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Abstract
Key-value relations are prevalent in Visually-Rich Documents (VRDs), often depicted in distinct spatial regions
accompanied by specific color and font styles. These non-textual cues serve as important indicators that greatly
enhance human comprehension and acquisition of such relation triplets. However, current document AI approaches
often fail to consider this valuable prior information related to visual and spatial features, resulting in suboptimal
performance, particularly when dealing with limited examples. To address this limitation, our research focuses on
few-shot relational learning, specifically targeting the extraction of key-value relation triplets in VRDs. Given the ab-
sence of a suitable dataset for this task, we introduce two new few-shot benchmarks built upon existing supervised
benchmark datasets. Furthermore, we propose a variational approach that incorporates relational 2D-spatial priors
and prototypical rectification techniques. This approach aims to generate relation representations that are more
aware of the spatial context and unseen relation in a manner similar to human perception. Experimental results
demonstrate the effectiveness of our proposed method by showcasing its ability to outperform existing methods.
This study also opens up new possibilities for practical applications.
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1. Introduction
Relational learning, also known as key-value re-
lation extraction, is a fundamental task in compre-
hending Visually-Rich Documents (VRDs) (Dengel
and Klein, 2002; Liu et al., 2019; Li et al., 2022).
It involves automatically identifying and extracting
key and value entities, as well as classifying the
relations between these entities in a text based on
a predefined schema. This task is typically per-
formed on scanned or digitally generated docu-
ments, such as invoices, receipts, and business
forms.
Recent document AI models pre-trained on large-
scale scanned document datasets (Xu et al., 2020;
Hong et al., 2021; Garncarek et al., 2021; Huang
et al., 2022) have demonstrated promising per-
formance by effectively leveraging multi-modal in-
formation. However, when it comes to real-world
applications, the diverse layout formats and form
styles found in VRDs present a significant chal-
lenge for adapting these AI models (Li et al., 2022).
These approaches lack the inherent ability to au-
tomatically detect and identify new types of enti-
ties and relations in unfamiliar domains, especially
in the absence of annotated data. In contrast,
humans possess the remarkable ability to swiftly
comprehend key-value patterns in VRD by analyz-
ing just a few lines on the page.
Despite recent advances (Cheng et al., 2020;
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Wang and Shang, 2022;Wang et al., 2022b), there
is currently no established systematic framework
suitable for addressing the more realistic task of
few-shot relational learning in VRDs. This re-
search area remains relatively unexplored and
presents several unresolved challenges. One of
the main challenges is effectively leveraging lay-
out features in few-shot scenarios. In VRDs, key
and value entities often have fixed positions and
arrangements, such as being located at specific
positions and arranged either up-down or left-right.
Therefore, incorporating 2D spatial features can
provide strong complementary supervision signals
when extracting key-value triplets from VRDs. An-
other challenge lies in the optimal design of the
multimodal fusion mechanism for few-shot learn-
ing. While it has been demonstrated that mul-
timodal information can greatly enhance super-
vised learning, determining how to align and ag-
gregate features across different modalities using
only a small number of instances remains unclear.
These challenges underscore the necessity for fur-
ther exploration and development in this research
direction.
Since there is currently no suitable dataset for the
few-shot relational learning task, we first create
two benchmark datasets, Few-CORD and Few-
SEAB, based on the supervised VRD understand-
ing benchmark datasets CORD (Park et al., 2019)
and SEAB (Zhang et al., 2022). They allow us
to evaluate the model’s ability to transfer knowl-
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Figure 1: Illustration of the distinction between our work and previous works (Popovic and Färber, 2022)
during an episode in the few-shot relational learning scenario. In the testing task, we aim to extract
triplets that consist of entities and relation types for a given query document. Notably, this task involves
a different set of relation types compared to the training task and is performed on a novel collection of
documents. Conventional approaches typically rely on off-the-shelf OCR engines to extract text from
original document images and solely rely on text features for extracting relational triplets. In contrast,
our work takes a human-like perspective and leverages multimodal information to effectively extract the
relational triplets. While we use simple receipts with well-aligned layouts to illustrate the idea, it is crucial
to acknowledge that real-world scenarios are considerably more complex and challenging.

edge to new classes. Then, we propose a novel
variational approach for few-shot relational learn-
ing in VRDs to address the challenges mentioned
above. This approach incorporates spatial priors
and effectively captures multimodal representa-
tions, resulting in improved performance on down-
stream tasks. We utilize a spatial prior encoder to
leverage explicit information from Region of Inter-
est (ROI) windows. These windows help us bet-
ter understand the layout styles in documents and
exploit the inherent spatial relationships between
entities. To overcome the issue of biased proto-
types generated by existing models due to the lim-
ited number of K-shot instances per category in
the training data, we introduce prototypical rectifi-
cation as a way to access optimal prototypes. In
summary, our contributions are as follows:

• To the best of our knowledge, this work is the
first to tackle the challenge of few-shot rela-
tional learning in VRDs. In order to facilitate
research in this area, we introduce two new
benchmark datasets specifically designed for
the few-shot learning setting.

