
LREC-COLING 2024, pages 16550–16556
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

16550

Towards Human-aligned Evaluation for Linear Programming Word
Problems

Linzi Xing1∗, Xinglu Wang2∗, Yuxi Feng3, Zhenan Fan1, Jing Xiong4,
Zhijiang Guo5, Xiaojin Fu5, Rindra Ramamonjison1, Mahdi Mostajabdaveh1,

Xiongwei Han5, Zirui Zhou1, Yong Zhang1

1Huawei Technologies Canada, 2Simon Fraser University, 3University of British Columbia,
4Sun Yat-sen University, 5Huawei Noah’s Ark Lab,

{linzi.xing, zhenan.fan1, guozhijiang, fuxiaojin, rindranirina.ramamonjison,
mahdi.mostajabdaveh1, hanxiongwei, zirui.zhou, yong.zhang3}@huawei.com

xwa239@sfu.ca, fyx14@cs.ubc.ca, xiongj69@mail2.sysu.edu.cn
Abstract

Math Word Problem (MWP) is a crucial NLP task aimed at providing solutions for given mathematical descriptions. A
notable sub-category of MWP is the Linear Programming Word Problem (LPWP), which holds significant relevance in
real-world decision-making and operations research. While the recent rise of generative large language models
(LLMs) has brought more advanced solutions to LPWPs, existing evaluation methodologies for this task still diverge
from human judgment and face challenges in recognizing mathematically equivalent answers. In this paper, we
introduce a novel evaluation metric rooted in graph edit distance, featuring benefits such as permutation invariance
and more accurate program equivalence identification. Human evaluations empirically validate the superior efficacy
of our proposed metric when particularly assessing LLM-based solutions for LPWP.

Keywords: Evaluation Methodologies, Language Modeling, NLP Application, Mathmatical NLP

1. Introduction

Math Word Problem (MWP), a fundamental yet
challenging NLP task, has received considerable
attention recently, aiming to provide solution ex-
pressions for given mathematical problem descrip-
tions (Shen et al., 2021). Most prior research has
focused on elementary arithmetic problems (Roy
and Roth, 2015; Koncel-Kedziorski et al., 2016;
Patel et al., 2021; Cobbe et al., 2021) and alge-
bra problems (Kushman et al., 2014; Huang et al.,
2016) due to their straightforward solvability and
evaluative convenience through methods like preci-
sion/recall (Huang et al., 2016; Wang et al., 2017)
and test solve rate (Cobbe et al., 2021). On the
other hand, Linear Programming Word Problems
(LPWP) (Ramamonjison et al., 2022), closely tied
to real-world decision-making, hold significant po-
tential in operations research (OR) (Tao et al., 2020;
Beairsto et al., 2021; Fan et al., 2024) but remain
under-explored. As shown in Figure 1, a LPWP
typically consists of a textual problem description
paired with its mathematical program, which com-
prises three main elements: decision variables, an
objective, and constraints.

Previous solutions for LPWP often decompose
this task into sub-steps (e.g., entity recognition fol-
lowed by text generation), which leads to inevitable
error accumulation (Ramamonjison et al., 2022;
He et al., 2022; Prasath and Karande, 2023). Re-
cently, generative large language models (LLMs)
have emerged as more advanced, end-to-end alter-

* The first two authors contributed equally to this
work.

Figure 1: An LPWP example sampled from
NL4OPT testing set (Ramamonjison et al., 2023b).
natives for LPWP, leveraging problem descriptions
as instructions to generate textual LPWP answers.
Despite the rapid progress in LPWP task, its evalu-
ation methodologies have not evolved at the same
pace. Previous evaluation metrics (e.g., Canonical
Accuracy (Ramamonjison et al., 2022) and Execu-
tion Accuracy (Prasath and Karande, 2023)) either
do not align with human intuition or fail to recog-
nize mathematically equivalent answers (§2). To
address prior issues in LPWP evaluation, we in-
troduce a simple yet effective evaluation strategy
based on graph edit distance. Specifically, given
the predicted (e.g., by LLMs) and reference (i.e.,
ground-truth) programs in the format of a textual
answer, we initially parse them into a structured
general form. We then convert these general forms
into bipartite graphs, with weighted edges linking up
vertices representing variables and constraints. Fi-
nally, we compute the edit distance between graphs

16551

Figure 2: Demonstration of the pitfalls of Canonical Accuracy and Execution Accuracy: results highlighted
in red are poorly aligned with human judgment.

corresponding to the predicted and reference pro-
grams, using this as the evaluation metric to assess
the performance of modeling solutions for LPWP.

