-
resentations of text fields on a webpage. They
built graphs where each text field became nodes
in graphs and used the relationships between the
text fields to connect the edges. More recently,
FormNet and FormNetv2 (Lee et al., 2022, 2023)
used graph convolutions to aggregate semantically
meaningful information in tokens present in docu-
ment images.

3. Methodology

3.1. Task Formulation

Few-shot entity recognition in document images is
a subtask of information extraction that seeks to
locate and classify named entities into categories
using a limited number of training examples. A
document image P, consists of textual and layout
information. The textual contents correspond to
the words, w, in the document image and we also
have their annotated bounding boxes denoted by
B = (x0, y0, x1, y1) (where (x0, y0) and (x1, y1) are

github.com/prash29/LAGER
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OCR Result:
- Text: w = "Special"
- BBox: (x0, y0, x1, y1)

- Text: w = "Event"
- BBox: (x'0, y'0, x'1, y'1)
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Figure 1: The Framework for LAGER. Two variants of the model are used based on the heuristic for graph
construction. M denotes the number of GATs used. M = 1 for k-nearest neighbors in space approach.

For the the k-nearest neighbors at angles, M = ⌊360°/θ⌋ and we construct graphs for [θ, 2θ...Mθ].

the top-left and bottom-right corners). These an-
notations are done by human annotators or OCR
engines. These words and bounding boxes are
listed sequentially and act as inputs for the textual
and layout modalities. The entities are defined as
spans of words referring to specific concepts in
the document. For example, in FUNSD, the enti-
ties correspond to question, answer or header.
We train the model with a small subset of training
samples (few shots), and test it with full testing set.
We denote the the number of training samples as
f in f -shot training.

3.2. Pre-trained LM as Backbone

We perform a thorough literature review and found
open source models used in this domain in works
such as Wang and Shang (2022). We find
BERT(Devlin et al., 2018), RoBERTa(Liu et al.,
2019), LayoutLM(Xu et al., 2020), LayoutLMv2(Xu
et al., 2021) and LayoutLMv3(Huang et al., 2022)
as models representative for this task. From Ta-
ble 6 in the Appendix, we pick the strongest two
baselines among these, i.e. LayoutLMv2 and Lay-
outLMv3. LAGER is built upon layout aware pre-
trained language models such as LayoutLMv2 (Xu
et al., 2021) or LayoutLMv3 (Huang et al., 2022).
These models are multi-modal transformer models
which take text, visual, and layout information as
input to incorporate the different interactions. The
layout information used are the bounding box coor-
dinates of the tokens in the document. The output
hidden states from the language model is denoted
in the form of a feature matrix, H ∈ RN×d, where
d represents the dimension of the hidden state and
N denotes the number of tokens in the document.
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Figure 2: Heuristics for graph construction.

3.3. Heuristic-based Graph Construction

As discussed previously, the idea of constructing
graphs for our document images is to exploit the
topological or adjacency relationship present in
the entities in the document. Towards this, we
construct graphs based on certain heuristics that
are used as inputs to the Graph Attention Network
(GAT, described in Section 3.4).

Node and Edge definition. Given a docu-
ment image page P with N tokens denoted by
T = {t1, t2, ..., tN}, let ti refer to the i-th token
in a text sequence in the dataset. For the token
ti, we also know the coordinates of its bounding
box, Bi = (xi0, yi0, xi1, yi1). Thus for our graph
G = (V,E), the vertices V = {v1, v2, ..., vN} corre-
spond to all the tokens T and their corresponding
bounding boxes. The edges E represent the
relationship between pairs of vertices or tokens.
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We construct an undirected graph, where an edge
eij ∈ E connects two vertices vi and vj . Now, we
describe how these edges are constructed.

Graph construction. We build graphs based
on two heuristics which primarily relate to the Eu-
clidean distance between two tokens in a document.
The edges in the graph between tokens are con-
structed based on either of the following heuristics:

• k-nearest neighbors in space: For a token ti,
we calculate the Euclidean distance between the
corresponding token with all other tokens in T .
We form edges between ti and its k-closest to-
kens. If ti is a k-nearest neighbor of tj , there
is an edge, or if tj is a k-nearest neighbor of ti,
there is an edge. A representative example for
k = 4 is shown in Figure 2.a.

• k-nearest neighbors at multiple angles: We
first describe our method to find the k-nearest
neighbor at one angle α. Basically, for a token ti,
the edges formed are restricted to the k-nearest
tokens in the direction of α. An example for k = 2
and α = 60◦ is shown in Figure 2.b.
– We draw a ray from the centroid of a token’s

bounding box that forms an angle (α) with the
x-axis (the red ray in Figure 2.b).

– We find all tokens such that the ray intersects
with any part of the token’s bounding box. We
then select the k-nearest such tokens (the to-
ken 1 and 2 in Figure 2.b).

The approach for one single angle collects the
information in that particular direction. We create
multiple graphs to represent the global topolog-
ical relation of each token. We pick an angle
θ and M = ⌊360°/θ⌋ graphs are created with
α ∈ {θ, 2θ, ...} (the graphs in Figure 2.c).

After constructing the graph(s), we would create
one adjacency matrix A for k-nearest neighbors in
space or multiple adjacency matrices A1, ..., AM

for k-nearest neighbors at multiple angles. For
simplicity, we denote these adjacency matrices by
A ∈ RN×N to represent the topological structure
when there is no ambiguity. And Avi,vj = 1 if and
only if an edge e = (vi, vj) exists in our graph.

We believe that constructing the graph using the
heuristics described above allows us to capture
some relationships between tokens in the docu-
ment that is not leveraged by using just the layout
aware pre-trained language model. The graphs, es-
pecially the one constructed using k-nearest neigh-
bors at multiple angles can preserve the topological
relationship. It also helps in recovering the relative
positions of the different bounding boxes even in
cases described in Section 3.5 where the docu-
ments are altered with scaling, rotations or shifting.