• We propose a novel variational approach that
not only allows for the incorporation of spatial
priors but also enables the extraction of robust
relation-agnostic features, thereby alleviating
the sensitivity of prototypes more accurately.

• Our method achieves new state-of-the-art
performance for few-shot relational learning in
VRDs, which has been extensively evaluated

on the constructed datasets to demonstrate
its effectiveness.

2. Task Description
As shown in Figure 1, this task follows the few-shot
settings in previous works (Han et al., 2018; Bal-
dini Soares et al., 2019) and aims to extract key
and value entities involving new relation classes,
by training on known relation classes with a small
number of examples. The testing set examples
often include relation types that were not present
in the training set. For practicality and simplic-
ity, we consider only the key and value entities
from a single relation within a given document
as a training/test example. Then, we adopt a
single collapse sequential labeling model (Wang
and Blunsom, 2013; Islam and Foulds, 2019) to
jointly extract sets of key and value entities (Ek
or Ev) given their relation types R from the doc-
ument D. This is achieved by extending the la-
bel space of the previous named entity recogni-
tion (NER) scheme for entity types, e.g., “Cash” (in
CORD) and “Consignee” (in SEAB), with additional
key or value identifiers (“-Key”, “-Value”) into the
combination labels “Cash-Key/Cash-Value” and
“Consignee-Key/Consignee-Value”. In fact, we
perform token-level classification to extract en-
tity mentions from the document using a stan-
dard “BIO” tagging scheme - “Begin, Inside,
Other”. For example, “Consignee-Key-B” indi-
cates the first token in the entity mention of
“Consignee-Key”, while “O” represents “Other” that
none of the above applies.
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3. Few-Shot Datasets
3.1. Relation-Wise Sampling Strategy
During sampling, as shown in Figure 2, we should
carefully select and organize instances from the
documents to ensure that the N -way setting is
maintained while still capturing the necessary con-
textual information. By implementing an appropri-
ate sampling strategy, our approach aims to strike
a balance between incorporating document-level
context and adhering to the constraints of the N -
way setting, enabling effective few-shot learning
for sequential labeling tasks. We use the extended
dataset consisting of multiple copies of the orig-
inal documents. We sample from this extended
dataset, adding one more converted document to
the support or query set after each sampling step
until the support or query set reaches the desired
number of entity classes (N -way) and instances
per class (K-shot). The overall procedure of the
hierarchical sampling method is summarized in Al-
gorithm 1.
In our approach, we employN -way1 K-shot learn-
ing to train our few-shot relational learning sys-
tem. This involves constructing training or test-
ing episodes iteratively. While considering the
document-level context is important for few-shot
learning tasks, sampling at the document level can
pose challenges within the N -way setting. This
is because documents often contain multiple re-
lations/entities, which may exceed the limits of the
N -way setting. To maintain the N -way setting, as
shown in Figure 2, we hereby make relation-wise
copies for each document which means each copy
contains only entities involved in a particular rela-
tion type, and other bounding boxes are simply re-
labeled as Other type. The mathematical expres-
sion is: DR = M(D, R̄), where DR represents the
copy in which irrelevant entities to R are masked.
The masking operation M selectively retains only

1Note thatN/2 denotes the number of relation types
thus N denotes the number of entity types (key+value).

Algorithm 1 Relation-wise N -way K-shot Sam-
pling
Input: Documents D̂, N , K, K′;
Output: Support Set S, Query Set Q;
1: S ← [ ], Q ← [ ]; ▷initialization
2: for j ← 1 to N/2 do
3: S[j]← {}; ▷N/2 is the number of relation

types
4: Q[j]← {}; ▷N is the number of entity

types
5: end for
6: repeat
7: randomly sample (D(i),R(i)) from the extended

masked document dataset; ▷ D(i) ∈ D̂
8: if |S| < N/2 & |S[j]| < K then
9: S[j]← S[j] ∪ (D(i),R(i)); ▷add to the

support set
10: end if
11: if |Q| < N/2 & |Q[j]| < K′ and (D(i),R(i)) /∈

S[j] then
12: Q[j]← Q[j] ∪ (D(i),R(i)); ▷add to the

query set
13: end if
14: until |S| = |Q| = N/2 and {∀j | |S[j]| = K and
|Q[j]| = K′}

