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Abstract
Multi-modal sarcasm detection aims to identify whether a given sample with multi-modal information (i.e., text and
image) is sarcastic, which has received increasing attention due to the rapid growth of multi-modal posts on social
media. Existing mainstream methods (1) process the input of each modality holistically, resulting in redundant and
unrefined information; (2) entangle different modalities to perform complex cross-modal interactions, neglecting
the heterogeneity and distribution gap between them. To address these issues, we propose a new framework
dubbed DMMD (Disentangled Multi-grained Multi-modal Distilling) for multi-modal sarcasm detection, which conducts
multi-grained knowledge distilling (intra- and inter-subspace) based on disentangled multi-modal representations.
Concretely, the representations of each modality are first disentangled explicitly into modality-agnostic/specific
subspaces. Then we transfer cross-modal knowledge by conducting intra-subspace knowledge distilling in a
self-adaptive pattern. Based on this, we apply mutual learning to transfer the underlying inter-subspace knowledge.
Extensive experiments demonstrate the effectiveness of our DMMD over state-of-the-art baselines. More
encouragingly, visualization results indicate the multi-modal representations display meaningful distributional patterns.

Keywords: Multi-modal Sarcasm Detection, Disentangled Representation Learning, Multi-modal Knowledge Distilling

1. Introduction

Sarcasm constitutes a distinctive mode of affec-
tive expression that permits individuals to convey
a sentiment or intention, which is typically incon-
gruous with their authentic or overtly expressed
emotional state (Dews and Winner, 1995; Gibbs,
2007). Due to the pervasiveness of sarcastic ut-
terances on contemporary social media platforms
such as X and Reddit, sarcasm detection has re-
ceived considerable critical attention. Early sar-
casm detection methods solely focus on the tex-
tual modality and the intra-modal incongruity (Poria
et al., 2016; Zhang et al., 2016; Felbo et al., 2017;
Xiong et al., 2019). With the rapid expansion of so-
cial media platforms, multi-modal messages have
become ubiquitous (Lu et al., 2019; Liu et al., 2021;
Sun et al., 2022). As shown in Figure 1(a), there
is a text conveying positive sentiment (gorgeous
day). Whereas, the image accompanying the post
portrays a rainstorm, which counteracts the posi-
tive sentiment expressed by the text. As another
example shown in Figure 1(b), there are words
“beautiful” and “trees” in the text, which correspond
to the image depiction. In this context, research on
sarcasm detection has shifted from text-only modal-
ity to multi-modal information, whose core is to draw
intricate sentiment connections across modalities
for detecting sarcastic clues. Following previous
works, this paper focuses on multi-modal sarcasm
detection containing textual and visual data.

†Equal contribution.
∗Corresponding author.

(a) what a gorgeous day \# summer \# weather (b) the trees are so beautiful i shed a tear

Figure 1: Two examples of multi-modal sarcasm
detection from Cai et al. (2019). (a) is a sarcastic
example, while (b) is a non-sarcastic example.

Inspired by the successful pre-trained models
like ResNet (He et al., 2016), ViT (Dosovitskiy
et al., 2021) in CV and BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) in NLP, several re-
lated research efforts have been conducted to learn
representations of each modality in a divide-and-
conquer manner. Thereafter, a bunch of sophisti-
cated modules (e.g., graph neural networks (Liang
et al., 2021, 2022a), attention mechanism (Pan
et al., 2020)) have been proposed to learn correla-
tions between elements across modalities.

Despite significant progress existing methods
achieved, most of them treat the representation of
each modality as a whole, ignoring the fact that
not all elements in the image contribute to min-
ing sarcastic clues (e.g., the wind chimes in Fig-
ure 1(a)), and vice versa. Motivated by this, Liang
et al. (2022a) explored to extract object-level fea-
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tures from the image as visual input, which clarifies
refined interactions among modalities and moves a
step further. However, it heavily relies on an exter-
nal object detection model, and there is still infor-
mation redundancy in the input of textual modality.

Besides, the representations of multi-modalities
are typically entangled in one common latent space
to perform cross-modal interactions subsequently,
where modality heterogeneity and distribution gap
are neglected. Intuitively, different modalities con-
tain different ways of conveying sarcastic informa-
tion, i.e., the language modality consists of limited
texts and has more abstract and fruitful semantics
than nonverbal behaviors (Zhuang et al., 2024). As
such, it is not appropriate to directly divide-and-
conquer processing visual and textual information.