3.4. Graph Modeling with GAT
Our model combines the representations from the
pre-trained language model with the graph we
construct for a document described in the pre-
vious section. For this, we use a graph neu-
ral network, specifically Graph Attention Network
(GAT) (Veličković et al., 2018) which is a commonly-
used graph neural network architecture and has
shown state-of-the-art performance on various
tasks. The GAT computes latent representations
of each node in the graph, by attending over its
neighbors following a self-attention strategy. To
stabilise the learning process of self-attention, the
graph attention layer uses multi-head attention as in
the Transformer architecture (Vaswani et al., 2017).
Namely, the operations of this layer are indepen-
dently replicated h times (each with different param-
eters), and outputs are feature-wise concatenated.
The inputs to the GAT are, a feature matrix H and
an adjacency matrix A. We obtain the adjacency
matrix based on the graph construction explained
in Section 3.3. We obtain the feature matrix H
from the output of the backbone language model
as described in Section 3.2. Thus, each node in
the graph (token in a document) contains a corre-
sponding embedding. We get an enhanced output
representation, H ′ = GAT (H,A).

We use two variants of our model
LAGERnearest and LAGERangles based on the
two heuristics of graph construction described in
Section 3.3.

• k-nearest neighbors in space: For this, we use
a single GAT (M = 1) whose adjacency matrix
is based on the k-nearest neighbors in space
heuristic.

• k-nearest neighbors at multiple angles: Based
on this heuristic, we construct multiple graphs to
gather the spatial information around the token.
That is, we construct M graphs that evenly dis-
tribute in the space where M = ⌊360°/θ⌋. For ex-
ample, if θ = 60°, then we construct 6 graphs for
0°, 60°, 120°, 180°, 240°, 300°. For each of these
M graphs, we use a specific GAT (each with their
respective parameters) and then take an average
of all the GAT outputs. Specifically,

H ′
1 = GAT1(H,A1)...H

′
M = GATM (H,AM )

H ′ =
1

M

∑
H ′

i

where Ai is the adjacency matrix constructed with
i−1
M · ⌊ 360°

θ ⌋.

Once we have the embeddings H ′ from the GAT,
it undergoes a linear affine transformation which is
represented by the classifier layer in Figure 1. Fol-
lowing this, the model predicts the {I,O,B,E, S}
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(a) Rotation with δ = 8°

(b) Scaling by a factor of 4 (sw = 2, sh = 2)

(c) Shifting with a = 10

Figure 3: Representative examples of the image
manipulations

tags for each token in the document and uses se-
quence labeling to detect each type of entity for the
corresponding dataset.

3.5. Image manipulations
In real-world scenarios, document images are often
not in ideal, regular conditions and can have some
alterations such as shifting, rotation or scaling. As
illustrated in Figure 3, we perform three types of
manipulations to the document images:

• Shifting: In every document, for each bounding
box B = (x0, y0, x1, y1), we translate the coordi-
nates of the four corners with a translation vector
(a, a). Thus, the modified bounding box now is
B′ = (x0 + a, y0 + a, x1 + a, y1 + a).

• Rotation: We rotate each document by a small
angle δ about the bottom left corner of the doc-
ument. Thus, for each bounding box B =
(x0, y0, x1, y1), we rotate the bounding box around
(x0, y1), i.e. the bottom left corner of the bounding
box is the center of rotation. Thus, for every (x, y)
corner of a bounding box, we have the resulting
rotated point (x′, y′), where

x′ = (x− x0) · cos(δ)− (y − y1) · sin(δ) + x0

y′ = (x− x0) · sin(δ) + (y − y1) · cos(δ) + y1

• Scaling: We scale down, i.e. reduce the size of
the entire document by a factor. If w, h denote
the width and height of the document and sw,
sh denote the factor of scaling for the width and
height. In every document, for each bounding box

Dataset # Train Pages # Test Pages # Entities / Page
FUNSD 149 50 42.86
CORD 800 100 13.82

Table 1: Dataset Statistics.

B = (x0, y0, x1, y1), the scaled down coordinates
would now be B = (x0/sw, y0/sh, x1/sw, y1/sh).

4. Experiments

We conduct extensive experiments on the
FUNSD (Guillaume Jaume, 2019) and the
CORD (Park et al., 2019) datasets under few-shot
settings. We also look at how the vanilla baseline
models and our proposed models fare under
environments where the document images have
been manipulated. We also look at some example
case studies from both the datasets.

All the experiments under the few-shot settings
using few-shot sizes ranging from 1 to 10. We use
6 different random seeds to select the few-shot
samples from our training set. We train the differ-
ent models for a particular few-shot size using the
same data and compute the average performance
and the standard deviation across the 6 seeds. We
report only the result of 2, 3, 4, 5 and 6 shots due
to space limitation. We report the results for all
10 few-shot sizes in Table 7 and 8 in the Appendix.
For model evaluation, the results are first converted
into IOBES tagging style and we then compute the
word-level precision, recall and F-1 score using the
seqeval APIs (Nakayama, 2018). All implementa-
tion details including hyperparameters used for all
the experiments is in Section 4.3.
4.1. Datasets
Our experiments are conducted on two real-world
data collections: FUNSD and CORD. Both datasets
provide rich annotations for the document images
and include the words and the word-level bounding
boxes. The details and statistics (Table 1) of these
two datasets are as follows.
• FUNSD: FUNSD consists of 199 fully-annotated,

noisy-scanned forms with various appearance
and format which makes the form understand-
ing task more challenging. The word spans in
this datasets are annotated with three different
labels: header, question and answer, and
the rest words are annotated as other. We use
the original label names.