15: return S, Q;

the entities related to R and suppresses or elimi-
nates the rest, denoted as R̄.
For each episode, we randomly chooseN classes
(N -way) and sample K examples (K-shot) from
the extended dataset containing multiple copies
for each relation class to build support set Strain ={
D(i),R(i)

}N×K

i=1
and K ′ examples for a query set

Qtrain =
{
D(j),R(j)

}N×K′

j=1
, ensuring that the sup-

port set S and query setQ do not overlap (S∩Q =
∅). In addition, when adding one or more exam-
ples to the support or query set after each sam-
pling step until the support or query set reaches
the desired number of entity classes (N -way) and
instances per class (K-shot).
In the training phase, we train the few-shot learn-
ing system using the support and query sets
(Strain, Qtrain), where the supervisions for both
sets are visible. In the testing phase, we predict
the new classes in the query set Qtest and evalu-
ate the performance given the ground truths.

3.2. Dataset Details
This section provides an overview of the Few-
CORD and Few-SEAB datasets. We construct
these two benckmark datasets on the top of the
CORD (Park et al., 2019) and SEAB (Zhang et al.,
2022) datasets and serve for few-shot relational
learning. These datasets consist of diverse and
realistic examples, enabling us to effectively mea-
sure the effectiveness of relational learning from
VRDs. Table 1 provides the details of the newly
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Figure 3: The double-humped distribution of specific key-value types on a document page, including:
“Shipper” and “Weight” in the SEAB dataset and “Menu” and “Total” in the CORD dataset.

Dateset Train Test
#Doc # BD #Types #Doc #BD #Types

CORD 800 18,915 32/16 200 4,466 32/16
SEAB 3,562 249,255 44/22 953 73,873 44/22

Few-CORD 1,211 32,160 18/9 702 15928 14/7
Few-SEAB 20,831 575,391 24/12 4,048 146,312 20/10

Table 1: Statistics of the supervised and few-shot
datasets, including the numbers of documents
(Doc), bounding boxes (BD), and types of enti-
ties/relations (Types A/B means A: base classes
in training; B: novel classes in testing).

created few-shot datasets.

4. Human-Like Approaches
4.1. Motivation
People possess the remarkable ability to quickly
grasp relation patterns with minimal exposure to
instances. They can effectively utilize layout in-
formation across various document images, given
the explicit spatial relationships between key and
value entities. These two-dimensional spatial pri-
ors serve as valuable cues for learning of the re-
lations in VRDs. However, existing approaches
struggle to effectively leverage these features.
Moreover, people have the capacity to infer in-
sights from unseen examples after seeing only a
few instances. They can learn high-dimensional
class-agnostic features that transcend linguistic
boundaries (Wang et al., 2022a) and contextual
limitations (Han et al., 2023) by establishing con-
nections across different classes, irrespective of
their novelty or familiarity. This unique capability
allow them to comprehend and generalize knowl-
edge within diverse contexts to identify new class
relations and entities.
Therefore, in this study, our objective is to intro-
duce a novel approach that emulates human-like
behavior in learning relations. Our approach fo-
cuses on incorporating relational 2D-spatial priors
and aims to learn high-dimensional class features,
irrespective of their novelty or familiarity. By com-
bining these two aspects, we aim to bridge the
gap between human cognition and existing mod-

els, thereby enabling more effective few-shot rela-
tional learning in VRDs.

4.2. Architecture
Figure 4 illustrates the overall architecture of
our method, which comprises three stages: 1)
ROI Regression, which learn regions of inter-
est (ROIs) using carefully curated golden window
instances; 2) Prototypical Rectification, which
tackles the issues associated with biased pro-
totype representations; and 3) Proximity-based
classification, which predicts the final token la-
bels. Figure 4 visually illustrates the comprehen-
sive architecture of our method, which involves
three key stages.

4.3. ROI Regression
Our preliminary studies have revealed a strong
correlation between specific key and value entities
in the two-dimensional layout space of VRDs. In
general, keys and values tend to exhibit a distinc-
tive double-hump distribution within this spatial ar-
rangement (see Figure 3), which can be seen as
a de facto two-dimensional spatial prior.
To leverage this distributional regularity, we intro-
duce the concept of a “golden window” that en-
compasses both the keys and values belonging
to a particular type. During training, this golden
window serves as an explicit supervision signal,
guiding the model to focus on relevant local re-
gions of interest (ROIs). We first employ Lay-
outLM (Xu et al., 2020) and LayoutLMv2 (Xu et al.,
2021) as our multimodal encoder to extract token-
level features H from multimodal channels, in-
cluding text, spatial (1D position and 2D layout),
and visual. For simplicity, we call them LLM.
Then, we utilize a Variational Autoencoder (VAE)
(Kingma and Welling, 2013) to model the distribu-
tions of local ROIs. Specifically, the output of the
decoder in VAE corresponds to four dimensions
(x1, y1, x2, y2) used for reconstructing the golden
window. This reconstruction enables improved
accuracy in predicting key-value associations by
explicitly considering their geometric layout within
visually-rich documents.
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Figure 4: Our model architecture comprises three key components: ROI regression, prototypical rectifi-
cation, and proximity-based classification. It can generate more robust representations that encompass
multiple modalities by directing its attention to relevant regions (by predicting the explicit ROI windows)
and learn high-dimensional relation-agnostic features using prototypical rectification, helping adaptation
to new relation classes.