Following these premises, we propose a new
framework termed DMMD (short for Disentangled
Multi-grained Multi-modal Distilling) for multi-modal
sarcasm detection. Concretely, we first adopt a
common encoder and two private encoders to dis-
entangle the features of each modality into modality-
agnostic/-specific subspace. To guarantee con-
sistency for modality-agnostic representations and
diversity for modality-specific representations, we
introduce two subspace constraints to consolidate
the feature disentangling. Based on the disentan-
gled multi-modal representations, we then conduct
multi-grained knowledge distilling to obtain refined
representations for detecting sarcastic clues.

To conduct intra-subspace knowledge distilling,
we construct a multi-modal distillation graph con-
sisting of textual and visual modalities for each sub-
space. Beyond previous work (Gupta et al., 2016),
our graph distillation could adaptively capture the
direction and weight of knowledge transfer, which
allows cross-modal knowledge transfer to be per-
formed more flexibly and efficiently. To conduct
inter-subspace knowledge distilling, we introduce
mutual learning (Qiao et al., 2023; Cheng et al.,
2023a) to effectively utilize the subspace repre-
sentations concatenated by the modality-agnostic/-
specific representation of each modality to jointly
conduct sarcasm detection. The two subspace rep-
resentations are conducted knowledge transferring
for each other, which could share certain consis-
tency regarding the detection results.

Overall, the main contributions of this work are:

• We model multi-modal sarcasm detection
based on feature disentanglement. We per-
form multi-grained knowledge distilling based
on disentangled multi-modal representations.

• For intra-subspace knowledge distilling, we tai-
lored modality-agnostic/-specific graph distill-
ing in different subspaces. Within both graphs,
the distillation directions and weights can be
learned automatically.

• For inter-subspace knowledge distilling, we
consider the intrinsic consistency between the
two subspaces and adopt mutual learning to
encourage distinct subspace representations
to learn from each other.

• Extensive experiments demonstrate the effec-
tiveness of our proposed model over state-
of-the-art (SOTA) methods. Further analyses
show the superiority of our model.

2. Related Work

2.1. Multi-Modal Sarcasm Detection
Multi-modal sarcasm detection aims to identify
the sarcastic expression among different modal-
ities (Castro et al., 2019). In particular, detecting
sarcasm for both text and image modalities has in-
creased research attention. Schifanella et al. (2016)
first used both textual and visual information to
tackle multi-modal sarcasm detection task. Cai et al.
(2019) created a multi-modal sarcasm detection
dataset based on X and proposed a hierarchical fu-
sion model for the task. Thereafter, Xu et al. (2020)
and Pan et al. (2020) captured both intra-modality
and inter-modality incongruities based on their pro-
posed model, respectively. Liang et al. (2021) and
Liang et al. (2022a) built cross-modal graph models
for drawing incongruous relations across modali-
ties. Most recently, Liu et al. (2022) was concerned
about the inconsistency of textual and visual modal-
ities and adopted hierarchical congruity modeling
in representations of multi-modalities.

However, they still tend to project multiple modal-
ities into a common latent space and learn the hy-
brid representations in a holistic manner, which ne-
glects the inherent heterogeneity and information
redundancy across modalities. Besides, some re-
search has focused on exploring the characteristics
and commonalities of multi-modal representations
through feature disentangling to obtain effective rep-
resentations, leading to promising results in several
areas (Yang et al., 2022b; Hu et al., 2024; Wang
et al., 2023; Hu et al., 2022). This work fundamen-
tally differs from them as our proposed model can
transfer effective cross-modal knowledge within
and between the disentangled feature subspaces.

2.2. Knowledge Distillation
The concept of knowledge distillation (KD) was first
proposed by Hinton et al. (2015). KD defines a
learning manner where a bigger teacher network
is employed to guide the training of a smaller stu-
dent network for many tasks (Li et al., 2017, 2021).
KD methods primarily concentrate on transferring
knowledge from teachers to students (Wang et al.,
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Figure 2: The overall architecture of our proposed Disentangled Multi-grained Multi-modal Distilling
(DMMD) framework.