• CORD: CORD consists of about 1000 receipts
with annotations of bounding boxes and textual
contents. The word spans in this datasets are
annotated with 30 different labels. The broad cat-
egories include menu, sub-total and total.
We use the original label names.
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|P| Model FUNSD CORD
Precision Recall F-1 Precision Recall F-1

La
yo

ut
LM

v2
2

Vanilla 38.61±4.04 53.8±8.35 44.82±5.3 43.34±2.07 55.85±2.43 48.66±2.13
+ LAGERnearest 41.4±3.26 52.08±9.89 45.74±5.32 43.42±2.45 55.89±3.15 48.87±2.73
+ LAGERangles 41.45±2.22 54.21±2.99 46.9±1.66 43.77±2.77 56.22±2.94 49.21±2.8

3
Vanilla 47.73±2.91 61.16±7.02 53.55±4.36 50.52±2.87 61.03±3.8 54.69±3.19

+ LAGERnearest 48.72±3.33 63.12±8.69 54.9±5.42 50.81±3.03 61.49±3.48 55.02±3.09
+ LAGERangles 48.48±3.46 60.68±9.14 53.79±5.73 50.15±2.79 61.28±2.98 54.53±2.7

4
Vanilla 51.13±2.16 64.57±6.8 56.95±3.7 55.18±2.25 65.96±3.35 59.88±2.66

+ LAGERnearest 52.59±3.71 67.23±4.75 58.93±3.55 54.86±2.57 65.87±3.88 59.85±3.05
+ LAGERangles 50.86±3.43 66.47±4.56 57.59±3.63 55.52±2.56 66.57±3.45 60.54±2.89

5
Vanilla 53.46±2.43 64.57±6.71 58.36±3.63 57.59±3.11 68.11±3.24 62.27±3.06

+ LAGERnearest 54.0±2.54 67.77±4.98 60.02±2.83 57.49±3.1 68.27±2.55 62.41±2.82
+ LAGERangles 52.98±3.25 67.23±5.08 59.19±3.53 57.88±2.73 68.27±2.48 62.63±2.52

6
Vanilla 56.92±1.59 67.59±2.9 61.77±1.77 60.28±2.47 70.01±2.48 64.41±2.43

+ LAGERnearest 57.45±2.57 71.14±2.83 63.53±2.25 60.63±2.88 70.49±2.69 65.19±2.78
+ LAGERangles 58.14±3.79 71.34±3.02 63.95±2.21 59.97±2.37 70.04±2.28 64.6±2.26

Table 2: Evaluation results with LayoutLMv2 as the backbone model on different few-shot sizes. Bold
denotes the best model

|P| Model FUNSD CORD
Precision Recall F-1 Precision Recall F-1

La
yo

ut
LM

v3

2
Vanilla 44.29±6.14 58.96±7.2 50.43±6.03 47.21±6.25 58.99±4.94 52.41±5.85

+ LAGERnearest 49.82±6.06 59.55±8.91 54.09±6.54 48.68±5.72 60.19±4.23 53.79±5.24
+ LAGERangles 46.8±6.46 58.15±8.92 51.61±6.42 48.15±5.07 60.3±3.57 53.51±4.58

3
Vanilla 59.66±4.92 72.2±7.65 65.29±5.92 51.34±6.55 62.49±5.47 56.34±6.2

+ LAGERnearest 62.18±5.13 73.12±7.3 67.12±5.56 53.08±7.32 64.3±5.55 58.1±6.73
+ LAGERangles 60.73±5.09 72.41±7.64 65.97±5.71 52.77±7.17 63.72±5.55 57.68±6.63

4
Vanilla 65.32±3.89 77.97±2.26 71.06±3.04 54.18±5.01 64.92±3.76 59.04±4.53

+ LAGERnearest 67.86±3.3 78.73±2.57 72.86±2.69 56.28±4.24 66.47±3.29 60.94±3.86
+ LAGERangles 65.93±3.28 77.22±3.45 71.08±2.81 55.38±4.63 65.99±3.79 60.21±4.3

5
Vanilla 67.14±5.17 77.88±2.62 72.07±4.01 58.55±2.82 67.03±2.46 62.49±2.57

+ LAGERnearest 69.6±2.57 79.72±1.66 74.3±1.94 59.84±3.27 68.36±2.34 63.8±2.76
+ LAGERangles 70.32±1.41 80.86±1.23 75.22±1.1 59.37±4.09 68.48±3.08 63.58±3.63

6
Vanilla 71.19±3.75 80.83±1.09 75.68±2.58 60.91±3.51 69.16±2.76 64.76±3.16

+ LAGERnearest 72.71±3.42 81.53±1.98 76.84±2.58 61.8±5.14 70.0±3.75 65.63±4.53
+ LAGERangles 72.31±3.7 81.65±1.81 76.67±2.7 61.56±4.49 70.3±3.33 65.63±3.98

Table 3: Evaluation results with LayoutLMv3 as the backbone model on different few-shot sizes. Bold
denotes the best model

4.2. Baselines

Based on Table 6 in the Appendix, we select the
two strongest baselines that are representative for
our task, i.e. LayoutLMv2 and LayoutLMv3. In
our model LAGER, we use LayoutLMv2 (Xu et al.,
2021) and LayoutLMv3 (Huang et al., 2022) as
backbones . We evaluate LAGER against vanilla
LayoutLMv2 and LayoutLMv3 in few-shot setting.
• LayoutLMv2: is a multi-modal language model

which is an improved version of LayoutLM (Xu
et al., 2020). It integrates the visual information in
the pre-training stage to learn the cross-modality
interaction between visual and textual informa-
tion.

• LayoutLMv3: is another large multi-modal lan-
guage model which aims to mitigate the discrep-
ancy between text and image modalities in other
models such as LayoutLM and LayoutLMv2. It
facilitates multimodal representation learning by
unifying the text and image masking.

For all our experiments we use the base version of
the models and follow the IOBES tagging scheme.

4.3. Implementation Details
We build our model on top of Lay-
outLMv2/LayoutLMv3 as our backbone language
model. We use the Transformers (Wolf et al., 2019)
and also utilize the repository of Dong et al. (2019)
to build our model. We use one NVIDIA A6000
to finetune with batch size of 8. We optimize the
model with AdamW optimizer and the learning rate
is 5× 10−5.