4.4. Prototypical Rectification
Given the support features extracted by the multi-
modal encoder, we utilize the prototypical network
(ProtoNet) paradigm (Snell et al., 2017) to com-
pute an M-dimensional representation pc ∈ RM

for each entity class. We take the average of the
token embeddings to obtain prototypes.
However, ProtoNet encodes the support instances
as a single feature vector, but this does not provide
an accurate estimate of the class center (Yang
et al., 2020; Gao et al., 2019a; Liu et al., 2022),
especially when the data is sparse, and the exam-
ples are highly variable, making it difficult to repre-
sent the distribution of the class.
Building on recent advancements in variational
feature learning (Han et al., 2023; Xia et al., 2020;
Tran and Nguyen, 2018), we introduce a varia-
tional rectification mechanism to incorporate cat-
egory distribution information into the prototypes.
This mechanism enables us to transform support
features into class-wise representations. We ex-
pect the rectified prototypes z̃c to capture more
generic features of the class that are robust to
the variance of support instances. Here, pc repre-
sents the prototype feature of class k. We approx-
imate the class distribution N(µp,Σp) and sample
a variational feature z̃p from this distribution. Then,
we combine the prototypes and the variational fea-
ture using the following equation:

p̃c = A(pc, z̃p) = pc ⊗ sigmoid(z̃p), c ∈ C (1)

4.5. Proximity-based Classification
To incorporate the ROI information, we enhance
the multimodal input sequence by appending the
coordinates of the predicted window bpred to the

end of the sequence, specifically for the spa-
tial modality. In order to maintain alignment be-
tween the multimodal inputs, we introduce a spe-
cial token <UNK> to the corresponding text modal-
ity. Consequently, the resulting incorporated se-
quence is extended from the initial n tokens to
n+1 tokens, denoted as [t1, t2, . . . , tn, <UNK>]. We
take the last hidden layer outputs of the ROI-aware
multimodal encoder H̃ as the final query features.
This embedding captures sufficient multimodal in-
formation while incorporating the ROI information
for better relational representations.

H̃ = LMM
( t1, t2, . . . tn, <UNK>

b1, b2, . . . bn, bpred
Ib1 , Ib2 , . . . Ibn , Ibpred

)
(2)

For each query instance Qtest, we perform a
proximity-based classification by computing the 2-
norm distance (i.e., the Euclidean distance) be-
tween the query embeddings h̃i and rectified pro-
totypes p̃c.

dc = dl2−norm(pc, h̃i). (3)

Then, we normalize the prediction probability of x
over all classes using the softmax function. The
model predicts the label as the nearest prototype
to the input token. The cross-entropy loss is used
as the loss function for multi-classification task.

4.6. Training Objective
We train our few-shot relation learning model in
an end-to-endmanner with the following multi-task
loss,

Lfinal = LREC + αLKL1 + LRE + βLKL2 + LCLS, (4)
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Method LLM Proto VAE Few-CORD Few-SEAB
1-shot 2-shot 3-shot 4-shot 5-shot 1-shot 2-shot 3-shot 4-shot 5-shot

ProtoNet BERT ! % 32.32 35.14 38.87 40.08 42.95 26.88 28.59 30.08 31.74 34.11
NNShot BERT ! % 29.19 32.34 35.16 36.28 38.04 25.16 26.10 27.92 28.80 29.95
StructShot BERT ! % 33.54 34.95 37.41 38.31 40.38 27.30 28.63 29.20 30.19 31.75
VFA BERT % ! 30.08 31.34 32.86 34.89 37.14 24.83 25.61 27.11 28.65 29.06
ProtoRec BERT ! ! 33.30 35.40 39.01 40.53 43.14 27.45 29.04 30.35 32.15 34.28