In summary, our proposed strategy showcases
advancement in the following two aspects:

- Permutation Invariance: Our proposed graph-
based evaluation strategy can accommodate order
discrepancies of variables and constraints between
the predicted and reference programs, as these
order variations do not inherently indicate two pro-
grams are different.
- Exact Match Identification: Our proposal en-
sures that a match between predicted and refer-
ence programs can be confidently considered as
exact equivalence. This addresses the challenge
of the execution measurement (in §2), where two
programs with the same (or an infeasible) optimal
solution might still be inequivalent.

2. Pitfalls of Prior Metrics

Prior research typically employs two evaluation ap-
proaches to evaluate LPWP performance, namely
Canonical Accuracy and Execution Accuracy:
Canonical Accuracy (Ramamonjison et al.,
2022). This evaluation method is based on the
declaration-level matching between predicted and
reference programs, with a declaration represent-
ing either an optimization objective or constraint.
In particular, the canonical accuracy for one LPWP
problem can be calculated as follows:

Acc = 1− min(FPi + FNi, Di)

Di
(1)

where for a given problem i, Di is the number of
actual declarations in the reference program. The
term false positives FPi denotes the number of
declarations in prediction not matched with any
of the actual declarations, while false negatives
FNi denotes the number of actual declarations
not matched with any of the predicted declarations.
As FPi + FNi can possibly exceed Di, the min is
leveraged to prevent negative Acc.

This canonical measurement strongly assumes
that predicted programs must follow the same vari-

able order as those in the ground-truth program.
In other words, even though a ·X + b · Y ≤ c and
a ·Y +b ·X ≤ c (where X and Y permutes) are fun-
damentally equivalent, the canonical measurement
still deem them as different due to the altered order
of variables. As shown in Figure 2(a), the predicted
program merely swaps variables and constraints
compared to the reference one, which should be
regarded as equivalent. However, the canonical
metric yields a problematically low score, which
ideally should be 1.0.
Execution Accuracy (Prasath and Karande,
2023). Similar to the standard evaluation for code
generation that emphasizes functional correctness
(Chen et al., 2021), the execution evaluation for
LPWP measures the correctness of the mathemat-
ical program via comparing the optimal solutions
between predicted and reference programs. Specif-
ically, we parse the mathematical program in Fig 1
into an MPS1 file format and then use a solver to
obtain the optimal objective. Equal optimal objec-
tive values between the predicted and reference
program indicate a successful LPWP prediction.

Nonetheless, this evaluation scheme cannot
serve as a flawless indicator of program equiva-
lence. As shown in Figure 2(b), even if the pre-
dicted program overlooks a considerable number
of constraints, it may still match the reference’s op-
timal value. Furthermore, two different programs
both identified as “infeasible" by the solver will be
mistakenly regarded as a match even the predicted
program greatly differs from the reference one.

3. Evaluation via Graph Edit Distance

This section introduces a simple yet effective evalu-
ation strategy grounded on the graph edit distance.
This strategy tackles the pitfalls of prior metrics
and aligns more closely with human sense, as a
smaller edit distance indicates fewer mistakes in
the predicted program w.r.t the reference program.

Generally, this evaluation strategy can be un-
folded as three steps: (1) Converting the initial tex-

1An MPS (Mathematical Programming System) file is
an industry-standard format for linear and mixed integer
programs (Wikipedia, 2021) .