We ran extensive experiments for various intu-
itive choices of hyperparameters. For the value of
k during graph construction, we try different val-
ues like 1,2,4, and 8. All results reported for both
heuristics use k = 4. For the k-nearest neighbors
at multiple angles, the idea is to capture the topolog-
ical relationship of a token. Thus, it’s quite natural
to divide the 2D plane into 2,4,6 or 8 halves, i.e.
angles such as 90, 60, 45, 30, 15, etc. were tried.
Though most of these choices work great, the one
in the experiments reported use θ = 60◦. Thus,
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|P| Model
Shift (a = 20) Scale (sw = 2, sh = 2) Rotation (δ = 8°)

FUNSD CORD FUNSD CORD FUNSD CORD
F-1 Diff. F-1 Diff. F-1 Diff. F-1 Diff. F-1 Diff. F-1 Diff.

La
yo

ut
LM

v3

2
Vanilla 49.28±5.69 1.15 50.53±5.58 1.88 32.66±15.64 17.77 38.77±6.62 13.64 48.11±5.77 2.33 48.39±5.31 4.02

+ LAGERnearest 53.31±5.03 0.78 51.97±5.24 1.82 38.07±16.16 16.02 40.66±7.63 13.13 52.56±6.22 1.53 50.4±5.48 3.39
+ LAGERangles 51.32±5.83 0.29 51.98±4.45 1.53 36.14±15.32 15.47 39.96±7.98 13.55 49.58±6.64 2.03 50.3±4.97 3.21

3
Vanilla 63.22±5.5 2.07 54.15±5.76 2.19 46.44±15.39 18.85 43.04±7.23 13.3 63.24±5.69 2.05 51.2±5.72 5.14

+ LAGERnearest 65.34±4.58 1.78 55.94±6.22 2.16 48.78±12.16 18.34 44.6±8.52 13.5 65.36±5.46 1.76 52.84±6.71 5.25
+ LAGERangles 63.98±4.37 1.99 55.72±5.96 1.96 49.61±11.33 16.36 44.63±7.46 13.05 64.04±5.65 1.92 52.72±6.56 4.96

4
Vanilla 68.66±3.13 2.4 56.8±3.84 2.24 52.7±9.16 18.36 44.17±5.89 14.47 68.84±3.34 2.22 54.57±4.24 4.47

+ LAGERnearest 70.62±2.81 2.24 58.97±3.35 1.97 54.86±9.4 18 46.64±6.54 14.3 70.4±3.06 2.46 56.9±3.17 4.04
+ LAGERangles 68.92±2.66 2.16 58.06±3.87 2.15 52.99±11.59 18.09 45.86±6.12 14.35 68.71±3.0 2.36 55.76±3.63 4.45

5
Vanilla 70.01±4.08 2.06 59.47±3.23 3.02 47.18±15.26 24.89 45.02±4.41 17.47 69.62±4.13 2.45 57.31±2.85 5.18

+ LAGERnearest 72.43±1.66 1.87 61.73±2.52 2.07 57.18±8.11 17.12 49.83±3.18 13.97 72.36±2.66 1.93 58.88±2.33 4.91
+ LAGERangles 73.28±1.15 1.94 61.01±3.15 2.57 56.73±5.68 18.49 48.55±3.08 15.03 72.86±2.1 2.35 58.33±2.54 5.25

6
Vanilla 73.58±1.43 2.1 61.91±3.18 2.85 53.07±13.76 22.61 47.18±1.7 17.58 73.54±3.15 2.14 60.19±2.04 4.57

+ LAGERnearest 74.59±2.79 2.25 63.35±4.41 2.28 57.0±11.24 19.84 52.34±3.02 13.29 75.09±2.75 1.75 61.26±3.25 4.37
+ LAGERangles 75.07±2.52 1.6 63.24±3.64 2.39 56.53±12.75 20.14 51.68±4.05 13.95 74.72±2.94 1.95 60.93±2.67 4.69

Table 4: Evaluation results on image manipulation with shifting (a = 20), scaling by a factor of 4 (sw =
2,sh = 2) and rotation with δ = 8° with LayoutLMv3 as backbone. The column Diff. refers to the difference
in F1-scores between results in setting without manipulation (Table 3) and with manipulation.
Bold denotes the best model.

we use M = 360°/60° = 6 GATs and average the
outputs of these different GATs when we run the
experiments. For all our experiments, we set the
number of heads in the GAT, to h = 4.

4.4. Few-shot Experimental results
We report our results using the two baseline mod-
els described in Section 4.2 in Tables 2 and 3. For
the baseline and as the backbone language model
in LAGER, Table 2 and 3 use LayoutLMv2 and
LayoutLMv3 respectively. The results are reported
on two versions of our model, LAGERnearest and
LAGERangles for the two heuristics of graph con-
struction described in Section 3.3 and 3.4. We
observe that our model achieves significant perfor-
mance improvements compared with the baselines
for both FUNSD and CORD datasets. We see in Ta-
ble 2, there is on average relative improvements of
4% and 1.5% in terms of F-1 score for FUNSD and
CORD respectively over the vanilla LayoutLMv2
baseline. For Table 3, we see an average rela-
tive improvement in terms of F-1 score by 4% and
3% for FUNSD and CORD respectively over the
LayoutLMv3 baseline. We see similar gains in per-
formance for precision and recall in both the tables.

We also analyze the filewise results of the test
set instances for both FUNSD and CORD. That
is, for each individual test set instance, we com-
pare the filewise F-1 scores of our models with
the baseline. We observe that when using Lay-
outLMv2 as the backbone, our models on average
improve over the baseline for 58% and 62% of our
test set instances for FUNSD and CORD respec-
tively. Similarly, when using LayoutLMv3 as the
backbone, our models on average improve over
the baseline for 65% and 67% of our test set in-
stances for FUNSD and CORD respectively. This
shows that LAGERnearest and LAGERangles provide

more confident predictions leading to the overall
performance improvement for the entity recognition
task.