ProtoNet LayoutLM ! % 70.25 74.10 77.02 79.31 80.40 60.95 64.02 66.31 69.53 73.12
NNShot LayoutLM ! % 68.20 72.70 73.76 75.24 76.67 58.80 61.75 62.27 64.40 66.89
StructShot LayoutLM ! % 71.38 73.88 74.52 77.24 77.83 61.15 63.14 63.50 65.28 68.10
VFA LayoutLM % ! 68.39 69.79 71.83 73.18 74.98 58.14 60.23 63.14 64.36 66.12
VFA+ROI LayoutLM % ! 68.71 70.07 72.31 73.91 75.65 58.76 60.61 63.91 65.08 66.79
ROI-Aware LayoutLM ! ! 71.33 74.96 77.84 80.78 81.22 61.79 64.92 66.45 69.84 73.19
ProtoRec+ROI LayoutLM ! ! 73.21 76.19 78.42 81.35 81.54 62.77 65.54 66.59 69.95 73.28

ProtoNet LayoutLMv2 ! % 70.30 74.22 77.16 79.35 80.52 61.18 64.10 66.43 69.80 73.37
NNShot LayoutLMv2 ! % 68.17 72.80 73.88 75.39 76.84 59.09 61.81 62.35 64.49 67.14
StructShot LayoutLMv2 ! % 71.45 73.95 74.62 77.50 78.11 61.30 63.34 63.57 65.37 68.18
VFA LayoutLMv2 % ! 68.87 70.16 72.05 73.63 75.56 58.77 60.59 63.70 65.03 67.18
VFA+ROI LayoutLMv2 % ! 69.21 71.39 72.63 74.15 76.01 59.20 61.57 63.97 65.28 68.26
ROI-Aware LayoutLMv2 ! ! 71.59 75.83 77.87 80.92 81.40 61.94 65.02 66.48 69.86 73.52
ProtoRec+ROI LayoutLMv2 ! ! 73.37 76.90 78.54 81.46 81.88 63.05 65.59 66.83 70.18 73.70

ProtoRec+ROI+CF LayoutLMv2 ! ! 73.32 76.96 78.63 81.40 81.85 62.98 65.47 66.80 70.21 73.65
ProtoRec+ROI+SW LayoutLMv2 ! ! 73.56 77.39 78.80 81.88 82.18 63.43 65.87 67.30 70.56 73.96

Table 2: The averaged f1-scores on the Few-CORD and Few-SEAB datasets. Bold and underline
indicate the best and second-best scores in each group. ROI-Aware and ProtoRec are two main com-
ponents of the variational model proposed in this work. +CF denotes filling the windows with a light color.
+SW refers to adversarial learning by shrinking windows.

where the weight coefficients α = β = 2.5× 10−4.
In the training phase, parameters are updated in
each episode. In the testing phase, we directly
deploy the model to predict novel types of entities
without computing the loss or updating the model
parameters.

5. Implementation Details
5.1. Backbones
We implement our model based on the approach
proposed by Ding et al. (2021). For the backbone
architecture, we utilize pre-trained document intel-
ligence models such as LayoutLM (Xu et al., 2020)
and LayoutLMv2 (Xu et al., 2021). These models
serve as the foundation for our method, providing
robust and effective feature extraction capabilities.
In addition, we also evaluate the performance of
the baseline model using Bert (Devlin et al., 2019)
solely for the text modality.

5.2. Hyper-parameters
We optimize the model with AdamW optimizer on
a dual NVIDIA 3090GPUsmachine, and the learn-
ing rate is 1 × 10−5. We fine-tune the model
with 10,000 iterations in training and evaluate the
performance using the averaged scores over 500
testing iterations.

5.3. Evaluation Scheme
Following (Han et al., 2018; Gao et al., 2019b; Ding
et al., 2021), we adopt episode evaluation. We

compute the micro-F1 score over a number of test
episodes. Each episode contains a K-shot sup-
port set with manually annotated labels and a K ′-
shot query set without any annotated labels.

5.4. Baselines
ProtoNet: is a baseline prototype system that as-
signs each token representation to the nearest
label representation by learning the examples in
the training set using a prototypical network (Snell
et al., 2017; Garcia and Bruna, 2018).
NNShot and StructShot (Yang and Katiyar,
2020): are state-of-the-art methods based on
token-level nearest neighbor classification. In con-
trast to the ProtoNet, NNShot determines the tag
of a query based on token-level distance. On the
other hand, StructShot incorporates an additional
Viterbi decoding during the inference phase to im-
prove the overall performance.
VFA: Variational Feature Aggregation (VFA) (Han
et al., 2023) is originally proposed for few-shot tar-
get detection in the CV domain. We re-implement
and adapt it to our specific task.