2021), while some recent studies have explored
the potential of graph structures to facilitate efficient
message-passing mechanisms between multiple
teachers and students, thereby enabling the trans-
fer of multiple instances of knowledge (Luo et al.,
2018; Zhang and Peng, 2018; Ma et al., 2022; Zou
et al., 2023; Cheng et al., 2023b). Unlike exist-
ing approaches, our objective is to utilize exclusive
graph distilling components within the disentangled
feature spaces in a self-adaptive manner, which is
denoted as intra-subspace knowledge distilling.

Zhang et al. (2018) extended knowledge distil-
lation and designed mutual learning, which has
been proposed to leverage information from multi-
ple models and enable effective knowledge transfer
in image processing. Wen et al. (2021) resorted to
mutual learning to compose the multi-modal query
to retrieve the target image. In NLP, Zhao et al.
(2021) employed mutual learning for speech trans-
lation to transfer knowledge between speech trans-
lation and machine translation. In this work, we
adopt mutual learning to encourage consistency
between the two subspace representations con-
catenated by modality-agnostic/-specific represen-
tations of each modality, which can be called inter-
subspace knowledge distilling.

3. Problem Formulation

We first define the problem of multi-modal sarcasm
detection. Suppose that we have a set of N train-
ing samples D = {si}Ni=1, where each sample
si = {Xi

t ,X
i
v, Y

i} involves three elements. There-
into, Xi

t and Xi
v denote the sentence (textual infor-

mation) and image (visual information) of the i-th
sample, respectively. Y i is the ground truth label,
where Y i = 1 if the i-th sample is sarcastic, and
Y i = 0 otherwise. In a sense, we aim to devise

a novel multi-modal sarcasm detection model f(·)
which can precisely identify whether a given sen-
tence and its attached image deliver the sarcasm,

f(Xi
t ,X

i
v |Θ) → Ŷ i, (1)

where Θ denotes the parameters of f(·) , Ŷ i is the
binary classification prediction result of the model
f(·) . In the following section, we temporally omit
the superscript i that indexes the training samples.

4. Approach

4.1. Feature Extraction
For a given textual sentence Xt =
{x[1,t], x[2,t], · · · , x[Lt,t]} consisting of Lt words, we
adopt the pre-trained BERT model (Devlin et al.,
2019), to map each word x[∗,t] into d-dimensional
embedding1, denoted as Ht ∈ RLt×d. For a given
image Xv ∈ RLh×Lw , following Xu et al. (2020);
Liang et al. (2021); Liu et al. (2022), we first resize
it to 224 × 224 pixels, i.e., L = Lh = Lw = 224.
Then the image is divided into r = p× p patches,
w.r.t. Xv ∈ Rr×(L/p×L/p). Next, we feed the
sequence of r image patches into a pre-trained
Vision Transformer (ViT) (Dosovitskiy et al., 2021)
with an MLP layer subsequently to acquire the
visual representation Hv ∈ RLv×d.

4.2. Feature Disentangling
4.2.1. Existing Solution

Since existing representations in a divide-and-
conquer manner could introduce information re-
dundancy and distribution gap (Liang et al., 2022b;

1Following previous works Liang et al. (2021, 2022a),
we adopt the first sub-token’s representation as the whole
word representation.
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Yang et al., 2022a) across modalities, we propose
to embed initial representations of each modality
into modality-agnostic and modality-specific sub-
spaces, which has achieved success in several
cross-modal tasks (Yang et al., 2022b,a; Wang
et al., 2023; Xu et al., 2022), and we utilize it as
the foundation for subsequent distilling. Formally,
we utilize a common encoder Ecom(· | θhomo) and
two private encoders Eprt

m (· | θhetem ) (m ∈ {t, v}) to
obtain the disentangled homogeneous and hetero-
geneous representations,

Hhomo
m = Ecom(Hm | θhomo), (2)

Hhete
m = Eprt

m (Hm | θhetem ). (3)

The common encoder Ecom(· | θhomo) shares the
parameters θhomo across all modalities, and the
private encodersEprt

m (· | θhetem ) learn the parameters
θhetem for each modality.