Based on these comparisons, we conclude that
our proposed framework is superior to the tradi-
tional vanilla language model baselines in few-shot
settings.

4.5. Experiments with image
manipulation

In these experiments, for the models in Table 3 we
manipulate the test-set images during inference as
described in Section 3.5. We perform experiments
with various factors of shifting, scaling and rotation
and observe similar evaluation results. We show
an instance of each here due to space constraints.
We use shifting with a factor of a = 20, scaling
with a factor of 4, i.e sh = 2, sw = 2 and rotation
with δ = 8°. The results are reported in Table 4.
We see that for both the scaling and shifting, both
LAGERnearestand LAGERangles approaches perform
better than the vanilla LayoutLMv3 baseline for all
cases. As expected, we see a drop in performance
in all the models. We measure the difference in F-1
scores between results without manipulation (Table
3) and with manipulation. From these numbers, we
see that for all models, the difference for each few-
shot size is lower for both our approaches than the
baselines for both FUNSD and CORD. This shows
that our method is more robust compared to the
baseline to these manipulations.

4.6. Case studies
We visualize several cases from the 4-shot set-
ting. In Figure 4, the models use LayoutLMv2
as backbone and we show an example from the
FUNSD test set. We observe that compared to the
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(a) Ground truth (b) LayoutLMv2

(c) LayoutLMv2 + LAGERnearest (d) LayoutLMv2 + LAGERangles

Figure 4: Case studies from FUNSD. Bl , Bl , Bl , Bl , Bl denote B-ANSWER, I-ANSWER, B-QUESTION,
I-QUESTION and OTHER respectively.

(a) Ground truth (b) LayoutLMv3 (c) LayoutLMv3 +
LAGERnearest

(d) LayoutLMv3 +
LAGERangles

Figure 5: Case studies from CORD. Bl , Bl , Bl , denote the tags for TOTAL.TOTAL_PRICE TO-
TAL.CASHPRICE and TOTAL.CHANGEPRICE respectively.

ground-truth, the vanilla LayoutLMv2 makes errors
specifically when there are a sequence of tokens
next to each other all with the I-ANSWER tag. We
see that both the approaches LAGERnearest and
LAGERangles are able to capture the continuous
set of words in the form correctly. We believe
that our graph based approach is able to cap-
ture the spatial relationship of these words and
is thus able to get better predictions. Further,
the LAGERangles approach also captures the mis-
labeled I-QUESTION tags by LAGERnearest . We
show another example in Figure 5 in which we use
LayoutLMv3 as the backbone and show an exam-
ple from the CORD test set. We see that compared
to the ground truth, the vanilla LayoutLMv3 model
misclassifies the TOTAL-CHANGEPRICE tag. We
see that both the approaches LAGERnearest and
LAGERangles are able to classify that correctly.

5. Conclusion and Future Work

We present LAGER, a layout-aware graph based
entity recognition framework for few-shot entity
recognition in document images. Existing methods
use the coordinates of the token bounding boxes to
encode layout information and they are sensitive to
manipulations in the images such as shifting, rota-
tion or scaling especially in low data resource set-
tings. Our approach makes use of the topological
relationship between the tokens in the documents
by using a graph-based approach and it is more ro-
bust to these manipulations. We construct graphs
based on heuristics relating to the k-nearest neigh-
bors of these tokens in space and at a certain angle.

We extend layout-aware pre-trained language mod-
els with a graph attention network with the graphs
we construct and the output hidden states froms
the backbone language model. Extensive experi-
ments in few-shot settings on FUNSD and CORD
datasets illustrate the performance gains using our
approach. Further, we show experiments with im-
age manipulations where our approach is robust
to these alterations in the image. In the future,
we plan to apply the model on other backbones
and incorporate other features such as the seman-
tic relationship between the tokens in addition to
the topological relationship when constructing the
graph.

Limitations

The density of the graph constructed in terms of
edge connectivity is dependent on the layout of the
tokens present in the document. This leads to cer-
tain types of documents or even certain documents
within a dataset to have a very dense graph whilst
other documents can have sparse graphs. This
could be a factor that affects the output represen-
tations from the GAT and the performance of the
model.

Ethics Statement

Our work focuses on few-shot entity recognition in
document images. Both the datasets that we use
are public and builds upon language models that
are open-source. We also plan to release our code
publicly. Thus, we do not anticipate any ethical
concerns.
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7. Appendix

7.1. Baseline models

There are several popular open source models
in this domain: re BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), LayoutLM(Xu et al.,
2020), LayoutLMv2(Xu et al., 2021) and Lay-
outLMv3(Huang et al., 2022).

• BERT(Devlin et al., 2018) is a text-only auto-
encoding pre-trianed language model that
uses masked language modeling and next sen-
tence prediction as its pre-training tasks. For
this task, we fine-tune the pre-trained BERT
base model with the few-shot training samples
for both the datasets.

• RoBERTa(Liu et al., 2019) is an extension of
BERT that is trained on more data and also
makes modifications to its pre-training tasks
thereby achieving better performance in nu-
merous natural language understanding tasks.
Similar to BERT, we fine-tune the base model
with the few-shot training samples for both the
datasets.

• LayoutLM(Xu et al., 2020) is a multimodal lan-
guage model that includes layout and text in-
formation. LayoutLM is built upon BERT and
adds extra spatial embeddings into the BERT
embedding layer.

• LayoutLMv2(Xu et al., 2021) is a multi-modal
language model which is an improved version
of LayoutLM (Xu et al., 2020). It integrates the
visual information in the pre-training stage to
learn the cross-modality interaction between
visual and textual information.

• LayoutLMv3(Huang et al., 2022) is another
large multi-modal language model which aims
to mitigate the discrepancy between text and
image modalities in other models such as Lay-
outLM and LayoutLMv2. It facilitates multi-
modal representation learning by unifying the
text and image masking.