6. Experiment Results
6.1. Overall Evaluation
Table 2 shows the f1-scores on the Few-CORD
and Few-SEAB datasets. In general, we have ob-
served that the BERT backbone performs much
worse than LayoutLM and LayoutLMv2. This
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is primarily due to BERT’s limitation in captur-
ing non-textual information. In contrast, Lay-
outLM and LayoutLMv2, which includes visual in-
formation, proves to be more effective. However,
since LayoutLM itself does not inherently model vi-
sual features, we utilize ResNet as its visual en-
coder. Nonetheless, the misalignment between
visual modalities and other modalities affects the
effectiveness of LayoutLM as compared to Lay-
outLMv2.
From a horizontal perspective, it is generally ob-
served that as the number of shots, denoted asK,
increases, the performance of all methods tends
to improve. This improvement can be attributed
to the fact that as K increases, the prototypical
representations become closer to the actual data
points, leading to better performance. Overall, our
prototype rectification (ProtoRec) and ROI-aware
methods consistently yield stable improvements
regardless of the backbonemodel used. It is worth
mentioning that the combination of ProtoRec and
ROI-Aware (ProtoRec+ROI-Aware) achieves the
best performance among the methods mentioned.
It is important to note that adding a Layout-aware
Encoder to BERT’s backbone is not possible due
to BERT’s lack of 2D position information, so we
only show the ProtoRec result in the BERT group.

6.2. Semantic Similarity
Prototype sharing (Rymarczyk et al., 2021) can
help identify prototypical similarities between
classes. In this study, we aim to explore the rel-
evance of relations and semantic similarity be-
tween entities, conducting an empirical study on
entity-class similarity. For this purpose, we employ
BERT and LayoutLMv2, having pre-trained on the
training set to generate embeddings for all entities
mentioned in the test set. We randomly selected
100 instances of entity embeddings for each fine-
grained type and averaged them. Then, we calcu-
late the dot product between the central represen-
tations of each entity type to measure their similar-
ity. By comparing the results obtained from BERT
with those from LayoutLMv2, we gain insights into
the similarity. Figure 5 depicts that entity types
sharing the same coarse-grained type tend to ex-
hibit greater similarity, thereby facilitating knowl-
edge transfer.

6.3. Transfer Learning Capacity
Evaluating the model’s transfer learning capacity
is crucial for few-shot learning. To conduct the
experiment on transfer learning, following (Ding
et al., 2021), we reorganize the SEAB dataset
and construct two novel datasets, Few-SEAB
(Inter) and Few-SEAB (Intra), based on it by
adopting different splitting strategies. We divide
the entire set of entities into 4 coarse-grained

Goods Info

Shipping Info

Addr+Num

BERT LayoutLMv2

Shipper&Consignee

Goods Info

Shipping Info

Addr+Num

Shipper&Consignee

Figure 5: Semantic similarity heatmap for the en-
tity representations generated by using BERT and
LayoutLMv2.

disjoint subsets, e.g., “Shipper and Consignee”,
“Goods Information”, “Shipping Information”,
and “Address+Numbers”. In other words, we con-
struct the Few-SEAB (Intra) dataset ⟨D̂train,D̂test⟩
according to the coarse-grained types with
the principle that the entities in different sets
belong to different coarse-grained types. For
example, “Shipper and Consignee”, “Goods
Information” only appear in D̂train, and “Shipping
Information”, “Address+Numbers” only appear
in D̂test. This characteristic ensures that the
training and test sets have minimal overlap in
terms of shared knowledge. In contrast, while the
fine-grained entity types in the Few-SEAB (Inter)
dataset are mutually disjoint in D̂train and D̂test, the
coarse-grained types are shared, which means
both D̂train and D̂test should contains all four
fine-grained types “Shipper and Consignee”,
“Goods Information”, “Shipping Information”,
and “Address+Numbers”. Table 3 gives the com-
parison of the results under the Intra and Inter
transfer learning settings.

6.4. Effects of Prototypical Rectification

In the testing phase, the model needs to refer to
the mean feature of K-shot examples as the class
prototype. As shown in Figure 6, our estimated
class prototypes are more robust and accurate
than the baseline. We get real class centers for all
entity types via supervised tasks. We use all few-
shot learning models to compute the relative dis-
tance from each model-generated prototype to the
real center. The distances to real class centers do
not increase too much as the shot decreases be-
cause our method can fully leverage base classes’
distributions to estimate novel classes’ distribu-
tions. The prototypes sampled from distributions
are robust to the variance of support examples.
While the baseline is sensitive to the number of
support examples.
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Method LLM Proto VAE Inter Intra
1-shot 2-shot 3-shot 4-shot 5-shot 1-shot 2-shot 3-shot 4-shot 5-shot