16552

Figure 3: An example of graph representation.
tual form of the predicted and reference programs
into Linear Programs (LPs) in general forms; (2)
Transforming the predicted and reference LPs into
bipartite graphs; (3) Calculating the graph edit dis-
tance between the predicted and reference graphs.
LP in General Form. The general form is
widely adopted by various LP solvers including
CPLEX (Cplex, 2009) and Gurobi (Gurobi Optimiza-
tion, LLC, 2022). Formally, an LP with n variables
and m constraints can be represented as:

min
x∈Rn

c⊤x

s.t. ℓs ≤ Ax ≤ us

ℓx ≤ x ≤ ux,

(P)

where A ∈ Rm×n is the constraint matrix, c ∈ Rn

is the cost vector, x ∈ Rn is the decision variables.
Extended real domains are denoted by R = R ∪
{−∞} and R = R∪{∞}. ℓx ∈ Rn and ux ∈ Rn are
lower/upper bound of the decision variable x, and
ℓs ∈ Rm and us ∈ Rm are lower/upper bound of the
constraint. The type of constraint includes equality,
two-sides or one-side inequality. For the one-side
inequality constraint, we prefer the right-side over
the left-side one, by multiplying a constant −1.

For this step, we implement a robust rule-based
parser to convert the initial textual math program
into the LP in such general form.
Graph representation. It is well known that LP
can be represented as an attributed bipartite graph,
(Gasse et al., 2019; Fan et al., 2023), denoted as
G = (S ∪ X,E) (Figure 3). This graph consists
of two disjoint vertex sets S = {si|i ∈ [m]} and
X = {xj |j ∈ [n]}, and a collection E = {eij |i ∈
[m], j ∈ [n]} of edges. Here, notation [·] means a
set of consecutive numbers. Vertex si corresponds
to the i-th constraint ℓsi ≤ a⊤

i x ≤ us
i , with its at-

tribute being attr(si) = [ℓsi , u
s
i]

⊤. The notation xj

is overloaded in the graph context to represent the
vertex xj that corresponds to the decision variable
xj . Its attribute attr(xj) = [ℓxj , u

x
j , cj]

⊤ contains the
bounds (ℓxj , ux

j) and objective coefficient (cj). The
topology of G is determined by A, i.e., edge eij ex-
ists iff Aij ̸= 0. The attribute of this edge is simply
the weight Aij , i.e., attr(eij) = [Aij].

One significant advantage of representing LP
as an attributed bipartite graph is its permutation
invariance. It refers that two LPs are equivalent

even if the constraints are permuted, or if the deci-
sion variables (and correspondingly, the cost vector
and columns in the matrix A) are permuted. Using
this bipartite graph representation, we can uniquely
convert any LP in general form into an attributed
bipartite graph.
Graph edit distance (GED). GED is the minimum
cost required to transform one graph into another
by a sequence of operations including inserting,
deleting, and substituting vertices and/or edges (as
shown in Fig 4). For generality, all these operations
are viewed as matching, e.g., deleting vertex is to
match this vertex to an empty vertex, denoted by ϵ.

Any well-established GED algorithm (Abu-
Aisheh et al., 2015; Riesen et al., 2020; Gao et al.,
2010) can be employed once the costs of matching
operations are determined. Although various cost
definitions can exist, our proposed definition abides
by a straightforward principle: each operation on
an attribute in graph incurs a unit cost of 1. Follow-
ing this principle and given the graph of predicted
program Gp = (Sp ∪Xp, Ep) and the graph of refer-
ence program Gr = (Sr ∪Xr, Er), the vertex cost
matrix Cv is formally defined as:

sri′ ∈ Sr xr
i′ ∈ Xr ϵ

spi ∈ Sp #msm(spi , s
r
i′) ∞ #attr(spi)

xp
i ∈ Xp ∞ #msm(xp

i , x
r
i′) #attr(spi)

ϵ #attr(sri′) #attr(sri′) ∞

Due to the space limit, we details only a few
entries highlighted in gray above. (1) Substituting
constraint vertex spi to sri′ equals to editing attributes
of one vertex to match another, so the cost of such
operation is the number of mismatched attributes
between two vertices, denoted by Cv(s

p
i → sri′) =

#msm(spi , s
r
i′). Given that GED accounts for the

interaction between vertices and edges, here only
current pairs of vertices need consideration. (2) Re-
gardless of how attributes are edited, a constraint
vertex will never convert to a variable vertex, so
their substitution cost is ∞. (3) The deletion cost of
a constraint vertex sri equals to the number of its at-
tributes, i.e., Cv(s

r
i → ϵ) = #attr(sri). Analogously,

the insertion cost can be deemed as converting an
empty vertex ϵ into the vertex being inserted.