From Table 6 we can see that LayoutLMv2 and
LayoutLMv3 are the two strongest models and sig-
nificantly outperform BERT, RoBERTa and Lay-
outLM. Thus, in our LAGER framework, we per-
form our experiments by picking LayoutLmv2 or
LayoutLMv3 as our pre-trained layout aware back-
bone language model.

Table 7 and 8 comprises of few-shot experi-
mental results using LayoutLMv2 and LayoutLMv3
as the backbone models respectively for few-shot
sizes from 1 to 10.

Model FUNSD-F1 CORD-F1
LayoutLMv3 89.92 81.95

LayoutLMv3 + LAGERnearest 90.23 82.14
LayoutLMv3 + LAGERangles 90.34 82.09

Table 5: Evaluation results with LayoutLMv3 as the
backbone model using the entire dataset. Bold
denotes the best model

7.2. Experiments with entire datasets
Though the model that we construct isn’t tailored for
a few-shot setting, we believe our approach is par-
ticularly useful in a few-shot setting when there is
limited data availability for entity recognition, as the
graph-based method is efficient to train and easier
to generalize. We perform additional experiments
using the entire dataset to validate if the graph
based approach is effective even when trained with
the entire dataset and not in a few-shot setting. We
run experiments using LayoutLMv3 as the back-
bone as shown in Table 5 and observe improve-
ments in both of our approaches, LAGERnearest and
LAGERangles . However, our main contribution is
for the few-shot setting. Our approach focuses on
few-shot settings and limited data availability sce-
narios where we have potentially a larger number
of documents for testing.
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P Model FUNSD CORD
Precision Recall F-1 Precision Recall F-1

1

BERT 10.93±3.63 22.39±6.68 13.97±2.84 22.4±4.91 31.24±6.4 26.08±5.55
RoBERTa 12.98±4.34 21.93±11.09 17.13±6.07 18.55±6.69 25.77±9.24 21.56±7.73
LayoutLM 15.77±5.35 23.03±7.52 22.03±5.15 26.5±9.06 35.58±11.17 30.37±10.02

LayoutLMv2 23.4±10.05 29.22±14.6 25.51±11.72 32.5±4.15 42.51±3.82 36.33±4.03
LayoutLMv3 22.93±6.21 39.7±5.94 28.85±6.35 36.56±5.46 47.58±6.44 41.33±5.88

2

BERT 15.51±2.29 28.14±4.02 19.74±2.05 30.05±5.93 41.63±6.02 34.87±6.12
RoBERTa 21.64±1.64 33.43±4.24 26.68±1.76 34.96±6.73 45.7±7.17 39.59±7.03
LayoutLM 33.05±4.85 35.52±8.81 28.02±6.07 38.51±7.88 50.52±6.81 43.63±7.66

LayoutLMv2 38.61±4.04 53.8±8.35 44.82±5.3 43.34±2.07 55.85±2.43 48.66±2.13
LayoutLMv3 44.29±6.14 58.96±7.2 50.43±6.03 47.21±6.25 58.99±4.94 52.41±5.85

3

BERT 19.42±3.75 32.63±5.62 24.3±4.44 32.57±8.07 44.9±8.73 37.72±8.53
RoBERTa 25.22±3.22 39.0±5.37 30.57±3.76 41.0±8.37 51.07±8.35 45.46±8.48
LayoutLM 28.69±3.86 46.07±8.95 35.13±7.29 43.35±6.77 56.15±4.62 48.84±6.11

LayoutLMv2 47.73±2.91 61.16±7.02 53.55±4.36 50.52±2.87 61.03±3.8 54.69±3.19
LayoutLMv3 59.66±4.92 72.2±7.65 65.29±5.92 51.34±6.55 62.49±5.47 56.34±6.2

4

BERT 21.2±3.54 37.04±3.13 26.9±3.59 36.48±8.43 48.17±8.47 41.47±8.64
RoBERTa 27.53±2.92 42.83±2.68 33.48±2.83 45.89±7.84 55.04±8.69 50.05±8.25
LayoutLM 34.31±2.56 52.23±5.45 41.29±2.68 48.41±6.28 60.5±4.25 53.7±5.58

LayoutLMv2 51.13±2.16 64.57±6.8 56.95±3.7 55.18±2.25 65.96±3.35 59.88±2.66
LayoutLMv3 65.32±3.89 77.97±2.26 71.06±3.04 54.18±5.01 64.92±3.76 59.04±4.53

5

BERT 24.2±3.24 39.59±2.55 29.97±3.0 37.75±8.26 49.53±8.19 42.81±8.37
RoBERTa 31.57±2.56 46.77±2.14 37.65±2.2 48.51±8.28 57.32±10.11 52.54±9.07
LayoutLM 38.60±5.12 54.07±5.49 44.87±4.61 52.05±5.68 63.7±3.79 57.23±4.95

LayoutLMv2 53.46±2.43 64.57±6.71 58.36±3.63 57.59±3.11 68.11±3.24 62.27±3.06
LayoutLMv3 67.14±5.17 77.88±2.62 72.07±4.01 58.55±2.82 67.03±2.46 62.49±2.57

6

BERT 26.54±1.99 41.47±3.69 32.27±1.99 42.04±5.46 54.18±4.43 47.31±5.13
RoBERTa 33.75±2.19 47.2±2.54 39.32±2.06 52.88±4.84 61.41±4.86 56.82±4.82
LayoutLM 42.27±3.85 57.84±4.49 48.79±3.75 52.05±5.68 63.7±3.79 57.23±4.95

LayoutLMv2 56.92±1.59 67.59±2.9 61.77±1.77 60.28±2.47 70.01±2.48 64.41±2.43
LayoutLMv3 71.19±3.75 80.83±1.09 75.68±2.58 60.91±3.51 69.16±2.76 64.76±3.16