4.2.2. Subspace Constraint

Despite performing the aforementioned process,
feature disentangling cannot be thoroughly guaran-
teed. There exists the potential for information to
freely permeate between feature representations,
whereby all modality information may be solely
encoded in Hhete

m , which renders homogeneous
(modality-agnostic) multi-modal features meaning-
less. Inspired by Li et al. (2023), we introduce
a consistency constraint in the modality-agnostic
subspace to strengthen the commonality across
modalities, which is formulated as follows,
Lcon = 1

|S|
∑

(i,j,k)∈S max(0, α− cos(Hhomo
m[i] ,Hhomo

m[j] ) + cos(Hhomo
m[i] ,Hhomo

m[k] )),

(4)
where the triple tuple set2 S = {(i, j, k) |m[i] ̸=
m[j],m[i] = m[k], Y i = Y j , Y i ≠ Y k}. α is the dis-
tance margin, m[∗] denotes the modality of sample
∗, and cos(·, ·) refers to the cosine similarity. The
margin α enforces the distances between positive
samples (same label; different modalities) to be
smaller than those between negative ones (same
modality; different labels).

To ensure the modality-specific representations
capture different aspects of multi-modal data and
reduce information redundancy across different
modalities, we further introduce a disparity con-
straint in each modality-specific subspace,

Ldis
=

∑
m∈{t,v}

cos(H
homo
m ,H

hete
m ). (5)

Thus, the formulated soft orthogonality constraint
in Equation 5 can reduce information redundancy
between modality-agnostic and modality-specific
representations.

2Note that the triple tuple set is formed within each
batch.

4.3. Intra-subspace Knowledge Distilling

4.3.1. Homogeneous Graph Distilling

For disentangled homogeneous representations,
we first construct a homogeneous graph Ghomo,
whose node is denoted as vi (i ∈ {t, v}) w.r.t a
modality. Without loss of generality, the edge ehomo

t→v

in graph Ghomo denotes the difference between cor-
responding logits, which is represented for the distil-
lation from vt to vv, and vice versa. Denote W homo

and Ehomo as the edge weights matrix and distil-
lation matrix of Ghomo, respectively. The weighted
distillation loss can be constructed as,

Lt,homo
dtl = whomo

v→t × ehomo
v→t , (6)

Lv,homo
dtl = whomo

t→v × ehomo
t→v , (7)

where whomo
v→t and whomo

t→v refer to the distillation
strength from vv to vt and vt to vv, respectively.

To learn a self-adaptive weight that corresponds
to the distillation strength w, we propose to encode
the modality logits and the representations into the
graph edges. The process is formulated as follows,
whomo

v→t = f2((f1(H
homo
v )⊕Hhomo

v )⊕ (f1(H
homo
t )⊕Hhomo

t )),

(8)
whomo

t→v = f2((f1(H
homo
t )⊕Hhomo

t )⊕ (f1(H
homo
v )⊕Hhomo

v )),

(9)
where ⊕ denotes feature concatenation, f1(·) is a
fully connected (FC) layer for regressing logits, and
f2(·) is an FC layer for concatenating logits. Conse-
quently, the graph distillation loss of two modalities
can be now normalized as,

Lhomo
dtl =

∥∥∥W homo ⊙ E
homo

∥∥∥
1
, (10)

where ⊙ means element-wise product and ∥·∥1 de-
notes ℓ1-norm.

4.3.2. Heterogeneous Graph Distilling

To bridge the distribution gap between disentangled
heterogeneous feature representations Hhete

m , we
utilize the multi-modal transformer (Tsai et al., 2019)
to perform the modality adaptation. The core of the
multi-modal transformer lies in its cross-modal at-
tention (CA) module, which takes in features from
two modalities and integrates cross-modal informa-
tion. Take textual modality Hhete

t as the source
and visual modality Hhete

v as the target, the cross-
modal attention can be defined as Qv = Xhete

v Mq,
Kt = Xhete

t Mk, and Vt = Xhete
t Mv where Mq,

Mk and Mv are learnable parameters. The indi-
vidual head of CA can be expressed as:

H
′hete
t→v = softmax(

QvK
⊤
t√

d
)Vt, (11)

where H ′hete
t→v is the enhanced features from tex-

tual information to visual information, and d repre-
sents the dimension of Qv and Kt. H ′hete

v→t can be
derived like Equation 11, and the distillation loss
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function Lhete
dtl can be similarly obtained like Equa-

tion 10. Next, for homogeneous/heterogeneous
representations (Hhomo

t , Hhomo
v / H ′hete

t→v , H ′hete
v→t ),

we concatenate both textual and visual modalities
in each subspace to obtain two subspace represen-
tations, denoted as Zhomo and Zhete. For Zhomo,
we then feed it into FC layers to gain the predicted
probability distributions as follows,

p
homo

= softmax(W1Z
homo

+ b1), (12)

where W1 and b1 are trainable parameters, phomo

is the predicted probability vector of homogeneous
feature representations. Eventually, we calculate
the cross-entropy loss to supervise homogeneous
feature representations as follows,

Lhomo
ce = Y

i
log p

i,homo
+ (1 − Y

i
) log(1 − p

i,homo
), (13)

where Y i and pi,homo are the i-th elements of the
ground truth Y and phomo, respectively.