Similarly, the edge cost matrix Ce is defined as:
erij ∈ Er ϵ

epij ∈ Ep #msm(epij , e
r
ij) #attr(epij)

ϵ #attr(erij) ∞

While GED(Gp,Gr) can measure the similarity be-
tween predicted and reference programs, it is sen-
sitive to graph size. A larger graph, representing
a predicted program with more variables and con-
straints, is more prone to errors, thereby leading to
larger GED w.r.t the reference program. To address
this issue, we further normalize GED(Gp,Gr) by
the graph size, as NGED(Gp,Gr) = GED(Gp,Gr)

max(|Gp|,|Gr|) ,
where |G| =

∑
e∈E #attr(e) +

∑
v∈S∪X #attr(v). Ul-

timately, NGED forms the core of our proposed
evaluation metric for LPWP. Furthermore, graphs

16553

Figure 4: Exemplar graph edit path from the graph associated with the predicted program to the reference
program in Figure 2(b). Blue and yellow vertices are respectively constraint and variable vertices.

Figure 5: Ranking distributions of human judge-
ments on the NL4OPT test set.

of larger scale also require the scalability of our
GED-based evaluation metric to be both stable and
robust. Therefore, we discuss the computational
complexity of our metric in detail in Appendix A.

4. Experiments and Analysis

4.1. Experimental Setup
Datasets. We employ the recently introduced
NL4OPT (Ramamonjison et al., 2022), the first-ever
LPWP dataset, in our experiments. This dataset
contains 713 training, 99 validation, and 289 test-
ing data points. Each data point consists of both a
problem description and a human-composed math-
ematical program (as the example in Figure 1).
Language Models. To assess the effectiveness
of evaluation metrics comprehensively, we con-
sider four LLMs, all rooted in the foundational ar-
chitecture of the widely-explored, open-sourced
Llama family (Touvron et al., 2023; Rozière et al.,
2023) but with different settings to obtain diverse
LPWP modeling. Specifically, we include three
Llama-based models: (1) Llama-2-Chat (13B),
(2) Code-Llama-Instruct (34B), and (3) Llama-2-
Chat (70B). Additionally, we also fine-tune Llama-
2-Chat (13B) with the training set of NL4OPT and
name it as Llama-2-SFT (13B). Except for Llama-
2-SFT (13B), all three other LLMs are under the
one-shot in-context learning (ICL) setting, where a
validation datapoint is randomly selected and uti-
lized as the one-shot example for all inferences.
More details about the prompt template we used
can be found in Appendix B.
Human Evaluation. We collected human judg-
ments from three OR experts within our institution.
The annotation task is structured as follows: for

Language Models Execution(↑) Canonical(↑) Ours(↓)
Llama-2-Chat (13B) 0.07 (4) 0.24 (4) 0.52 (4)
Code-Llama-Instruct (34B) 0.35 (2) 0.54 (2) 0.25 (2)
Llama-2-Chat (70B) 0.21 (3) 0.31 (3) 0.41 (3)
Llama-2-Chat-SFT (13B) 0.53 (1) 0.64 (1) 0.14 (1)

Table 1: Evaluation scores on test set via 3 metrics
for 4 models. ↑ means larger is better. ↓ means
lower better. Models’ ranks are in brackets.

each test sample, an annotator is provided with its
reference program and 4 anonymized programs
predicted by the aforementioned 4 LLMs. The an-
notator then compares predicted programs with the
reference program and ranks them in descending
order according to their deviation from the reference
program (e.g., LLM1 = LLM2 > LLM4 > LLM3).
It is worth noting that annotators have the option to
use “=” if two predicted programs appear equally
similar to the reference program. As shown in Fig-
ure 5, four LLMs exhibit diverse performance and
the performance ranking by human is “llama-13b-
sft > code-llama-34b > llama-70b > llama-13b".