7

BERT 28.67±1.94 44.04±4.07 34.59±1.64 43.31±5.46 54.8±4.5 48.35±5.15
RoBERTa 35.27±2.7 49.24±4.49 41.01±2.77 54.95±3.64 62.66±4.0 58.55±3.78
LayoutLM 45.81±2.59 61.24±4.05 52.29±1.93 57.9±2.22 67.88±1.96 62.48±1.95

LayoutLMv2 59.43±3.59 68.98±3.73 63.71±2.19 60.71±2.09 69.95±2.16 64.86±2.03
LayoutLMv3 72.44±3.56 81.56±1.12 76.68±1.95 62.26±3.78 70.3±3.02 66.03±3.43

8

BERT 30.81±2.83 43.72±3.99 36.11±3.12 45.58±5.27 57.34±4.27 50.76±4.94
RoBERTa 37.3±3.55 49.52±4.89 42.52±3.93 57.38±1.86 65.32±1.54 61.08±1.57
LayoutLM 48.48±3.09 60.21±4.66 53.68±3.51 57.9±2.22 67.88±1.96 62.48±1.95

LayoutLMv2 61.69±2.93 69.9±3.3 65.51±2.75 62.98±0.94 72.07±1.24 67.18±1.07
LayoutLMv3 74.31±2.19 81.75±2.6 77.85±2.29 64.49±3.24 72.21±2.17 68.12±2.77

9

BERT 31.18±2.75 43.67±5.27 36.33±3.51 47.25±3.93 59.11±2.9 52.5±3.54
RoBERTa 37.3±3.41 49.74±4.26 42.6±3.61 58.77±2.22 66.52±1.09 62.39±1.62
LayoutLM 51.91±2.37 63.59±4.04 57.14±2.95 57.9±2.22 67.88±1.96 62.48±1.95

LayoutLMv2 62.54±2.22 71.17±3.65 66.55±2.54 63.93±0.5 72.63±0.63 67.96±0.15
LayoutLMv3 75.9±1.53 82.52±1.36 79.06±1.24 65.89±2.8 73.44±1.87 69.45±2.39

10

BERT 32.32±3.55 45.16±5.04 37.59±3.84 50.83±3.11 61.91±2.25 55.81±2.76
RoBERTa 38.65±3.64 51.1±4.77 43.98±3.93 60.22±2.28 67.73±1.59 63.75±1.9
LayoutLM 52.94±2.51 64.29±3.3 58.05±2.63 64.05±2.76 71.99±1.91 67.78±2.33

LayoutLMv2 63.49±2.7 72.97±2.21 67.89±2.33 66.18±0.99 73.79±0.8 69.92±0.76
LayoutLMv3 75.9±1.53 82.52±1.36 79.06±1.24 65.89±2.8 73.44±1.87 69.45±2.39

Table 6: Comparison of various baseline models for all few-shot sizes. Bold denotes the best two models
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P Model FUNSD CORD
Precision Recall F-1 Precision Recall F-1

La
yo

ut
LM

v2

1
Vanilla 23.4±10.05 29.22±14.6 25.51±11.72 32.5±4.15 42.51±3.82 36.33±4.03

+ LAGERnearest 26.66±4.36 40.56±7.7 32.08±5.35 31.75±6.3 43.55±7.56 36.36±6.89
+ LAGERangles 26.58±5.06 36.62±13.16 29.72±8.13 30.56±6.63 41.37±8.34 35.14±7.39

2
Vanilla 38.61±4.04 53.8±8.35 44.82±5.3 43.34±2.07 55.85±2.43 48.66±2.13

+ LAGERnearest 41.4±3.26 52.08±9.89 45.74±5.32 43.42±2.45 55.89±3.15 48.87±2.73
+ LAGERangles 41.45±2.22 54.21±2.99 46.9±1.66 43.77±2.77 56.22±2.94 49.21±2.8

3
Vanilla 47.73±2.91 61.16±7.02 53.55±4.36 50.52±2.87 61.03±3.8 54.69±3.19

+ LAGERnearest 48.72±3.33 63.12±8.69 54.9±5.42 50.81±3.03 61.49±3.48 55.02±3.09
+ LAGERangles 48.48±3.46 60.68±9.14 53.79±5.73 50.15±2.79 61.28±2.98 54.53±2.7

4
Vanilla 51.13±2.16 64.57±6.8 56.95±3.7 55.18±2.25 65.96±3.35 59.88±2.66

+ LAGERnearest 52.59±3.71 67.23±4.75 58.93±3.55 54.86±2.57 65.87±3.88 59.85±3.05
+ LAGERangles 50.86±3.43 66.47±4.56 57.59±3.63 55.52±2.56 66.57±3.45 60.54±2.89

5
Vanilla 53.46±2.43 64.57±6.71 58.36±3.63 57.59±3.11 68.11±3.24 62.27±3.06

+ LAGERnearest 54.0±2.54 67.77±4.98 60.02±2.83 57.49±3.1 68.27±2.55 62.41±2.82
+ LAGERangles 52.98±3.25 67.23±5.08 59.19±3.53 57.88±2.73 68.27±2.48 62.63±2.52

6
Vanilla 56.92±1.59 67.59±2.9 61.77±1.77 60.28±2.47 70.01±2.48 64.41±2.43

+ LAGERnearest 57.45±2.57 71.14±2.83 63.53±2.25 60.63±2.88 70.49±2.69 65.19±2.78
+ LAGERangles 58.14±3.79 71.34±3.02 63.95±2.21 59.97±2.37 70.04±2.28 64.6±2.26

7
Vanilla 59.43±3.59 68.98±3.73 63.71±2.19 60.71±2.09 69.95±2.16 64.86±2.03

+ LAGERnearest 59.13±3.96 70.83±3.18 64.33±2.45 60.87±2.04 70.38±1.86 65.27±1.79
+ LAGERangles 61.11±3.53 72.16±2.74 66.13±2.76 60.84±1.5 70.31±1.76 65.23±1.46