For Zhete, phete and Lhete
ce can be derived like

Equation (12) and (13), respectively.

4.4. Inter-subspace Knowledge Distilling
As both subspace representations aim to capture
incongruent sarcastic information across modali-
ties, there should be certain intrinsic consistency
between the two representations. In view of this,
we make the two subspace representations share
knowledge with each other by adopting mutual
learning (Zhang et al., 2018; Nie et al., 2018; Hong
et al., 2021) following Qiao et al. (2023). Specifi-
cally, we employ the Kullback Leibler (KL) (Kullback
and Leibler, 1951) Divergence between phomo and
phete, which can measure the differences between
two distributions to encourage consistency between
the two subspace representationsZhomo andZhete.
To avoid incorrect knowledge being transferred, we
only transfer reliable knowledge by introducing a
temperature parameter controlling whether to trans-
fer the prediction result of this sample. Formally,
the objective function for inter-subspace knowledge
transferring can be formulated as follows,

Lhomo→hete
kl = δhomo KL(p

homo||phete
), (14)

Lhete→homo
kl = δhete KL(p

hete||phomo
), (15)

where homo → hete denotes the knowledge
transferring from the modality-agnostic to modality-
specific subspace, and vice versa. Following Hin-
ton et al. (2015), we sharpen the predicted dis-
tribution with a temperature parameter for knowl-
edge transfer. In order to avoid incorrect knowledge
transferring, we define a sample screening mecha-
nism using control parameters δh:

δh =

{
1, if argmax(ph) = Y,
0, otherwise,

(16)

in which argmax denotes the operation that gains
the predicted labels from the predicted result
ph, h ∈ {homo, hete}, and ph is the predicted
probability distribution of the modality-agnostic/-
specific subspace representations which shares

Training Validating Testing
All 19816 2410 2409
Positive 8642 959 959
Negative 11174 1451 1450

Table 1: Statistics of the experimental data.

the knowledge (i.e., phomo forLhomo→hete
kl and phete

for Lhete→homo
kl ).

4.5. Training Objective
Towards the optimization of the whole model, we
combine all loss functions as follows,

Lhomo = Lhomo
ce + λ1Lhomo

dtl + λ2Lhete→homo
kl ,

(17)
Lhete = Lhete

ce + λ3Lhete
dtl + λ4Lhomo→hete

kl , (18)
Lall = Lhomo + Lhete + λ5(Lcon + Ldis), (19)

in which λ∗ are non-negative hyper-parameters.
L(·)
ce denote the loss function of the sarcasm detec-

tion task, L(·)
dtl and L(·)

kl denote the loss function
of intra-subspace knowledge distilling and inter-
subspace knowledge distilling, respectively.

Eventually, the binary classification prediction
result Ŷ is defined as follows,

Ŷ = argmax(
phomo + phete

2
). (20)

5. Experiments

5.1. Experimental Setup
5.1.1. Dataset

Following previous works, we evaluated our model
on a publicly available multi-modal sarcasm detec-
tion benchmark dataset (Cai et al., 2019). There-
into, tweets with some special hashtags (e.g. sar-
casm) are positive examples and those without
such hashtags are negative examples.

5.1.2. Metrics

Following Cai et al. (2019), we perform Accuracy,
Precision, Recall and F1-score metrics to evaluate
the performance of models.3 Since the label distri-
bution of the dataset is imbalanced, following Pan
et al. (2020); Liang et al. (2021), we also report
macro-average results.