4.2. Experimental Results
Performance of LLMs. Table 1 presents the eval-
uation results obtained from our proposed graph-
based metric alongside two baseline metrics (i.e.,
execution accuracy and canonical accuracy in §2),
averaged across 289 test samples . The rankings of
LLMs based on these three metrics are consistent
with human judgment shown in Figure 5, indicating
that all three evaluation metrics can effectively as-
sess language models’ capability to solve LPWP to
some extent. However, this does not suggest that
they align equally well with human judgement. For
the majority of test samples, which are either dis-
tinctly easy or challenging for specific LLMs, the dis-
crepancies between their predicted and reference
programs can be easily quantified by all metrics.
Correlation with Human Evaluation. To more
comprehensively measure the alignment between
human evaluation and three automatic evaluation
metrics for LPWP, we delve deeper by looking into
the ranking match for each test sample. Specifically,
we define two types of matching rates: coarse-
grained rate (C-Match) and fine-grained rate (F-
Match). Given two ranking lists obtained by human
judgment and the automatic metric, we call it “lists
exactly match” if these two ranking lists are iden-

16554

Metrics C-Match F-Match
Execution 9 / 289 716 / 1734
Canonical 64 / 289 1336 / 1734
Ours 178 / 289 1641 / 1734

Table 2: Ranking match rate between automatic
evaluation metrics and human judgements.

tical. the C-Match measures the percentage of
instances where the human and automatic ranking
lists exactly match. On the other hand, the F-match
decomposes ranking lists into individual ranking
pairs and then calculates the match rate at the pair
level. As shown in Table 2, our proposed evaluation
metric consistently achieves the highest match rate
with human evaluations at both granularities. This
highlights the enhanced reliability and alignment
with human judgment of our proposal, especially
when conducting evaluation in a pairwise manner
(comparing merely two models LLM1 and LLM2).

5. Conclusion and Future Work

In this paper, we present a graph-based evalua-
tion metric for LPWP, emphasizing permutation in-
variance and exact match identification. Experi-
ments show superior alignment with human eval-
uation. In future work, we aim to extend this met-
ric to other mathematical programming word prob-
lems like quadratic and mixed-integer ones, which
can also be graph-represented. Furthermore, we
also tend to use this metric as a reward function to
enhance LLMs’ RLHF training for such problems
and to incorporate it into relevant operations re-
search modeling applications (Ramamonjison et al.,
2023a), thereby enhancing their efficacy and utility.
Additionally, we intend to utilize our proposed met-
ric to conduct a more thorough evaluation of LLMs’
performance on LPWPs, particularly in in-context
settings (Xiong et al., 2024).

6. Bibliographical References

Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves
Ramel, and Patrick Martineau. 2015. An exact
graph edit distance algorithm for solving pattern
recognition problems. In ICPRAM, pages 271–
278. SciTePress.

Jeneva Beairsto, Yufan Tian, Linyu Zheng, Qun-
shan Zhao, and Jinhyun Hong. 2021. Identifying
locations for new bike-sharing stations in glas-
gow: an analysis of spatial equity and demand
factors. Annals of GIS, 0(0):1–16.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared

Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski
Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evalu-
ating large language models trained on code.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton,
Reiichiro Nakano, et al. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

IBM ILOG Cplex. 2009. V12. 1: User’s manual
for CPLEX. International Business Machines
Corporation, 46(53):157.

Zhenan Fan, Bissan Ghaddar, Xinglu Wang, Linzi
Xing, Yong Zhang, and Zirui Zhou. 2024. Artificial
intelligence for operations research: Revolution-
izing the operations research process. CoRR,
abs/2401.03244.