8
Vanilla 61.69±2.93 69.9±3.3 65.51±2.75 62.98±0.94 72.07±1.24 67.18±1.07

+ LAGERnearest 63.31±2.0 71.99±1.87 67.35±1.46 63.07±2.31 72.08±2.47 67.27±2.34
+ LAGERangles 61.92±4.21 72.4±2.85 66.63±2.5 63.28±1.75 72.23±2.0 67.46±1.84

9
Vanilla 62.54±2.22 71.17±3.65 66.55±2.54 63.93±0.5 72.63±0.63 67.96±0.15

+ LAGERnearest 62.62±2.47 71.26±2.1 66.64±1.95 64.19±2.53 72.99±1.21 68.3±1.88
+ LAGERangles 63.53±3.81 71.94±2.64 67.44±3.08 63.72±1.75 72.79±1.29 67.94±1.4

10
Vanilla 63.49±2.7 72.17±2.21 67.59±2.33 66.18±0.99 73.79±0.8 69.92±0.76

+ LAGERnearest 63.9±2.87 71.89±3.03 67.63±2.62 66.09±1.34 74.0±0.5 69.82±0.9
+ LAGERangles 62.77±3.98 72.71±1.67 67.33±2.78 66.37±1.24 74.19±0.69 70.06±0.95

Table 7: Evaluation results with LayoutLMv2 as baseline on all few-shot sizes. Bold indicates best model

P Model FUNSD CORD
Precision Recall F-1 Precision Recall F-1

La
yo

ut
LM

v3

1
Vanilla 22.93±6.21 39.7±5.94 28.85±6.35 36.56±5.46 47.58±6.44 41.33±5.88

+ LAGERnearest 28.74±8.4 35.99±7.71 31.49±7.63 38.87±6.57 49.83±6.76 43.64±6.73
+ LAGERangles 26.11±6.69 32.53±6.29 28.23±5.24 37.52±6.34 48.7±6.6 42.36±6.54

2
Vanilla 44.29±6.14 58.96±7.2 50.43±6.03 47.21±6.25 58.99±4.94 52.41±5.85

+ LAGERnearest 49.82±6.06 59.55±8.91 54.09±6.54 48.68±5.72 60.19±4.23 53.79±5.24
+ LAGERangles 46.8±6.46 58.15±8.92 51.61±6.42 48.15±5.07 60.3±3.57 53.51±4.58

3
Vanilla 59.66±4.92 72.2±7.65 65.29±5.92 51.34±6.55 62.49±5.47 56.34±6.2

+ LAGERnearest 62.18±5.13 73.12±7.3 67.12±5.56 53.08±7.32 64.3±5.55 58.1±6.73
+ LAGERangles 60.73±5.09 72.41±7.64 65.97±5.71 52.77±7.17 63.72±5.55 57.68±6.63

4
Vanilla 65.32±3.89 77.97±2.26 71.06±3.04 54.18±5.01 64.92±3.76 59.04±4.53

+ LAGERnearest 67.86±3.3 78.73±2.57 72.86±2.69 56.28±4.24 66.47±3.29 60.94±3.86
+ LAGERangles 65.93±3.28 77.22±3.45 71.08±2.81 55.38±4.63 65.99±3.79 60.21±4.3

5
Vanilla 67.14±5.17 77.88±2.62 72.07±4.01 58.55±2.82 67.03±2.46 62.49±2.57

+ LAGERnearest 69.6±2.57 79.72±1.66 74.3±1.94 59.84±3.27 68.36±2.34 63.8±2.76
+ LAGERangles 70.32±1.41 80.86±1.23 75.22±1.1 59.37±4.09 68.48±3.08 63.58±3.63

6
Vanilla 71.19±3.75 80.83±1.09 75.68±2.58 60.91±3.51 69.16±2.76 64.76±3.16

+ LAGERnearest 72.71±3.42 81.53±1.98 76.84±2.58 61.8±5.14 70.0±3.75 65.63±4.53
+ LAGERangles 72.31±3.7 81.65±1.81 76.67±2.7 61.56±4.49 70.3±3.33 65.63±3.98

7
Vanilla 72.44±3.56 81.56±1.12 76.68±1.95 62.26±3.78 70.3±3.02 66.03±3.43

+ LAGERnearest 74.48±2.42 82.4±1.1 78.22±1.49 62.84±4.17 71.05±3.26 66.68±3.77
+ LAGERangles 74.63±2.69 83.18±2.04 78.65±2.06 62.77±4.17 71.01±3.15 66.62±3.72

8
Vanilla 74.31±2.19 81.75±2.6 77.85±2.29 64.49±3.24 72.21±2.17 68.12±2.77

+ LAGERnearest 76.27±1.44 83.41±1.73 79.66±1.14 64.89±4.38 72.22±3.19 68.35±3.84
+ LAGERangles 76.41±2.18 83.98±1.49 79.99±1.24 65.1±4.14 72.27±2.87 68.49±3.56

9
Vanilla 75.9±1.53 82.52±1.36 79.06±1.24 65.89±2.8 73.44±1.87 69.45±2.39

+ LAGERnearest 76.83±1.95 83.23±1.61 79.89±1.51 66.84±3.25 73.62±1.85 70.05±2.6
+ LAGERangles 76.95±2.03 84.43±1.65 80.5±1.59 66.73±3.99 73.45±2.35 69.91±3.25

10
Vanilla 76.1±2.31 82.65±2.34 79.24±2.27 66.72±2.65 73.58±2.08 69.97±2.34

+ LAGERnearest 77.44±2.65 84.43±1.83 80.77±2.02 67.68±3.49 73.64±2.57 70.53±3.05
+ LAGERangles 77.39±2.53 84.57±1.53 80.81±1.79 67.05±3.2 73.64±1.93 70.18±2.61

Table 8: Evaluation results with LayoutLMv3 as baseline on all few-shot sizes. Bold indicates best model
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