5.1.3. Baselines

We compare our DMMD with a series of base-
lines, summarized as follows: 1) Image-Modality
methods: These models use only visual informa-
tion for sarcasm detection, including Image (Cai

3We implement the metrics by using sklearn.metrics.
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Modality Method Accuracy (%) F1-score Macro-average

Precision(%) Recall(%) F1-score(%) Precision(%) Recall(%) F1-score(%)

Image
Image (Cai et al., 2019) 64.76 54.41 70.80 61.53 60.12 73.08 65.97
ViT (Dosovitskiy et al., 2021) 67.83 57.93 70.07 63.43 65.68 71.35 68.40

Text

TextCNN (Kim, 2014) 80.03 74.29 76.39 75.32 78.03 78.28 78.15
Bi-LSTM 81.90 76.66 78.42 77.53 80.97 80.13 80.55
SIARN (Tay et al., 2018) 80.57 75.55 75.70 75.63 80.34 78.81 79.57
SMSD (Xiong et al., 2019) 80.90 76.46 75.18 75.82 80.87 78.20 79.51
BERT (Devlin et al., 2019) 83.85 78.72 82.27 80.22 81.31 80.87 81.09

Image+Text

HFM (Cai et al., 2019) 83.44 76.47 84.15 80.18 79.40 82.45 80.90
D&R Net (Xu et al., 2020) 84.02 77.97 83.42 80.60 - - -
Res-BERT (Pan et al., 2020) 84.80 77.80 84.15 80.85 78.87 84.46 81.57
Att-BERT (Pan et al., 2020) 86.05 78.63 83.31 80.90 80.87 85.08 82.92
InCrossMGs (Liang et al., 2021) 86.10 81.38 84.36 82.84 85.39 85.80 85.60
CMGCN (Liang et al., 2022a) 87.55 83.63 84.69 84.16 87.02 86.97 87.00
Liu et al. (Liu et al., 2022) 87.36 81.84 86.48 84.09 - - -
MILNet (Qiao et al., 2023) 89.50 85.16 89.16 87.11 88.88 89.44 89.12
DMMD (Ours) 90.60 86.95 91.04 88.93 90.67 91.31 90.94

Table 2: Comparison results between our DMMD and previous SOTA methods.

et al., 2019) and ViT (Dosovitskiy et al., 2021). 2)
Text-Modality methods: These models use only
textual information for sarcasm detection, including
TextCNN (Kim, 2014); BiLSTM; SIARN (Tay et al.,
2018); SMSD (Xiong et al., 2019) and BERT (De-
vlin et al., 2019). 3) Multi-Modal methods: These
models take both text- and image-modality informa-
tion as input for multi-modal sarcasm detection,
including HFM (Cai et al., 2019); D&R Net (Xu
et al., 2020); Res-BERT (Pan et al., 2020); Att-
BERT (Pan et al., 2020); InCrossMGs (Liang et al.,
2021); CMGCN (Liang et al., 2022a); Liu et al. (Liu
et al., 2022) and MILNet (Qiao et al., 2023).

5.1.4. Settings

Following data pre-processing in Cai et al. (2019);
Liang et al. (2021); Xu et al. (2020), we remove
samples containing words that frequently co-occur
with sarcastic utterances (e.g., sarcasm, sarcastic,
irony and ironic) to avoid introducing external infor-
mation. We utilize pre-trained uncased BERT-base
model 4 to embed each word of text-modality as a
768-dimensional embedding and employ the pre-
trained ViT 5 to embed each image patch as a 768-
dimensional embedding, i.e., d in Section 4.1 is 768.
For image pre-processing, we resize the image to
224× 224 and divide it into 32× 32 patches 6 (i.e.,
p = 7, r = 49). λ{1−5} in Equation 17, 18 and 19
are searching in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} via
the best performance on the validation set. We use
Adam optimizer (Kingma and Ba, 2015) with a learn-
ing rate of 2e-5, weight decay of 5e-3, batch size as

4https://huggingface.co/bert-base-uncased
5https://github.com/lukemelas/PyTorch-Pretrained-

ViT
6We also tested other division resolutions and found

that performance fluctuations were negligible across dif-
ferent image patch resolutions.

32 and dropout rate as 0.4 to train our DMMD. All
experiments are conducted at an RTX 3090 GPU
with 24GB memory. The experimental results of
our proposed models are obtained by averaging 5
runs with random initialization.