ProtoNet BERT ! % 33.03 36.73 37.08 38.36 39.54 24.39 26.68 27.86 28.35 29.87
NNShot BERT ! % 34.35 34.68 35.75 35.93 36.47 23.46 24.43 25.10 25.57 26.20
StructShot BERT ! % 36.45 36.63 36.83 37.10 37.29 25.28 25.87 26.19 26.86 27.22
VFA BERT % ! 31.65 33.87 35.48 36.11 36.69 21.90 23.31 24.58 25.42 25.94
ProtoRec BERT ! ! 34.80 37.10 37.45 38.71 39.86 25.06 27.18 28.51 28.92 30.09

ProtoNet LayoutLM ! % 66.75 69.31 70.86 74.88 77.84 55.67 58.23 60.92 64.20 65.89
NNShot LayoutLM ! % 63.83 65.50 66.32 68.43 70.88 53.74 56.37 58.83 62.13 63.48
StructShot LayoutLM ! % 67.69 69.35 69.64 71.64 72.35 55.53 57.90 58.96 62.41 64.81
VFA LayoutLM % ! 64.45 65.89 67.34 70.63 72.90 51.48 54.67 55.86 59.34 61.22
VFA+ROI LayoutLM % ! 65.32 66.17 67.81 71.23 73.12 51.96 55.04 56.12 59.76 61.46
ROI-Aware LayoutLM ! ! 68.80 70.39 71.48 75.60 78.17 56.80 58.31 61.20 64.38 66.95
ProtoRec+ROI LayoutLM ! ! 69.67 71.18 71.88 75.83 78.64 57.94 59.13 61.79 64.85 67.05

ProtoNet LayoutLMv2 ! % 67.21 69.55 71.23 75.14 78.22 56.16 58.52 61.65 64.96 66.31
NNShot LayoutLMv2 ! % 63.87 66.20 66.87 68.87 71.26 54.70 57.23 58.93 62.27 63.02
StructShot LayoutLMv2 ! % 68.16 69.73 70.75 71.63 74.27 56.82 58.24 59.21 62.54 63.27
VFA LayoutLMv2 % ! 64.89 66.46 68.05 70.98 73.59 52.42 55.61 56.74 60.38 61.69
VFA+ROI LayoutLMv2 % ! 65.43 67.04 68.78 71.61 74.04 52.95 56.38 57.61 60.84 61.93
ROI-Aware LayoutLMv2 ! ! 70.11 71.19 72.64 75.80 78.67 57.69 59.80 61.91 64.87 67.14
ProtoRec+ROI LayoutLMv2 ! ! 71.59 72.76 73.32 75.97 79.59 58.79 60.44 62.37 65.13 67.53

Table 3: The averaged f1-score on the Few-SEAB (Inter) and Few-SEAB (Intra) datasets. Few-SEAB
(Inter) requires the entity types to be disjoint in the training set and the test set. Few-SEAB (Intra)
requires the entity types to be disjoint in the training set and the test set, while Few-SEAB (Inter) shares
the coarse-grained types in the training and test sets.

Train Test
#Doc #BD #Types #Doc #BD #Types

Inter 18,966 529,378 24/12 4,652 167,087 20/10
Intra 20,187 575,687 24/12 4,554 163,647 20/10

Table 4: Statistics of the inter- and intra-learning
settings in the Few-SEAB dataset, including the
numbers of documents (Doc), bounding boxes
(BD), and types of entities/relations (Types).

7. Related Work
7.1. VRD Understanding
Researchers have been actively working on ad-
dressing the task of understanding VRDs by in-
corporating multiple modalities, including text, lay-
out, and visual features. In recent years, a variety
of approaches have emerged in this field. Grid-
based methods, including Chargrid (Katti et al.,
2018), BertGrid (Denk and Reisswig, 2019), and
ViBERTgrid (Lin et al., 2021), utilize 2D feature
maps for document representation. Graph neural
network (GNN)-based methods, such as GraphIE
(Liu et al., 2019), MatchVIE (Tang et al., 2021), and
DualVIE (Zhang et al., 2022), FormNet (Lee et al.,
2022), FormNetv2(Lee et al., 2023) model asso-
ciations among text segments using graph struc-
tures. By leveraging the connectivity between seg-
ments, these models can better understand rela-
tionships within a document. Transformer-based
methods such as LayoutLM (Xu et al., 2020) incor-
porate two-dimensional relative position informa-
tion based on BERT’s architecture (Devlin et al.,
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Figure 6: Average distance from estimated pro-
totype to class centroid for K-shot instances Dis-
tance from the estimated prototype of the K-shot
instance to the real centroid of the class. We de-
fine the distance between the prototype estimated
from 5-shots and the actual centroid of the class
as 1 and use this as a reference. We report the
average distance for all new classes.