Zhenan Fan, Xinglu Wang, Oleksandr Yakovenko,
Abdullah Ali Sivas, Owen Ren, Yong Zhang, and
Zirui Zhou. 2023. Smart initial basis selection
for linear programs. In ICML, volume 202 of Pro-
ceedings of Machine Learning Research, pages
9650–9664. PMLR.

X. Gao, B. Xiao, D. Tao, et al. 2010. A survey of
graph edit distance. Pattern Anal Applic, 13:113–
129.

Maxime Gasse, Didier Chételat, Nicola Ferroni,
Laurent Charlin, and Andrea Lodi. 2019. Exact
combinatorial optimization with graph convolu-
tional neural networks. NeurIPS, 32.

Gurobi Optimization, LLC. 2022. Gurobi Optimizer
Reference Manual.

JiangLong He, Mamatha N, Shiv Vignesh, Deepak
Kumar, and Akshay Uppal. 2022. Linear pro-
gramming word problems formulation using en-
semblecrf ner labeler and t5 text generator with
data augmentations.

https://doi.org/10.1080/19475683.2021.1936172
https://doi.org/10.1080/19475683.2021.1936172
https://doi.org/10.1080/19475683.2021.1936172
https://doi.org/10.1080/19475683.2021.1936172
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1007/s10044-008-0141-y
https://www.gurobi.com
https://www.gurobi.com
http://arxiv.org/abs/2212.14657
http://arxiv.org/abs/2212.14657
http://arxiv.org/abs/2212.14657
http://arxiv.org/abs/2212.14657

16555

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian
Yin, and Wei-Ying Ma. 2016. How well do com-
puters solve math word problems? large-scale
dataset construction and evaluation. In Proceed-
ings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 887–896, Berlin, Germany.
Association for Computational Linguistics.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini,
Nate Kushman, and Hannaneh Hajishirzi. 2016.
MAWPS: A math word problem repository. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, pages 1152–1157, San Diego, California.
Association for Computational Linguistics.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 271–281, Baltimore, Maryland.
Association for Computational Linguistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve sim-
ple math word problems? In Proceedings of the
2021 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 2080–
2094, Online. Association for Computational Lin-
guistics.

Ganesh Prasath and Shirish Karande. 2023. Syn-
thesis of mathematical programs from natural
language specifications.

Rindra Ramamonjison, Haley Li, Timothy Yu, Shiqi
He, Vishnu Rengan, Amin Banitalebi-dehkordi,
Zirui Zhou, and Yong Zhang. 2022. Augmenting
operations research with auto-formulation of op-
timization models from problem descriptions. In
Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing:
Industry Track, pages 29–62, Abu Dhabi, UAE.
Association for Computational Linguistics.

Rindra Ramamonjison, Timothy Yu, Linzi Xing,
Mahdi Mostajabdaveh, Xiaorui Li, Xiaojin Fu,
Xiongwei Han, Yuanzhe Chen, Ren Li, Kun Mao,
and Yong Zhang. 2023a. LaTeX2Solver: a hi-
erarchical semantic parsing of LaTeX document
into code for an assistive optimization modeling
application. In Proceedings of the 61st Annual
Meeting of the Association for Computational
Linguistics (Volume 3: System Demonstrations),
pages 471–478, Toronto, Canada. Association
for Computational Linguistics.

Rindranirina Ramamonjison, Timothy T. Yu, Ray-
mond Li, Haley Li, Giuseppe Carenini, Bissan

Ghaddar, Shiqi He, Mahdi Mostajabdaveh, Amin
Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang.
2023b. Nl4opt competition: Formulating opti-
mization problems based on their natural lan-
guage descriptions.

Kaspar Riesen and Horst Bunke. 2009. Approxi-
mate graph edit distance computation by means
of bipartite graph matching. Image and Vi-
sion Computing, 27(7):950–959. 7th IAPR-
TC15 Workshop on Graph-based Representa-
tions (GbR 2007).