5.2. Comparisons with State-of-the-art
Methods

The comparison results are reported in Table 2.
From the results, we can draw the following con-
clusions. (1) DMMD consistently outperforms all
baselines across all evaluation metrics, which de-
notes that DMMD can significantly improve the
performance over state-of-the-art methods, justify-
ing the effectiveness of the proposed disentangled
multi-grained multi-modal distilling framework. (2)
DMMD surpasses Liu et al. (feature representa-
tions modeled hierarchically) and CMGCN (feature
representations interact across modalities based
on graph structure). This implies our feature dis-
entangling approach is a step further than the con-
ventional divide-and-conquer approach. (3) Meth-
ods based on text modality consistently outperform
those based on image modality, which indicates
that the expression of sarcastic/non-sarcastic infor-
mation predominantly resides in the text modal-
ity. (4) Methods that leverage both image and
text modalities exhibit superior performance to uni-
modal baselines, which demonstrates that utilizing
information from both modalities is more effective
for sarcasm detection. (5) The macro-average re-
sults outperform other commonly used metrics over-
all, which demonstrates that models perform better
in the “negative” class due to the imbalanced class
distribution. (6) To justify whether the improvement
is statistically significant, we conducted t-tests be-
tween our results and the second best results and
found that all the p < 0.05. This validates the su-
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Section Setting FD Intra-subspace KD Inter-subspace KD Dataset: Cai et al.

Homo-GD CA Hete-GD ML SS Accuracy(%) F1-score(%) Marco-F1(%)

4.2 Base 85.25 (↓5.35) 83.59 (↓5.34) 84.26 (↓6.68)
(a) ✓ 86.28 (↓4.32) 84.46 (↓4.47) 86.58 (↓4.36)

4.3

(b) ✓ ✓ 87.40 (↓3.20) 85.61 (↓3.32) 87.95 (↓2.99)
(c) ✓ ✓ ✓ 87.84 (↓2.76) 86.75 (↓2.18) 88.87 (↓2.07)
(d) ✓ ✓ ✓ 88.25 (↓2.35) 87.12 (↓1.81) 89.30 (↓1.64)
(e) ✓ ✓ ✓ ✓ 89.71 (↓0.89) 88.10 (↓0.83) 90.12 (↓0.82)

4.4 (f) ✓ ✓ ✓ ✓ ✓ 90.26 (↓0.34) 88.58 (↓0.35) 90.62 (↓0.32)
DMMD ✓ ✓ ✓ ✓ ✓ ✓ 90.60 (-) 88.93 (-) 90.94 (-)

Table 3: Results of ablation study. FD: feature disentangling. Homo-GD: homogeneous graph distilling.
CA: the cross-modal attention module in the multi-modal transformer. Hete-GD: heterogeneous graph
distilling. ML: Mutual Learning. SS: Sample Screening. Base: conduct sarcasm detection using only the
backbone models (i.e., BERT and ViT).

periority of DMMD over existing methods.

5.3. Quantitative Analysis
We conduct quantitative analysis to investigate the
contribution of each component of our DMMD and
the results are reported in Table 3.

5.3.1. Effect of Feature Disentangling

Setting (a) in Table 3 shows that FD can success-
fully boost baselines with gains up to 1.03%, 0.87%
and 2.32% in terms of Accuracy, F1-score and
Macro-F1 respectively, demonstrating the disentan-
gled features can reduce information redundancy
and provide discriminative multi-modal features.

5.3.2. Effect of Intra-subspace Knowledge
Distilling

Setting (b) shows that combining FD with Homo-GD
can further improve model performance. Although
the homogeneous representations of each modality
are projected into the same subspace, variations in
discriminative capability still exist between modali-
ties. By Homo-GD, DMMD is able to effectively en-
hance weak modalities. A similar observation was
made with respect to Hete-GD, as demonstrated
in setting (c). However, performing Hete-GD with-
out CA leads to degraded performance, indicating
that the multimodal transformer plays a crucial role
in bridging the gap between multi-modal distribu-
tions (cf. setting (d)). By combining CA and Hete-
GD, DMMD obtains conspicuous improvements as
shown in setting (e), demonstrating the importance
of further exploiting heterogeneous representations
of each modality for multi-modal sarcasm detection.

5.3.3. Effect of Inter-subspace Knowledge
Distilling

Setting (f) shows that the introduction of mutual
learning can significantly boost performance. We
attribute this to the fact that our DMMD enables

Method Dataset: Cai et al.