2019). This enables the model to perceive the po-
sitions of text segments within a document. Later
works like LayoutLMv2 (Xu et al., 2021), StrucText
(Li et al., 2021), StrucTextv2 (Yu et al., 2023), LiLT
(Wang et al., 2022a), and LayoutLMv3 (Huang
et al., 2022) further integrate visual channel in-
put into a unified multimodal Transformer frame-
work, leading to better alignments and represen-
tations across different modalities. These ap-
proaches have demonstrated promising progress
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in improving the performance of understanding
VRDs. While Wang et al. (2021) and Wang et al.
(2023) study the effect of reading order on the task
of towards human-like machine reading, they did
not discuss the local order involving in key-value
relationships in the document layout.

7.2. Few-shot Relational Learning
Most recent works on few-shot relational learn-
ing in NLP focus on relation extraction or classi-
fication using only the text modality (Han et al.,
2018; Baldini Soares et al., 2019). These works
typically follow the N -way K-shot setting (Snell
et al., 2017), where a relation instance needs to
be assigned to one of N classes based on only
K examples per class. Evaluation is done on
few-shot relation extraction benchmarks such as
FewRel (Han et al., 2018), FewRel2.0 (Han et al.,
2018), and Few-Shot TACRED (Sabo et al., 2021).
While some models have achieved performance
surpassing human performance on these tasks,
it has been argued by Brody et al. (2021) and
Sabo et al. (2021) that existing benchmarks are
far from real-world applications. They emphasize
that more challenges remain unsolved in this di-
rection, including reducing reliance on entity type
information and focusing more on relations for re-
alistic scenarios. Another challenge is transition-
ing to document-level relational learning (Popovic
and Färber, 2022), which requires different archi-
tectures compared to sentence-level approaches.
Given that the goal of few-shot relation learning
is to quickly adapt to unseen relation classes with
limited samples by leveraging training on known
relation classes, metric learning serves as the pri-
mary paradigm for this task. Prominent methods
include Prototypical network (Snell et al., 2017;
Garcia and Bruna, 2018) or its variants like proto-
type rectification (Liu et al., 2022). These methods
learn a prototype for each class and classify items
based on their similarities to the prototypes. Addi-
tionally, efforts have been made to develop frame-
works for document-level relational representation
learning in visually-rich documents (Li et al., 2022)
and enhance prototypes using relation information
through prototype rectification modules (Liu et al.,
2022), which have also shown promising results.

8. Conclusion
In this paper, we have addressed the research
topic of few-shot relational learning in visually-
rich documents. Given the limited availability of
datasets in this domain, we have reorganized ex-
isting supervised benchmark datasets and devel-
oped a sampling algorithm specifically tailored for
few-shot learning settings. Inspired by human-
like cognition, we also propose a novel vari-
ational approach to incorporate 2D-spatial pri-

ors and relation-agnostic features to improve the
model’s performance on the few-shot relational
learning task. The 2D-spatial priors models the
ROI window which guides the model’s attention to-
wards relevant regions for a given relation within
the document image. Additionally, we have in-
troduced a prototypical rectification mechanism to
enhance its ability to generalize and adapt to new
instances despite limited training data. Through
extensive experiments conducted on our newly
created datasets, we have demonstrated the ef-
fectiveness of both our ROI-aware and prototyp-
ical rectification techniques in improving perfor-
mance on few-shot relational learning tasks for
VRDs. These advancements significantly con-
tribute to the progress of research in few-shot re-
lational learning for VRDs and pave the way for
further exploration in this direction.
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11. Appendix
11.1. Relation Types
As shown in Table 5, SEAB is manually annotated
with 4 coarse-grained and 22 fine-grained relation
types, and we show all the types in Figure 7. Note
that the partition of relation types is shown in the
Table 5. Different colors is assigned according to
their specific coarse-grained types.

# Train # Test

SEAB ALL ALL

Inter 1,5,7,8,9,10,11,12,13,14,15,18 2,3,4,6,16,17,19,20,21,22

Intra 1,2,3,9,10,11,12,13,14,15,16,19 4,5,6,7,8,17, 18,20,21,22

Table 5: Partition of relation types in SEAB
dataset. Each number corresponds to a relation
type. Specifically, 1-22: Shipper, Consignee,
Notify Party, Marker, Number of Packages,
Good Description, Gross Weight, Measurement,
Shipping Terms, Place of Receipt, Port
of Loading, Port of Discharger, Place
of Delivery, Vessel Name, Voyage no,
Consignment Code, Shipping Company, HSCODE,
Freight Terms, Pre-Assignment, Case Size,
Remarks.

Figure 7: Realistic examples with annotations
from the SEAB dataset. These examples show all
entity and relation types.
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