Kaspar Riesen, Miquel A. Ferrer, and H. Bunke.
2020. Approximate graph edit distance in
quadratic time. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1743–1752,
Lisbon, Portugal. Association for Computational
Linguistics.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
Artyom Kozhevnikov, Ivan Evtimov, Joanna Bit-
ton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis
Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code llama: Open
foundation models for code.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang,
Xin Jiang, Ming Zhang, and Qun Liu. 2021. Gen-
erate & rank: A multi-task framework for math
word problems. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages
2269–2279, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Diana Qing Tao, Martin Pleau, et al. 2020. Analyt-
ics and Optimization Reduce Sewage Overflows
to Protect Community Waterways in Kentucky.
Interfaces, 50(1):7–20.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor

https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
http://arxiv.org/abs/2304.03287
http://arxiv.org/abs/2304.03287
http://arxiv.org/abs/2304.03287
https://aclanthology.org/2022.emnlp-industry.4
https://aclanthology.org/2022.emnlp-industry.4
https://aclanthology.org/2022.emnlp-industry.4
https://doi.org/10.18653/v1/2023.acl-demo.45
https://doi.org/10.18653/v1/2023.acl-demo.45
https://doi.org/10.18653/v1/2023.acl-demo.45
https://doi.org/10.18653/v1/2023.acl-demo.45
http://arxiv.org/abs/2303.08233
http://arxiv.org/abs/2303.08233
http://arxiv.org/abs/2303.08233
https://doi.org/https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1109/TCBB.2015.2478463
https://doi.org/10.1109/TCBB.2015.2478463
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.1287/inte.2019.1022
https://doi.org/10.1287/inte.2019.1022
https://doi.org/10.1287/inte.2019.1022

16556

Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ran-
jan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan,
Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sha-
ran Narang, Aurelien Rodriguez, Robert Sto-
jnic, Sergey Edunov, and Thomas Scialom. 2023.
Llama 2: Open foundation and fine-tuned chat
models.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing,
pages 845–854, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Wikipedia. 2021. MPS (format) – Wikipedia, The
Free Encyclopedia.

Jing Xiong, Zixuan Li, Chuanyang Zheng, Zhi-
jiang Guo, Yichun Yin, Enze Xie, Zhicheng Yang,
Qingxing Cao, Haiming Wang, Xiongwei Han,
Jing Tang, Chengming Li, and Xiaodan Liang.
2024. Dq-lore: Dual queries with low rank ap-
proximation re-ranking for in-context learning.

A. Discussion about Computational
Complexity

We adopted the exact algorithm proposed in Abu-
Aisheh et al. (2015), which is a branch-and-bound
algorithm with tailored pruning and branching strat-
egy. Given two bipartite graphs with n1 and n2
nodes respectively, the worst-case complexity is
O((n1∗n2)n1+n2). Practically, as the predicted and
ground-truth graphs usually share similar character-
istics, such as easily identifiablely identical nodes,
the algorithm scales well, e.g., processing graphs
with 15 nodes within 60 seconds. Admittedly, a
limitation is its inability to scale to larger numbers
of nodes. However, as mentioned in section 3, we
can benefit from various existing algorithms since
we frame the computation of the evaluation metric
as a graph edit distance problem. One possible
solution is to use an approximate algorithm, such
as the one in Riesen and Bunke (2009) with cubic
complexity O(max{n1, n2}3). However, this topic
and a more detailed exploration are left for future
work.

B. Prompt Templates

Figure 6 is the complete prompting formulation that
we use identically across all four LLMs in our ex-
periments (section 4.1).

Figure 6: The prompt templates we applied for four
Llama-based language models in section 4.1. The
randomly sampled one-shot example is not added
for Llama-2-SFT (13B).

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/D17-1088
https://en.wikipedia.org/wiki/MPS_(format)
https://en.wikipedia.org/wiki/MPS_(format)
http://arxiv.org/abs/2310.02954
http://arxiv.org/abs/2310.02954

	Introduction
	Pitfalls of Prior Metrics
	Evaluation via Graph Edit Distance
	Experiments and Analysis
	Experimental Setup
	Experimental Results

	Conclusion and Future Work
	Bibliographical References
	Discussion about Computational Complexity
	Prompt Templates