Accuracy(%) F1-score(%) Marco-F1(%)
MulT (w/o KD) 87.78 (↓2.82) 86.49 (↓2.44) 87.76 (↓3.18)
MulT (w/ KD) 88.29 (↓2.31) 87.37 (↓1.56) 88.83 (↓2.11)
DMMD (Ours) 90.60 (-) 88.93 (-) 90.94 (-)

Table 4: Architecture analysis on the MulT (multi-
modal transformer) (Tsai et al., 2019) w/o and w/
KD and DMMD.

knowledge sharing between modality-agnostic and
modality-specific subspace, allowing it to leverage
the underlying consistency of two subspace repre-
sentations for mining sarcastic clues. Moreover, by
comparing the results of setting (f) and DMMD, we
conclude that choosing the right knowledge to trans-
fer is necessary. Since Intra-subspace Knowledge
Distilling and Inter-subspace Knowledge Distilling
can both boost performance, combining them can
lead to the most prominent improvement across
all metrics (cf. setting DMMD), with up to 5.01%,
4.99% and 6.36% in terms of Accuracy, F1-score
and Macro-F1, respectively.

5.3.4. Rationality Analysis

We compare our proposed DMMD with the MulT
(multi-modal transformer) (Tsai et al., 2019) to fur-
ther verify the rationality of the proposed frame-
work. As shown in Table 4, where KD denotes we
perform (inter-subspace) knowledge distilling on
MulT to conduct adaptive knowledge transfer with
the multimodal features. The core differences be-
tween MulT (w/ KD) and DMMD are: 1) DMMD
conducts feature disentangling, and 2) DMMD per-
forms multi-grained knowledge distilling. We can
observe that our DMMD gains consistent improve-
ments than both MulT (w/o and w/ KD) across all
metrics, which demonstrates the rationality and fea-
sibility of combing the feature disentangling and the
multi-grained knowledge distilling.
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Figure 3: Visualization of the disentangled homogeneous/heterogeneous representations. m+ and m−
(m ∈ {t, v}) represent the modality of non-sarcastic and sarcastic samples, respectively.

5.4. Qualitative Analysis

5.4.1. Visualization of Intra-subspace
Representations

To thoroughly understand the proposed
intra-subspace KD, we perform t-SNE (der
Maaten and Hinton, 2008) to visualize homo-
geneous/heterogeneous representations from
different subspaces. To visualize the homoge-
neous representations, we randomly selected
24 samples (12 samples for each label) from
the testing set. To visualize the heterogeneous
representations, we randomly selected 360
samples from the testing set.

From Figure 3, we can observe that: (1) For (a),
without performing intra-subspace KD, the samples
only vaguely show basic separability without explicit
decision boundaries. Additionally, different modal
information belonging to the same sample is en-
tangled, making it more challenging to learn multi-
modal representations. (2) As for (b), through per-
forming Homo-GD in modality-agnostic subspace,
our DMMD efficiently shares relevant information
between modalities, leading to good discrimina-
tory performance. (3) In the modality-specific sub-
spaces, the features of different samples are ex-
pected to cluster according to their modalities be-
cause of their inter-modal heterogeneity. By com-
paring the results of (c) and (d), we can draw similar
conclusions to those in (1) and (2) regarding the
effectiveness of our approach. (4) The qualitative
analysis further supports our motivation and ver-
ifies the effectiveness of our proposed approach
in exploring intra-subspace knowledge distilling to
boost the performance of sarcasm detection.

5.4.2. Visualization of Inter-subspace
Representations

In Figure 4, we conduct a qualitative analysis to thor-
oughly understand the inter-subspace KD. We can
observe that w/ inter-subspace KD, subspace rep-
resentations concatenated together from different
modal features in each subspace can exhibit su-
perior binary differentiation compared to those w/o

(a) setting (e) w/o Inter-subspace KD (b) setting (e) w/ Inter-subspace KD

Figure 4: Visualization of the subspace representa-
tions. We visualize the representations by reducing
the dimension with Principal Component Analysis
(PCA) (Abdi and Williams, 2010). The different
colours represent different samples.

inter-subspace KD. We attribute this to the capabil-
ity of our inter-subspace KD to explore properties in
different subspaces and perform efficient migration
of knowledge to improve performance.

6. Conclusion

In this paper, we propose the Disentangled Multi-
grained Multi-modal Distilling (DMMD) framework
for multi-modal sarcasm detection, which performs
intra-subspace and inter-subspace knowledge dis-
tilling based on disentangled multi-modal represen-
tations. We conducted extensive experiments on a
publicly available benchmark, which demonstrated
the superiority of our proposed framework.

Future work can further explore interpretable
multi-modal sarcasm detection and exploit
LLMs (Chen et al., 2024b,a; Xu et al., 2024) to
boost performance.
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